首页 > 最新文献

Machine Learning最新文献

英文 中文
PolieDRO: a novel classification and regression framework with non-parametric data-driven regularization PolieDRO:非参数数据驱动正则化的新型分类和回归框架
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-15 DOI: 10.1007/s10994-024-06544-9
Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli

PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.

PolieDRO 是一种用于分类和回归的新型分析框架,它利用数据驱动的分布稳健优化(DRO)的强大功能和灵活性,规避了对正则化超参数的需求。最近的文献表明,SVM 和(平方根)LASSO 等传统机器学习方法可以写成基于 Wasserstein 的 DRO 问题。受这些结果的启发,我们提出了一种无超参数模糊集,它可以探索数据驱动凸壳的多面体结构,为任何凸损失函数生成可计算的回归和分类方法。基于 100 个真实世界数据库的数值结果以及对合成数据的广泛实验表明,我们的方法始终优于传统方法。
{"title":"PolieDRO: a novel classification and regression framework with non-parametric data-driven regularization","authors":"Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli","doi":"10.1007/s10994-024-06544-9","DOIUrl":"https://doi.org/10.1007/s10994-024-06544-9","url":null,"abstract":"<p>PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"14 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling 我们个性化了吗?利用重采样评估在线强化学习算法的个性化程度
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-10 DOI: 10.1007/s10994-024-06526-x
Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao, Kelly Zhang, Susan Murphy

There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user’s context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user’s historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an “optimized” intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.

越来越多的人开始关注在数字健康领域使用强化学习(RL)来个性化治疗顺序,以支持用户采取更健康的行为。此类顺序决策问题涉及根据用户的背景(如先前的活动水平、位置等)决定何时治疗和如何治疗。在线 RL 是一种很有前景的数据驱动型方法,它可以根据每个用户的历史反应进行学习,并利用这些知识来个性化这些决策。然而,要决定是否应将 RL 算法纳入实际部署的 "优化 "干预中,我们必须评估表明 RL 算法确实在为用户提供个性化治疗的数据证据。由于 RL 算法的随机性,人们可能会产生一种错觉,以为它正在某些状态下学习,并利用这种学习提供特定的治疗。我们使用了个性化的工作定义,并介绍了一种基于重采样的方法,用于研究 RL 算法所表现出的个性化是否是 RL 算法随机性的产物。我们通过分析一项名为 HeartSteps 的体育锻炼临床试验的数据来说明我们的方法,其中包括在线 RL 算法的使用。我们展示了我们的方法如何在所有用户以及研究中的特定用户中增强算法个性化的数据驱动真实广告。
{"title":"Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling","authors":"Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao, Kelly Zhang, Susan Murphy","doi":"10.1007/s10994-024-06526-x","DOIUrl":"https://doi.org/10.1007/s10994-024-06526-x","url":null,"abstract":"<p>There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user’s context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user’s historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an “optimized” intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"57 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposing and explaining fake news on-the-fly 即时揭露和解释假新闻
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-10 DOI: 10.1007/s10994-024-06527-w
Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan Carlos Burguillo

Social media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80% accuracy and macro F-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.

社交媒体平台能够快速传播和消费信息。然而,无论共享数据是否可靠,用户都会即时消费这些内容。因此,后一种众包模式很容易受到操纵。本作品提出了一种可解释的在线分类方法来实时识别假新闻。所提出的方法将无监督和有监督的机器学习方法与在线创建的词库相结合。利用自然语言处理技术,使用基于创建者、内容和上下文的特征进行剖析。可解释的分类机制可在仪表板上显示分类所选特征和预测置信度。拟议解决方案的性能已通过 Twitter 的真实数据集进行了验证,结果达到了 80% 的准确率和宏观 F-measure。该提案是首个联合提供数据流处理、剖析、分类和可解释性的方案。最终,假新闻的早期检测、隔离和解释有助于提高社交媒体内容的质量和可信度。
{"title":"Exposing and explaining fake news on-the-fly","authors":"Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan Carlos Burguillo","doi":"10.1007/s10994-024-06527-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06527-w","url":null,"abstract":"<p>Social media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80% accuracy and macro <i>F</i>-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"36 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing reinforcement learning for de novo drug design 利用强化学习进行新药设计
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-08 DOI: 10.1007/s10994-024-06519-w
Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani

Deep learning-based approaches for generating novel drug molecules with specific properties have gained a lot of interest in the last few years. Recent studies have demonstrated promising performance for string-based generation of novel molecules utilizing reinforcement learning. In this paper, we develop a unified framework for using reinforcement learning for de novo drug design, wherein we systematically study various on- and off-policy reinforcement learning algorithms and replay buffers to learn an RNN-based policy to generate novel molecules predicted to be active against the dopamine receptor DRD2. Our findings suggest that it is advantageous to use at least both top-scoring and low-scoring molecules for updating the policy when structural diversity is essential. Using all generated molecules at an iteration seems to enhance performance stability for on-policy algorithms. In addition, when replaying high, intermediate, and low-scoring molecules, off-policy algorithms display the potential of improving the structural diversity and number of active molecules generated, but possibly at the cost of a longer exploration phase. Our work provides an open-source framework enabling researchers to investigate various reinforcement learning methods for de novo drug design.

过去几年,基于深度学习生成具有特定性质的新型药物分子的方法受到了广泛关注。最近的研究表明,利用强化学习生成基于字符串的新型分子具有良好的性能。在本文中,我们开发了一个将强化学习用于新药设计的统一框架,系统地研究了各种政策内和政策外强化学习算法和重放缓冲器,以学习基于 RNN 的政策,生成预测对多巴胺受体 DRD2 有活性的新分子。我们的研究结果表明,当结构多样性至关重要时,至少使用得分最高和得分最低的分子来更新策略是有利的。在一次迭代中使用所有生成的分子似乎能提高策略算法的性能稳定性。此外,在重放高分、中分和低分分子时,非政策算法显示出提高结构多样性和生成的活性分子数量的潜力,但可能要以延长探索阶段为代价。我们的工作提供了一个开源框架,使研究人员能够研究用于新药设计的各种强化学习方法。
{"title":"Utilizing reinforcement learning for de novo drug design","authors":"Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani","doi":"10.1007/s10994-024-06519-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06519-w","url":null,"abstract":"<p>Deep learning-based approaches for generating novel drug molecules with specific properties have gained a lot of interest in the last few years. Recent studies have demonstrated promising performance for string-based generation of novel molecules utilizing reinforcement learning. In this paper, we develop a unified framework for using reinforcement learning for de novo drug design, wherein we systematically study various on- and off-policy reinforcement learning algorithms and replay buffers to learn an RNN-based policy to generate novel molecules predicted to be active against the dopamine receptor DRD2. Our findings suggest that it is advantageous to use at least both top-scoring and low-scoring molecules for updating the policy when structural diversity is essential. Using all generated molecules at an iteration seems to enhance performance stability for on-policy algorithms. In addition, when replaying high, intermediate, and low-scoring molecules, off-policy algorithms display the potential of improving the structural diversity and number of active molecules generated, but possibly at the cost of a longer exploration phase. Our work provides an open-source framework enabling researchers to investigate various reinforcement learning methods for de novo drug design.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"43 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-consensus decentralized primal-dual fixed point algorithm for distributed learning 分布式学习的多共识分散原始二元定点算法
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-08 DOI: 10.1007/s10994-024-06537-8
Kejie Tang, Weidong Liu, Xiaojun Mao

Decentralized distributed learning has recently attracted significant attention in many applications in machine learning and signal processing. To solve a decentralized optimization with regularization, we propose a Multi-consensus Decentralized Primal-Dual Fixed Point (MD-PDFP) algorithm. We apply multiple consensus steps with the gradient tracking technique to extend the primal-dual fixed point method over a network. The communication complexities of our procedure are given under certain conditions. Moreover, we show that our algorithm is consistent under general conditions and enjoys global linear convergence under strong convexity. With some particular choices of regularizations, our algorithm can be applied to decentralized machine learning applications. Finally, several numerical experiments and real data analyses are conducted to demonstrate the effectiveness of the proposed algorithm.

最近,分散式分布学习在机器学习和信号处理的许多应用中引起了极大关注。为了解决带正则化的分散优化问题,我们提出了一种多共识分散原始双定点算法(MD-PDFP)。我们将多个共识步骤与梯度跟踪技术相结合,在网络上扩展了原始双定点法。在某些条件下,我们给出了程序的通信复杂度。此外,我们还证明了我们的算法在一般条件下是一致的,并且在强凸性条件下具有全局线性收敛性。通过一些特定的正则化选择,我们的算法可以应用于分散式机器学习应用。最后,我们还进行了一些数值实验和实际数据分析,以证明所提算法的有效性。
{"title":"Multi-consensus decentralized primal-dual fixed point algorithm for distributed learning","authors":"Kejie Tang, Weidong Liu, Xiaojun Mao","doi":"10.1007/s10994-024-06537-8","DOIUrl":"https://doi.org/10.1007/s10994-024-06537-8","url":null,"abstract":"<p>Decentralized distributed learning has recently attracted significant attention in many applications in machine learning and signal processing. To solve a decentralized optimization with regularization, we propose a Multi-consensus Decentralized Primal-Dual Fixed Point (MD-PDFP) algorithm. We apply multiple consensus steps with the gradient tracking technique to extend the primal-dual fixed point method over a network. The communication complexities of our procedure are given under certain conditions. Moreover, we show that our algorithm is consistent under general conditions and enjoys global linear convergence under strong convexity. With some particular choices of regularizations, our algorithm can be applied to decentralized machine learning applications. Finally, several numerical experiments and real data analyses are conducted to demonstrate the effectiveness of the proposed algorithm.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"43 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning explanatory logical rules in non-linear domains: a neuro-symbolic approach 学习非线性领域中的解释性逻辑规则:一种神经符号方法
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-08 DOI: 10.1007/s10994-024-06538-7
Andreas Bueff, Vaishak Belle

Deep neural networks, despite their capabilities, are constrained by the need for large-scale training data, and often fall short in generalisation and interpretability. Inductive logic programming (ILP) presents an intriguing solution with its data-efficient learning of first-order logic rules. However, ILP grapples with challenges, notably the handling of non-linearity in continuous domains. With the ascent of neuro-symbolic ILP, there’s a drive to mitigate these challenges, synergising deep learning with relational ILP models to enhance interpretability and create logical decision boundaries. In this research, we introduce a neuro-symbolic ILP framework, grounded on differentiable Neural Logic networks, tailored for non-linear rule extraction in mixed discrete-continuous spaces. Our methodology consists of a neuro-symbolic approach, emphasising the extraction of non-linear functions from mixed domain data. Our preliminary findings showcase our architecture’s capability to identify non-linear functions from continuous data, offering a new perspective in neural-symbolic research and underlining the adaptability of ILP-based frameworks for regression challenges in continuous scenarios.

深度神经网络尽管功能强大,但受限于大规模训练数据的需求,在泛化和可解释性方面往往存在不足。归纳逻辑编程(ILP)通过对一阶逻辑规则的数据高效学习,提出了一种令人感兴趣的解决方案。然而,归纳逻辑编程也面临着挑战,尤其是在处理连续领域的非线性问题时。随着神经符号 ILP 的兴起,人们开始努力减轻这些挑战,将深度学习与关系 ILP 模型协同起来,以增强可解释性并创建逻辑决策边界。在这项研究中,我们引入了一种神经符号 ILP 框架,该框架以可微分神经逻辑网络为基础,专为离散-连续混合空间中的非线性规则提取而量身定制。我们的方法包括神经符号方法,强调从混合域数据中提取非线性函数。我们的初步研究结果展示了我们的架构从连续数据中识别非线性函数的能力,为神经符号研究提供了一个新的视角,并强调了基于 ILP 的框架对连续场景中回归挑战的适应性。
{"title":"Learning explanatory logical rules in non-linear domains: a neuro-symbolic approach","authors":"Andreas Bueff, Vaishak Belle","doi":"10.1007/s10994-024-06538-7","DOIUrl":"https://doi.org/10.1007/s10994-024-06538-7","url":null,"abstract":"<p>Deep neural networks, despite their capabilities, are constrained by the need for large-scale training data, and often fall short in generalisation and interpretability. Inductive logic programming (ILP) presents an intriguing solution with its data-efficient learning of first-order logic rules. However, ILP grapples with challenges, notably the handling of non-linearity in continuous domains. With the ascent of neuro-symbolic ILP, there’s a drive to mitigate these challenges, synergising deep learning with relational ILP models to enhance interpretability and create logical decision boundaries. In this research, we introduce a neuro-symbolic ILP framework, grounded on differentiable Neural Logic networks, tailored for non-linear rule extraction in mixed discrete-continuous spaces. Our methodology consists of a neuro-symbolic approach, emphasising the extraction of non-linear functions from mixed domain data. Our preliminary findings showcase our architecture’s capability to identify non-linear functions from continuous data, offering a new perspective in neural-symbolic research and underlining the adaptability of ILP-based frameworks for regression challenges in continuous scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"29 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalization bounds for learning under graph-dependence: a survey 图依赖性下学习的泛化边界:一项调查
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-03 DOI: 10.1007/s10994-024-06536-9
Rui-Ray Zhang, Massih-Reza Amini

Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a dependency graph, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.

传统的统计学习理论依赖于这样一个假设,即数据是相同且独立分布的(i.i.d.)。然而,在现实生活中的许多应用中,这一假设往往并不成立。在本研究中,我们将探讨实例具有依赖性且其依赖关系由依赖图描述的学习场景,依赖图是概率论和组合论中常用的模型。我们收集了各种依赖图的集中边界,然后利用这些边界推导出依赖图数据学习的拉德马赫复杂度和稳定性泛化边界。我们通过实际的学习任务来说明这一范例,并为未来的工作提供了一些研究方向。据我们所知,本调查报告是关于这一主题的第一份调查报告。
{"title":"Generalization bounds for learning under graph-dependence: a survey","authors":"Rui-Ray Zhang, Massih-Reza Amini","doi":"10.1007/s10994-024-06536-9","DOIUrl":"https://doi.org/10.1007/s10994-024-06536-9","url":null,"abstract":"<p>Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a <i>dependency graph</i>, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"13 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective keyword search co-occurrence multi-layer graph mining approach 一种有效的关键词搜索共现多层图挖掘方法
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-02 DOI: 10.1007/s10994-024-06528-9
Janet Oluwasola Bolorunduro, Zhaonian Zou, Mohamed Jaward Bah

A combination of tools and methods known as "graph mining" is used to evaluate real-world graphs, forecast the potential effects of a given graph’s structure and properties for various applications, and build models that can yield actual graphs that closely resemble the structure seen in real-world graphs of interest. However, some graph mining approaches possess scalability and dynamic graph challenges, limiting practical applications. In machine learning and data mining, among the unique methods is graph embedding, known as network representation learning where representative methods suggest encoding the complicated graph structures into embedding by utilizing specific pre-defined metrics. Co-occurrence graphs and keyword searches are the foundation of search engine optimizations for diverse real-world applications. Current work on keyword searches on graphs is based on pre-established information retrieval search criteria and does not provide semantic linkages. Recent works on co-occurrence and keyword search methods function effectively on graphs with only one layer instead of many layers. However, the graph neural network has been utilized in recent years as a branch of graph model due to its excellent performance. This paper proposes an Effective Keyword Search Co-occurrence Multi-Layer Graph mining method by employing two core approaches: Multi-layer Graph Embedding and Graph Neural Networks. We conducted extensive tests using benchmarks on real-world data sets. Considering the experimental findings, the proposed method enhanced with the regularization approach is substantially excellent, with a 10% increment in precision, recall, and f1-score.

被称为 "图挖掘 "的工具和方法组合可用于评估现实世界中的图,预测给定图的结构和属性对各种应用的潜在影响,并建立模型,以生成与现实世界中相关图的结构非常相似的实际图。然而,一些图挖掘方法面临着可扩展性和动态图的挑战,限制了实际应用。在机器学习和数据挖掘领域,图嵌入是一种独特的方法,被称为网络表示学习,其中具有代表性的方法建议利用特定的预定义指标将复杂的图结构编码为嵌入。共现图和关键词搜索是搜索引擎优化的基础,适用于各种实际应用。目前在图上进行关键词搜索的工作是基于预先确定的信息检索搜索标准,并不提供语义链接。最近关于共现和关键词搜索方法的研究成果能在只有一层而非多层的图上有效发挥作用。然而,图神经网络作为图模型的一个分支,因其出色的性能近年来得到了广泛应用。本文通过采用两种核心方法,提出了一种有效的关键词搜索共现多层图挖掘方法:多层图嵌入和图神经网络。我们利用真实世界数据集上的基准进行了大量测试。从实验结果来看,使用正则化方法增强的拟议方法非常出色,精确度、召回率和 f1 分数均提高了 10%。
{"title":"An effective keyword search co-occurrence multi-layer graph mining approach","authors":"Janet Oluwasola Bolorunduro, Zhaonian Zou, Mohamed Jaward Bah","doi":"10.1007/s10994-024-06528-9","DOIUrl":"https://doi.org/10.1007/s10994-024-06528-9","url":null,"abstract":"<p>A combination of tools and methods known as \"graph mining\" is used to evaluate real-world graphs, forecast the potential effects of a given graph’s structure and properties for various applications, and build models that can yield actual graphs that closely resemble the structure seen in real-world graphs of interest. However, some graph mining approaches possess scalability and dynamic graph challenges, limiting practical applications. In machine learning and data mining, among the unique methods is graph embedding, known as network representation learning where representative methods suggest encoding the complicated graph structures into embedding by utilizing specific pre-defined metrics. Co-occurrence graphs and keyword searches are the foundation of search engine optimizations for diverse real-world applications. Current work on keyword searches on graphs is based on pre-established information retrieval search criteria and does not provide semantic linkages. Recent works on co-occurrence and keyword search methods function effectively on graphs with only one layer instead of many layers. However, the graph neural network has been utilized in recent years as a branch of graph model due to its excellent performance. This paper proposes an Effective Keyword Search Co-occurrence Multi-Layer Graph mining method by employing two core approaches: Multi-layer Graph Embedding and Graph Neural Networks. We conducted extensive tests using benchmarks on real-world data sets. Considering the experimental findings, the proposed method enhanced with the regularization approach is substantially excellent, with a 10% increment in precision, recall, and f1-score.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"32 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Training data influence analysis and estimation: a survey 培训数据的影响分析和估计:一项调查
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-03-29 DOI: 10.1007/s10994-023-06495-7
Zayd Hammoudeh, Daniel Lowd

Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training’s underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data’s influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound.

好的模型需要好的训练数据。对于参数过高的深度模型来说,训练数据与模型预测之间的因果关系越来越不透明,也越来越难以理解。影响分析通过量化每个训练实例对最终模型的改变程度,部分揭示了训练的潜在交互作用。在最坏的情况下,精确测量训练数据的影响是非常困难的;这就导致了影响估计器的开发和使用,而影响估计器只能接近真实的影响。本文首次对训练数据的影响分析和估计进行了全面研究。首先,我们对训练数据影响的各种定义进行了形式化,有些定义甚至是正交的。然后,我们将最先进的影响分析方法归纳为一个分类法;我们详细描述了每种方法,并比较了它们的基本假设、渐近复杂性和总体优缺点。最后,我们提出了未来的研究方向,以使影响分析在实践中更加有用,在理论和经验上更加合理。
{"title":"Training data influence analysis and estimation: a survey","authors":"Zayd Hammoudeh, Daniel Lowd","doi":"10.1007/s10994-023-06495-7","DOIUrl":"https://doi.org/10.1007/s10994-023-06495-7","url":null,"abstract":"<p>Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training’s underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data’s influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"43 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning with a reject option: a survey 带有拒绝选项的机器学习:一项调查
IF 7.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-03-29 DOI: 10.1007/s10994-024-06534-x
Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, Jesse Davis

Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model’s predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.

机器学习模型总是会做出预测,即使预测可能并不准确。在许多决策支持应用中都应避免这种行为,因为错误会带来严重后果。尽管早在 1970 年就有人研究过,但带有拒绝功能的机器学习最近又引起了人们的兴趣。这一机器学习子领域能让机器学习模型在可能犯错时放弃预测。本研究旨在概述带有拒绝功能的机器学习。我们介绍了导致两种类型拒绝的条件,即模糊性拒绝和新奇性拒绝,并对其进行了细致的形式化。此外,我们还对评估模型预测和拒绝质量的策略进行了回顾和分类。此外,我们还定义了具有拒绝功能的现有模型架构,并介绍了学习此类模型的标准技术。最后,我们提供了相关应用领域的示例,并说明了带拒绝功能的机器学习与其他机器学习研究领域的关系。
{"title":"Machine learning with a reject option: a survey","authors":"Kilian Hendrickx, Lorenzo Perini, Dries Van der Plas, Wannes Meert, Jesse Davis","doi":"10.1007/s10994-024-06534-x","DOIUrl":"https://doi.org/10.1007/s10994-024-06534-x","url":null,"abstract":"<p>Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model’s predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"17 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Machine Learning
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1