Pub Date : 2024-03-28DOI: 10.1007/s10994-024-06525-y
Pavlos Athanasios Apostolopoulos, Zehui Wang, Hanson Wang, Tenghyu Xu, Chad Zhou, Kittipate Virochsiri, Norm Zhou, Igor L. Markov
Large-scale Web-based services present opportunities for improving UI policies based on observed user interactions. We address challenges of learning such policies through offline reinforcement learning (RL). Deployed in a production system for user authentication in a major social network, it significantly improves long-term objectives. We articulate practical challenges, provide insights on training and evaluation of offline RL, and discuss generalizations toward offline RL’s deployment in industry-scale applications.
{"title":"Personalization for web-based services using offline reinforcement learning","authors":"Pavlos Athanasios Apostolopoulos, Zehui Wang, Hanson Wang, Tenghyu Xu, Chad Zhou, Kittipate Virochsiri, Norm Zhou, Igor L. Markov","doi":"10.1007/s10994-024-06525-y","DOIUrl":"https://doi.org/10.1007/s10994-024-06525-y","url":null,"abstract":"<p>Large-scale Web-based services present opportunities for improving UI policies based on observed user interactions. We address challenges of learning such policies through offline reinforcement learning (RL). Deployed in a production system for user authentication in a major social network, it significantly improves long-term objectives. We articulate practical challenges, provide insights on training and evaluation of offline RL, and discuss generalizations toward offline RL’s deployment in industry-scale applications.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"20 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1007/s10994-023-06506-7
Hanh Thi Hong Tran, Matej Martinc, Andraz Repar, Nikola Ljubešić, Antoine Doucet, Senja Pollak
Automatic term extraction (ATE) is a natural language processing task that eases the effort of manually identifying terms from domain-specific corpora by providing a list of candidate terms. In this paper, we treat ATE as a sequence-labeling task and explore the efficacy of XLMR in evaluating cross-lingual and multilingual learning against monolingual learning in the cross-domain ATE context. Additionally, we introduce NOBI, a novel annotation mechanism enabling the labeling of single-word nested terms. Our experiments are conducted on the ACTER corpus, encompassing four domains and three languages (English, French, and Dutch), as well as the RSDO5 Slovenian corpus, encompassing four additional domains. Results indicate that cross-lingual and multilingual models outperform monolingual settings, showcasing improved F1-scores for all languages within the ACTER dataset. When incorporating an additional Slovenian corpus into the training set, the multilingual model exhibits superior performance compared to state-of-the-art approaches in specific scenarios. Moreover, the newly introduced NOBI labeling mechanism enhances the classifier’s capacity to extract short nested terms significantly, leading to substantial improvements in Recall for the ACTER dataset and consequentially boosting the overall F1-score performance.
自动术语提取(ATE)是一项自然语言处理任务,它通过提供候选术语列表,减轻了从特定领域语料库中手动识别术语的工作量。在本文中,我们将 ATE 视为序列标注任务,并探讨了 XLMR 在跨领域 ATE 中评估跨语言和多语言学习与单语言学习的效果。此外,我们还引入了 NOBI,这是一种新颖的标注机制,可对单词嵌套术语进行标注。我们在 ACTER 语料库(包含四个域和三种语言(英语、法语和荷兰语))以及 RSDO5 斯洛文尼亚语料库(包含另外四个域)上进行了实验。结果表明,跨语言和多语言模型优于单语言设置,ACTER 数据集中所有语言的 F1 分数都有所提高。在将斯洛文尼亚语语料纳入训练集时,多语言模型在特定场景中的表现优于最先进的方法。此外,新引入的 NOBI 标签机制显著增强了分类器提取嵌套短词的能力,从而大幅提高了 ACTER 数据集的召回率,并因此提升了整体 F1 分数性能。
{"title":"Can cross-domain term extraction benefit from cross-lingual transfer and nested term labeling?","authors":"Hanh Thi Hong Tran, Matej Martinc, Andraz Repar, Nikola Ljubešić, Antoine Doucet, Senja Pollak","doi":"10.1007/s10994-023-06506-7","DOIUrl":"https://doi.org/10.1007/s10994-023-06506-7","url":null,"abstract":"<p>Automatic term extraction (ATE) is a natural language processing task that eases the effort of manually identifying terms from domain-specific corpora by providing a list of candidate terms. In this paper, we treat ATE as a sequence-labeling task and explore the efficacy of XLMR in evaluating cross-lingual and multilingual learning against monolingual learning in the cross-domain ATE context. Additionally, we introduce NOBI, a novel annotation mechanism enabling the labeling of single-word nested terms. Our experiments are conducted on the ACTER corpus, encompassing four domains and three languages (English, French, and Dutch), as well as the RSDO5 Slovenian corpus, encompassing four additional domains. Results indicate that cross-lingual and multilingual models outperform monolingual settings, showcasing improved F1-scores for all languages within the ACTER dataset. When incorporating an additional Slovenian corpus into the training set, the multilingual model exhibits superior performance compared to state-of-the-art approaches in specific scenarios. Moreover, the newly introduced NOBI labeling mechanism enhances the classifier’s capacity to extract short nested terms significantly, leading to substantial improvements in Recall for the ACTER dataset and consequentially boosting the overall F1-score performance.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"32 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1007/s10994-024-06531-0
Abstract
High dimensional learning is data-hungry in general; however, many natural data sources and real-world learning problems posses some hidden low-complexity structure that permit effective learning from relatively small sample sizes. We are interested in the general question of how to discover and exploit such hidden benign traits when problem-specific prior knowledge is insufficient. In this work, we address this question through random projection’s ability to expose structure. We study both compressive learning and high dimensional learning from this angle by introducing the notions of compressive distortion and compressive complexity. We give user-friendly PAC bounds in the agnostic setting that are formulated in terms of these quantities, and we show that our bounds can be tight when these quantities are small. We then instantiate these quantities in several examples of particular learning problems, demonstrating their ability to discover interpretable structural characteristics that make high dimensional instances of these problems solvable to good approximation in a random linear subspace. In the examples considered, these turn out to resemble some familiar benign traits such as the margin, the margin distribution, the intrinsic dimension, the spectral decay of the data covariance, or the norms of parameters—while our general notions of compressive distortion and compressive complexity serve to unify these, and may be used to discover benign structural traits for other PAC-learnable problems.
{"title":"Structure discovery in PAC-learning by random projections","authors":"","doi":"10.1007/s10994-024-06531-0","DOIUrl":"https://doi.org/10.1007/s10994-024-06531-0","url":null,"abstract":"<h3>Abstract</h3> <p>High dimensional learning is data-hungry in general; however, many natural data sources and real-world learning problems posses some hidden low-complexity structure that permit effective learning from relatively small sample sizes. We are interested in the general question of how to discover and exploit such hidden benign traits when problem-specific prior knowledge is insufficient. In this work, we address this question through random projection’s ability to expose structure. We study both compressive learning and high dimensional learning from this angle by introducing the notions of compressive distortion and compressive complexity. We give user-friendly PAC bounds in the agnostic setting that are formulated in terms of these quantities, and we show that our bounds can be tight when these quantities are small. We then instantiate these quantities in several examples of particular learning problems, demonstrating their ability to discover interpretable structural characteristics that make high dimensional instances of these problems solvable to good approximation in a random linear subspace. In the examples considered, these turn out to resemble some familiar benign traits such as the margin, the margin distribution, the intrinsic dimension, the spectral decay of the data covariance, or the norms of parameters—while our general notions of compressive distortion and compressive complexity serve to unify these, and may be used to discover benign structural traits for other PAC-learnable problems.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"45 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1007/s10994-023-06499-3
Feliu Serra-Burriel, Pedro Delicado, Fernando M. Cucchietti, Eduardo Graells-Garrido, Alex Gil, Imanol Eguskiza
Futbol Club Barcelona operates the largest stadium in Europe (with a seating capacity of almost one hundred thousand people) and manages recurring sports events. These are influenced by multiple conditions (time and day of the week, weather, adversary) and affect city dynamics—e.g., peak demand for related services like public transport and stores. We study fine grain audience entrances at the stadium segregated by visitor type and gate to gain insights and predict the arrival behavior of future games, with a direct impact on the organizational performance and productivity of the business. We can forecast the timeline of arrivals at gate level 72 h prior to kickoff, facilitating operational and organizational decision-making by anticipating potential agglomerations and audience behavior. Furthermore, we can identify patterns for different types of visitors and understand how relevant factors affect them. These findings directly impact commercial and business interests and can alter operational logistics, venue management, and safety.
{"title":"When are they coming? Understanding and forecasting the timeline of arrivals at the FC Barcelona stadium on match days","authors":"Feliu Serra-Burriel, Pedro Delicado, Fernando M. Cucchietti, Eduardo Graells-Garrido, Alex Gil, Imanol Eguskiza","doi":"10.1007/s10994-023-06499-3","DOIUrl":"https://doi.org/10.1007/s10994-023-06499-3","url":null,"abstract":"<p>Futbol Club Barcelona operates the largest stadium in Europe (with a seating capacity of almost one hundred thousand people) and manages recurring sports events. These are influenced by multiple conditions (time and day of the week, weather, adversary) and affect city dynamics—e.g., peak demand for related services like public transport and stores. We study fine grain audience entrances at the stadium segregated by visitor type and gate to gain insights and predict the arrival behavior of future games, with a direct impact on the organizational performance and productivity of the business. We can forecast the timeline of arrivals at gate level 72 h prior to kickoff, facilitating operational and organizational decision-making by anticipating potential agglomerations and audience behavior. Furthermore, we can identify patterns for different types of visitors and understand how relevant factors affect them. These findings directly impact commercial and business interests and can alter operational logistics, venue management, and safety.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"72 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1007/s10994-024-06533-y
Taeyoung Kim, Myungjoo Kang
Recently, several types of neural operators have been developed, including deep operator networks, graph neural operators, and Multiwavelet-based operators. Compared with these models, the Fourier neural operator (FNO), a physics-inspired machine learning method, is computationally efficient and can learn nonlinear operators between function spaces independent of a certain finite basis. This study investigated the bounding of the Rademacher complexity of the FNO based on specific group norms. Using capacity based on these norms, we bound the generalization error of the model. In addition, we investigate the correlation between the empirical generalization error and the proposed capacity of FNO. We infer that the type of group norm determines the information about the weights and architecture of the FNO model stored in capacity. The experimental results offer insight into the impact of the number of modes used in the FNO model on the generalization error. The results confirm that our capacity is an effective index for estimating generalization errors.
{"title":"Bounding the Rademacher complexity of Fourier neural operators","authors":"Taeyoung Kim, Myungjoo Kang","doi":"10.1007/s10994-024-06533-y","DOIUrl":"https://doi.org/10.1007/s10994-024-06533-y","url":null,"abstract":"<p>Recently, several types of neural operators have been developed, including deep operator networks, graph neural operators, and Multiwavelet-based operators. Compared with these models, the Fourier neural operator (FNO), a physics-inspired machine learning method, is computationally efficient and can learn nonlinear operators between function spaces independent of a certain finite basis. This study investigated the bounding of the Rademacher complexity of the FNO based on specific group norms. Using capacity based on these norms, we bound the generalization error of the model. In addition, we investigate the correlation between the empirical generalization error and the proposed capacity of FNO. We infer that the type of group norm determines the information about the weights and architecture of the FNO model stored in capacity. The experimental results offer insight into the impact of the number of modes used in the FNO model on the generalization error. The results confirm that our capacity is an effective index for estimating generalization errors.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"42 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1007/s10994-024-06530-1
Alejandro Kuratomi, Ioanna Miliou, Zed Lee, Tony Lindgren, Panagiotis Papapetrou
Counterfactual explanations modify the feature values of an instance in order to alter its prediction from an undesired to a desired label. As such, they are highly useful for providing trustworthy interpretations of decision-making in domains where complex and opaque machine learning algorithms are utilized. To guarantee their quality and promote user trust, they need to satisfy the faithfulness desideratum, when supported by the data distribution. We hereby propose a counterfactual generation algorithm for mixed-feature spaces that prioritizes faithfulness through k-justification, a novel counterfactual property introduced in this paper. The proposed algorithm employs a graph representation of the search space and provides counterfactuals by solving an integer program. In addition, the algorithm is classifier-agnostic and is not dependent on the order in which the feature space is explored. In our empirical evaluation, we demonstrate that it guarantees k-justification while showing comparable performance to state-of-the-art methods in feasibility, sparsity, and proximity.
反事实解释可以修改实例的特征值,从而将其预测从不佳标签变为理想标签。因此,在使用复杂而不透明的机器学习算法的领域中,反事实解释对于提供可信的决策解释非常有用。为了保证其质量并提高用户信任度,它们需要在数据分布的支持下满足忠实性要求。在此,我们提出了一种混合特征空间的反事实生成算法,该算法通过 k-justification 优先考虑忠实性,这是本文引入的一种新颖的反事实属性。本文提出的算法采用搜索空间的图表示法,通过求解整数程序来提供反事实。此外,该算法与分类器无关,也不依赖于探索特征空间的顺序。在实证评估中,我们证明了该算法在可行性、稀疏性和接近性方面与最先进的方法性能相当,同时还保证了 k 的合理性。
{"title":"Ijuice: integer JUstIfied counterfactual explanations","authors":"Alejandro Kuratomi, Ioanna Miliou, Zed Lee, Tony Lindgren, Panagiotis Papapetrou","doi":"10.1007/s10994-024-06530-1","DOIUrl":"https://doi.org/10.1007/s10994-024-06530-1","url":null,"abstract":"<p>Counterfactual explanations modify the feature values of an instance in order to alter its prediction from an undesired to a desired label. As such, they are highly useful for providing trustworthy interpretations of decision-making in domains where complex and opaque machine learning algorithms are utilized. To guarantee their quality and promote user trust, they need to satisfy the <i>faithfulness</i> desideratum, when supported by the data distribution. We hereby propose a counterfactual generation algorithm for mixed-feature spaces that prioritizes faithfulness through <i>k-justification</i>, a novel counterfactual property introduced in this paper. The proposed algorithm employs a graph representation of the search space and provides counterfactuals by solving an integer program. In addition, the algorithm is classifier-agnostic and is not dependent on the order in which the feature space is explored. In our empirical evaluation, we demonstrate that it guarantees k-justification while showing comparable performance to state-of-the-art methods in <i>feasibility</i>, <i>sparsity</i>, and <i>proximity</i>.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"47 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1007/s10994-024-06517-y
Nuwan Gunasekara, Bernhard Pfahringer, Heitor Gomes, Albert Bifet
Gradient Boosting is a widely-used machine learning technique that has proven highly effective in batch learning. However, its effectiveness in stream learning contexts lags behind bagging-based ensemble methods, which currently dominate the field. One reason for this discrepancy is the challenge of adapting the booster to new concept following a concept drift. Resetting the entire booster can lead to significant performance degradation as it struggles to learn the new concept. Resetting only some parts of the booster can be more effective, but identifying which parts to reset is difficult, given that each boosting step builds on the previous prediction. To overcome these difficulties, we propose Streaming Gradient Boosted Trees (Sgbt), which is trained using weighted squared loss elicited in XGBoost. Sgbt exploits trees with a replacement strategy to detect and recover from drifts, thus enabling the ensemble to adapt without sacrificing the predictive performance. Our empirical evaluation of Sgbt on a range of streaming datasets with challenging drift scenarios demonstrates that it outperforms current state-of-the-art methods for evolving data streams.
{"title":"Gradient boosted trees for evolving data streams","authors":"Nuwan Gunasekara, Bernhard Pfahringer, Heitor Gomes, Albert Bifet","doi":"10.1007/s10994-024-06517-y","DOIUrl":"https://doi.org/10.1007/s10994-024-06517-y","url":null,"abstract":"<p>Gradient Boosting is a widely-used machine learning technique that has proven highly effective in batch learning. However, its effectiveness in stream learning contexts lags behind bagging-based ensemble methods, which currently dominate the field. One reason for this discrepancy is the challenge of adapting the booster to new concept following a concept drift. Resetting the entire booster can lead to significant performance degradation as it struggles to learn the new concept. Resetting only some parts of the booster can be more effective, but identifying which parts to reset is difficult, given that each boosting step builds on the previous prediction. To overcome these difficulties, we propose Streaming Gradient Boosted Trees (<span>Sgbt</span>), which is trained using weighted squared loss elicited in <span>XGBoost</span>. <span>Sgbt</span> exploits trees with a replacement strategy to detect and recover from drifts, thus enabling the ensemble to adapt without sacrificing the predictive performance. Our empirical evaluation of <span>Sgbt</span> on a range of streaming datasets with challenging drift scenarios demonstrates that it outperforms current state-of-the-art methods for evolving data streams.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"25 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-22DOI: 10.1007/s10994-024-06532-z
Abstract
We study the problem of clustering a set of items from binary user feedback. Such a problem arises in crowdsourcing platforms solving large-scale labeling tasks with minimal effort put on the users. For example, in some of the recent reCAPTCHA systems, users clicks (binary answers) can be used to efficiently label images. In our inference problem, items are grouped into initially unknown non-overlapping clusters. To recover these clusters, the learner sequentially presents to users a finite list of items together with a question with a binary answer selected from a fixed finite set. For each of these items, the user provides a noisy answer whose expectation is determined by the item cluster and the question and by an item-specific parameter characterizing the hardness of classifying the item. The objective is to devise an algorithm with a minimal cluster recovery error rate. We derive problem-specific information-theoretical lower bounds on the error rate satisfied by any algorithm, for both uniform and adaptive (list, question) selection strategies. For uniform selection, we present a simple algorithm built upon the K-means algorithm and whose performance almost matches the fundamental limits. For adaptive selection, we develop an adaptive algorithm that is inspired by the derivation of the information-theoretical error lower bounds, and in turn allocates the budget in an efficient way. The algorithm learns to select items hard to cluster and relevant questions more often. We compare the performance of our algorithms with or without the adaptive selection strategy numerically and illustrate the gain achieved by being adaptive.
{"title":"Optimal clustering from noisy binary feedback","authors":"","doi":"10.1007/s10994-024-06532-z","DOIUrl":"https://doi.org/10.1007/s10994-024-06532-z","url":null,"abstract":"<h3>Abstract</h3> <p>We study the problem of clustering a set of items from binary user feedback. Such a problem arises in crowdsourcing platforms solving large-scale labeling tasks with minimal effort put on the users. For example, in some of the recent reCAPTCHA systems, users clicks (binary answers) can be used to efficiently label images. In our inference problem, items are grouped into initially unknown non-overlapping clusters. To recover these clusters, the learner sequentially presents to users a finite list of items together with a question with a binary answer selected from a fixed finite set. For each of these items, the user provides a noisy answer whose expectation is determined by the item cluster and the question and by an item-specific parameter characterizing the <em>hardness</em> of classifying the item. The objective is to devise an algorithm with a minimal cluster recovery error rate. We derive problem-specific information-theoretical lower bounds on the error rate satisfied by any algorithm, for both uniform and adaptive (list, question) selection strategies. For uniform selection, we present a simple algorithm built upon the K-means algorithm and whose performance almost matches the fundamental limits. For adaptive selection, we develop an adaptive algorithm that is inspired by the derivation of the information-theoretical error lower bounds, and in turn allocates the budget in an efficient way. The algorithm learns to select items hard to cluster and relevant questions more often. We compare the performance of our algorithms with or without the adaptive selection strategy numerically and illustrate the gain achieved by being adaptive.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"24 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Self-attention, which allows transformers to capture deep bidirectional contexts, plays a vital role in BERT-like pre-trained language models. However, the maximum likelihood pre-training objective of BERT may produce an anisotropic word embedding space, which leads to biased attention scores for high-frequency tokens, as they are very close to each other in representation space and thus have higher similarities. This bias may ultimately affect the encoding of global contextual information. To address this issue, we propose TOCOL, a TOken-Level COntrastive Learning framework for improving the contextual representation of pre-trained language models, which integrates a novel self-supervised objective to the attention mechanism to reshape the word representation space and encourages PLM to capture the global semantics of sentences. Results on the GLUE Benchmark show that TOCOL brings considerable improvement over the original BERT. Furthermore, we conduct a detailed analysis and demonstrate the robustness of our approach for low-resource scenarios.
{"title":"TOCOL: improving contextual representation of pre-trained language models via token-level contrastive learning","authors":"Keheng Wang, Chuantao Yin, Rumei Li, Sirui Wang, Yunsen Xian, Wenge Rong, Zhang Xiong","doi":"10.1007/s10994-023-06512-9","DOIUrl":"https://doi.org/10.1007/s10994-023-06512-9","url":null,"abstract":"<p>Self-attention, which allows transformers to capture deep bidirectional contexts, plays a vital role in BERT-like pre-trained language models. However, the maximum likelihood pre-training objective of BERT may produce an anisotropic word embedding space, which leads to biased attention scores for high-frequency tokens, as they are very close to each other in representation space and thus have higher similarities. This bias may ultimately affect the encoding of global contextual information. To address this issue, we propose TOCOL, a <b>TO</b>ken-Level <b>CO</b>ntrastive <b>L</b>earning framework for improving the contextual representation of pre-trained language models, which integrates a novel self-supervised objective to the attention mechanism to reshape the word representation space and encourages PLM to capture the global semantics of sentences. Results on the GLUE Benchmark show that TOCOL brings considerable improvement over the original BERT. Furthermore, we conduct a detailed analysis and demonstrate the robustness of our approach for low-resource scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"9 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stress is a significant and growing phenomenon in the modern world that leads to numerous health problems. Robust and non-invasive method developments for early and accurate stress detection are crucial in enhancing people’s quality of life. Previous researches show that using machine learning approaches on physiological signals is a reliable stress predictor by achieving significant results. However, it requires determining features by hand. Such a selection is a challenge in this context since stress determines nonspecific human responses. This work overcomes such limitations by considering STREDWES, an approach for Stress Detection from Wearable Sensors Data. STREDWES encodes signal fragments of physiological signals into images and classifies them by a Convolutional Neural Network (CNN). This study aims to study several encoding methods, including the Gramian Angular Summation/Difference Field method and Markov Transition Field, to evaluate the best way to encode signals into images in this domain. Such a study is performed on the NEURO dataset. Moreover, we investigate the usefulness of STREDWES in real scenarios by considering the SWELL dataset and a personalized approach. Finally, we compare the proposed approach with its competitors by considering the WESAD dataset. It outperforms the others.
{"title":"Stress detection with encoding physiological signals and convolutional neural network","authors":"Michela Quadrini, Antonino Capuccio, Denise Falcone, Sebastian Daberdaku, Alessandro Blanda, Luca Bellanova, Gianluca Gerard","doi":"10.1007/s10994-023-06509-4","DOIUrl":"https://doi.org/10.1007/s10994-023-06509-4","url":null,"abstract":"<p>Stress is a significant and growing phenomenon in the modern world that leads to numerous health problems. Robust and non-invasive method developments for early and accurate stress detection are crucial in enhancing people’s quality of life. Previous researches show that using machine learning approaches on physiological signals is a reliable stress predictor by achieving significant results. However, it requires determining features by hand. Such a selection is a challenge in this context since stress determines nonspecific human responses. This work overcomes such limitations by considering STREDWES, an approach for Stress Detection from Wearable Sensors Data. STREDWES encodes signal fragments of physiological signals into images and classifies them by a Convolutional Neural Network (CNN). This study aims to study several encoding methods, including the Gramian Angular Summation/Difference Field method and Markov Transition Field, to evaluate the best way to encode signals into images in this domain. Such a study is performed on the NEURO dataset. Moreover, we investigate the usefulness of STREDWES in real scenarios by considering the SWELL dataset and a personalized approach. Finally, we compare the proposed approach with its competitors by considering the WESAD dataset. It outperforms the others.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"8 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140152360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}