Pub Date : 2024-04-22DOI: 10.1007/s10994-024-06540-z
Shaofeng H. -C. Jiang, Robert Krauthgamer, Jianing Lou, Yubo Zhang
We devise coresets for kernel (k)-Means with a general kernel, and use them to obtain new, more efficient, algorithms. Kernel (k)-Means has superior clustering capability compared to classical (k)-Means, particularly when clusters are non-linearly separable, but it also introduces significant computational challenges. We address this computational issue by constructing a coreset, which is a reduced dataset that accurately preserves the clustering costs. Our main result is a coreset for kernel (k)-Means that works for a general kernel and has size ({{,textrm{poly},}}(kepsilon ^{-1})). Our new coreset both generalizes and greatly improves all previous results; moreover, it can be constructed in time near-linear in n. This result immediately implies new algorithms for kernel (k)-Means, such as a ((1+epsilon ))-approximation in time near-linear in n, and a streaming algorithm using space and update time ({{,textrm{poly},}}(k epsilon ^{-1} log n)). We validate our coreset on various datasets with different kernels. Our coreset performs consistently well, achieving small errors while using very few points. We show that our coresets can speed up kernel (textsc {k-Means++}) (the kernelized version of the widely used (textsc {k-Means++}) algorithm), and we further use this faster kernel (textsc {k-Means++}) for spectral clustering. In both applications, we achieve significant speedup and a better asymptotic growth while the error is comparable to baselines that do not use coresets.
我们为具有一般核的核(k/)-Means设计了核集,并利用它们获得了更高效的新算法。与经典的(k)-Means相比,核(k)-Means具有更优越的聚类能力,尤其是当聚类是非线性可分离的时候,但它也带来了巨大的计算挑战。我们通过构建一个核心集来解决这个计算问题,核心集是一个缩小了的数据集,它能准确地保留聚类成本。我们的主要成果是一个适用于一般内核、大小为 ({{,textrm{poly},}}(kepsilon ^{-1}))的内核 (k)-Means 的核心集。我们的新内核既概括了之前的所有结果,又大大改进了这些结果;此外,它可以在接近 n 线性的时间内构造出来。这一结果立即意味着核(k)-均值的新算法,比如在时间上接近于 n 的 ((1+epsilon ))-approximation 算法,以及使用空间和更新时间的流算法 ({{,textrm{poly},}(kepsilon ^{-1} log n))。我们用不同的内核在各种数据集上验证了我们的核心集。我们的核心集始终表现出色,在使用极少量点的情况下误差很小。我们的研究表明,我们的核心集可以加快核(textsc {k-Means++})(广泛使用的核(textsc {k-Means++})算法的核化版本)的速度,我们还将这种更快的核(textsc {k-Means++})用于光谱聚类。在这两种应用中,我们都实现了显著的提速和更好的渐进增长,而误差则与不使用核集的基线相当。
{"title":"Coresets for kernel clustering","authors":"Shaofeng H. -C. Jiang, Robert Krauthgamer, Jianing Lou, Yubo Zhang","doi":"10.1007/s10994-024-06540-z","DOIUrl":"https://doi.org/10.1007/s10994-024-06540-z","url":null,"abstract":"<p>We devise coresets for kernel <span>(k)</span>-<span>Means</span> with a general kernel, and use them to obtain new, more efficient, algorithms. Kernel <span>(k)</span>-<span>Means</span> has superior clustering capability compared to classical <span>(k)</span>-<span>Means</span>, particularly when clusters are non-linearly separable, but it also introduces significant computational challenges. We address this computational issue by constructing a coreset, which is a reduced dataset that accurately preserves the clustering costs. Our main result is a coreset for kernel <span>(k)</span>-<span>Means</span> that works for a general kernel and has size <span>({{,textrm{poly},}}(kepsilon ^{-1}))</span>. Our new coreset both generalizes and greatly improves all previous results; moreover, it can be constructed in time near-linear in <i>n</i>. This result immediately implies new algorithms for kernel <span>(k)</span>-<span>Means</span>, such as a <span>((1+epsilon ))</span>-approximation in time near-linear in <i>n</i>, and a streaming algorithm using space and update time <span>({{,textrm{poly},}}(k epsilon ^{-1} log n))</span>. We validate our coreset on various datasets with different kernels. Our coreset performs consistently well, achieving small errors while using very few points. We show that our coresets can speed up kernel <span>(textsc {k-Means++})</span> (the kernelized version of the widely used <span>(textsc {k-Means++})</span> algorithm), and we further use this faster kernel <span>(textsc {k-Means++})</span> for spectral clustering. In both applications, we achieve significant speedup and a better asymptotic growth while the error is comparable to baselines that do not use coresets.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"2 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1007/s10994-024-06524-z
Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, Roberto Corizzo
Continual learning (CL) is one of the most promising trends in recent machine learning research. Its goal is to go beyond classical assumptions in machine learning and develop models and learning strategies that present high robustness in dynamic environments. This goal is realized by designing strategies that simultaneously foster the incorporation of new knowledge while avoiding forgetting past knowledge. The landscape of CL research is fragmented into several learning evaluation protocols, comprising different learning tasks, datasets, and evaluation metrics. Additionally, the benchmarks adopted so far are still distant from the complexity of real-world scenarios, and are usually tailored to highlight capabilities specific to certain strategies. In such a landscape, it is hard to clearly and objectively assess models and strategies. In this work, we fill this gap for CL on image data by introducing two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets, with varying levels of complexity and quality. Our aim is to fairly evaluate current state-of-the-art CL strategies on a common ground that is closer to complex real-world scenarios. We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity—according to a curriculum—in order to evaluate if current CL models are able to exploit structure across tasks. We devote particular emphasis to providing the CL community with a rigorous and reproducible evaluation protocol for measuring the ability of a model to generalize and not to forget while learning. Furthermore, we provide an extensive experimental evaluation showing that popular CL strategies, when challenged with our proposed benchmarks, yield sub-par performance, high levels of forgetting, and present a limited ability to effectively leverage curriculum task ordering. We believe that these results highlight the need for rigorous comparisons in future CL works as well as pave the way to design new CL strategies that are able to deal with more complex scenarios.
{"title":"From MNIST to ImageNet and back: benchmarking continual curriculum learning","authors":"Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, Roberto Corizzo","doi":"10.1007/s10994-024-06524-z","DOIUrl":"https://doi.org/10.1007/s10994-024-06524-z","url":null,"abstract":"<p>Continual learning (CL) is one of the most promising trends in recent machine learning research. Its goal is to go beyond classical assumptions in machine learning and develop models and learning strategies that present high robustness in dynamic environments. This goal is realized by designing strategies that simultaneously foster the incorporation of new knowledge while avoiding forgetting past knowledge. The landscape of CL research is fragmented into several learning evaluation protocols, comprising different learning tasks, datasets, and evaluation metrics. Additionally, the benchmarks adopted so far are still distant from the complexity of real-world scenarios, and are usually tailored to highlight capabilities specific to certain strategies. In such a landscape, it is hard to clearly and objectively assess models and strategies. In this work, we fill this gap for CL on image data by introducing two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets, with varying levels of complexity and quality. Our aim is to fairly evaluate current state-of-the-art CL strategies on a common ground that is closer to complex real-world scenarios. We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity—according to a curriculum—in order to evaluate if current CL models are able to exploit structure across tasks. We devote particular emphasis to providing the CL community with a rigorous and reproducible evaluation protocol for measuring the ability of a model to generalize and not to forget while learning. Furthermore, we provide an extensive experimental evaluation showing that popular CL strategies, when challenged with our proposed benchmarks, yield sub-par performance, high levels of forgetting, and present a limited ability to effectively leverage curriculum task ordering. We believe that these results highlight the need for rigorous comparisons in future CL works as well as pave the way to design new CL strategies that are able to deal with more complex scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"21 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-19DOI: 10.1007/s10994-024-06543-w
Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu
Although deep reinforcement learning has become a promising machine learning approach for sequential decision-making problems, it is still not mature enough for high-stake domains such as autonomous driving or medical applications. In such contexts, a learned policy needs for instance to be interpretable, so that it can be inspected before any deployment (e.g., for safety and verifiability reasons). This survey provides an overview of various approaches to achieve higher interpretability in reinforcement learning (RL). To that aim, we distinguish interpretability (as an intrinsic property of a model) and explainability (as a post-hoc operation) and discuss them in the context of RL with an emphasis on the former notion. In particular, we argue that interpretable RL may embrace different facets: interpretable inputs, interpretable (transition/reward) models, and interpretable decision-making. Based on this scheme, we summarize and analyze recent work related to interpretable RL with an emphasis on papers published in the past 10 years. We also discuss briefly some related research areas and point to some potential promising research directions, notably related to the recent development of foundation models (e.g., large language models, RL from human feedback).
{"title":"A survey on interpretable reinforcement learning","authors":"Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu","doi":"10.1007/s10994-024-06543-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06543-w","url":null,"abstract":"<p>Although deep reinforcement learning has become a promising machine learning approach for sequential decision-making problems, it is still not mature enough for high-stake domains such as autonomous driving or medical applications. In such contexts, a learned policy needs for instance to be interpretable, so that it can be inspected before any deployment (e.g., for safety and verifiability reasons). This survey provides an overview of various approaches to achieve higher interpretability in reinforcement learning (RL). To that aim, we distinguish interpretability (as an intrinsic property of a model) and explainability (as a post-hoc operation) and discuss them in the context of RL with an emphasis on the former notion. In particular, we argue that interpretable RL may embrace different facets: interpretable inputs, interpretable (transition/reward) models, and interpretable decision-making. Based on this scheme, we summarize and analyze recent work related to interpretable RL with an emphasis on papers published in the past 10 years. We also discuss briefly some related research areas and point to some potential promising research directions, notably related to the recent development of foundation models (e.g., large language models, RL from human feedback).</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"33 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1007/s10994-024-06544-9
Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli
PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.
{"title":"PolieDRO: a novel classification and regression framework with non-parametric data-driven regularization","authors":"Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli","doi":"10.1007/s10994-024-06544-9","DOIUrl":"https://doi.org/10.1007/s10994-024-06544-9","url":null,"abstract":"<p>PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"14 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1007/s10994-024-06526-x
Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao, Kelly Zhang, Susan Murphy
There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user’s context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user’s historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an “optimized” intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.
{"title":"Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling","authors":"Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao, Kelly Zhang, Susan Murphy","doi":"10.1007/s10994-024-06526-x","DOIUrl":"https://doi.org/10.1007/s10994-024-06526-x","url":null,"abstract":"<p>There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user’s context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user’s historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an “optimized” intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"57 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1007/s10994-024-06527-w
Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan Carlos Burguillo
Social media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80% accuracy and macro F-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.
{"title":"Exposing and explaining fake news on-the-fly","authors":"Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan Carlos Burguillo","doi":"10.1007/s10994-024-06527-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06527-w","url":null,"abstract":"<p>Social media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80% accuracy and macro <i>F</i>-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"36 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s10994-024-06519-w
Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani
Deep learning-based approaches for generating novel drug molecules with specific properties have gained a lot of interest in the last few years. Recent studies have demonstrated promising performance for string-based generation of novel molecules utilizing reinforcement learning. In this paper, we develop a unified framework for using reinforcement learning for de novo drug design, wherein we systematically study various on- and off-policy reinforcement learning algorithms and replay buffers to learn an RNN-based policy to generate novel molecules predicted to be active against the dopamine receptor DRD2. Our findings suggest that it is advantageous to use at least both top-scoring and low-scoring molecules for updating the policy when structural diversity is essential. Using all generated molecules at an iteration seems to enhance performance stability for on-policy algorithms. In addition, when replaying high, intermediate, and low-scoring molecules, off-policy algorithms display the potential of improving the structural diversity and number of active molecules generated, but possibly at the cost of a longer exploration phase. Our work provides an open-source framework enabling researchers to investigate various reinforcement learning methods for de novo drug design.
{"title":"Utilizing reinforcement learning for de novo drug design","authors":"Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani","doi":"10.1007/s10994-024-06519-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06519-w","url":null,"abstract":"<p>Deep learning-based approaches for generating novel drug molecules with specific properties have gained a lot of interest in the last few years. Recent studies have demonstrated promising performance for string-based generation of novel molecules utilizing reinforcement learning. In this paper, we develop a unified framework for using reinforcement learning for de novo drug design, wherein we systematically study various on- and off-policy reinforcement learning algorithms and replay buffers to learn an RNN-based policy to generate novel molecules predicted to be active against the dopamine receptor DRD2. Our findings suggest that it is advantageous to use at least both top-scoring and low-scoring molecules for updating the policy when structural diversity is essential. Using all generated molecules at an iteration seems to enhance performance stability for on-policy algorithms. In addition, when replaying high, intermediate, and low-scoring molecules, off-policy algorithms display the potential of improving the structural diversity and number of active molecules generated, but possibly at the cost of a longer exploration phase. Our work provides an open-source framework enabling researchers to investigate various reinforcement learning methods for de novo drug design.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"43 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s10994-024-06537-8
Kejie Tang, Weidong Liu, Xiaojun Mao
Decentralized distributed learning has recently attracted significant attention in many applications in machine learning and signal processing. To solve a decentralized optimization with regularization, we propose a Multi-consensus Decentralized Primal-Dual Fixed Point (MD-PDFP) algorithm. We apply multiple consensus steps with the gradient tracking technique to extend the primal-dual fixed point method over a network. The communication complexities of our procedure are given under certain conditions. Moreover, we show that our algorithm is consistent under general conditions and enjoys global linear convergence under strong convexity. With some particular choices of regularizations, our algorithm can be applied to decentralized machine learning applications. Finally, several numerical experiments and real data analyses are conducted to demonstrate the effectiveness of the proposed algorithm.
{"title":"Multi-consensus decentralized primal-dual fixed point algorithm for distributed learning","authors":"Kejie Tang, Weidong Liu, Xiaojun Mao","doi":"10.1007/s10994-024-06537-8","DOIUrl":"https://doi.org/10.1007/s10994-024-06537-8","url":null,"abstract":"<p>Decentralized distributed learning has recently attracted significant attention in many applications in machine learning and signal processing. To solve a decentralized optimization with regularization, we propose a Multi-consensus Decentralized Primal-Dual Fixed Point (MD-PDFP) algorithm. We apply multiple consensus steps with the gradient tracking technique to extend the primal-dual fixed point method over a network. The communication complexities of our procedure are given under certain conditions. Moreover, we show that our algorithm is consistent under general conditions and enjoys global linear convergence under strong convexity. With some particular choices of regularizations, our algorithm can be applied to decentralized machine learning applications. Finally, several numerical experiments and real data analyses are conducted to demonstrate the effectiveness of the proposed algorithm.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"43 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.1007/s10994-024-06538-7
Andreas Bueff, Vaishak Belle
Deep neural networks, despite their capabilities, are constrained by the need for large-scale training data, and often fall short in generalisation and interpretability. Inductive logic programming (ILP) presents an intriguing solution with its data-efficient learning of first-order logic rules. However, ILP grapples with challenges, notably the handling of non-linearity in continuous domains. With the ascent of neuro-symbolic ILP, there’s a drive to mitigate these challenges, synergising deep learning with relational ILP models to enhance interpretability and create logical decision boundaries. In this research, we introduce a neuro-symbolic ILP framework, grounded on differentiable Neural Logic networks, tailored for non-linear rule extraction in mixed discrete-continuous spaces. Our methodology consists of a neuro-symbolic approach, emphasising the extraction of non-linear functions from mixed domain data. Our preliminary findings showcase our architecture’s capability to identify non-linear functions from continuous data, offering a new perspective in neural-symbolic research and underlining the adaptability of ILP-based frameworks for regression challenges in continuous scenarios.
{"title":"Learning explanatory logical rules in non-linear domains: a neuro-symbolic approach","authors":"Andreas Bueff, Vaishak Belle","doi":"10.1007/s10994-024-06538-7","DOIUrl":"https://doi.org/10.1007/s10994-024-06538-7","url":null,"abstract":"<p>Deep neural networks, despite their capabilities, are constrained by the need for large-scale training data, and often fall short in generalisation and interpretability. Inductive logic programming (ILP) presents an intriguing solution with its data-efficient learning of first-order logic rules. However, ILP grapples with challenges, notably the handling of non-linearity in continuous domains. With the ascent of neuro-symbolic ILP, there’s a drive to mitigate these challenges, synergising deep learning with relational ILP models to enhance interpretability and create logical decision boundaries. In this research, we introduce a neuro-symbolic ILP framework, grounded on differentiable Neural Logic networks, tailored for non-linear rule extraction in mixed discrete-continuous spaces. Our methodology consists of a neuro-symbolic approach, emphasising the extraction of non-linear functions from mixed domain data. Our preliminary findings showcase our architecture’s capability to identify non-linear functions from continuous data, offering a new perspective in neural-symbolic research and underlining the adaptability of ILP-based frameworks for regression challenges in continuous scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"29 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1007/s10994-024-06536-9
Rui-Ray Zhang, Massih-Reza Amini
Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a dependency graph, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.
{"title":"Generalization bounds for learning under graph-dependence: a survey","authors":"Rui-Ray Zhang, Massih-Reza Amini","doi":"10.1007/s10994-024-06536-9","DOIUrl":"https://doi.org/10.1007/s10994-024-06536-9","url":null,"abstract":"<p>Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a <i>dependency graph</i>, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"13 1","pages":""},"PeriodicalIF":7.5,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}