Pub Date : 2024-05-10DOI: 10.1007/s10579-024-09738-8
Brayan Stiven Lancheros, Gloria Corpas Pastor, Ruslan Mitkov
Given the increase in production of data for the biomedical field and the unstoppable growth of the internet, the need for Information Extraction (IE) techniques has skyrocketed. Named Entity Recognition (NER) is one of such IE tasks useful for professionals in different areas. There are several settings where biomedical NER is needed, for instance, extraction and analysis of biomedical literature, relation extraction, organisation of biomedical documents, and knowledge-base completion. However, the computational treatment of entities in the biomedical domain has faced a number of challenges including its high cost of annotation, ambiguity, and lack of biomedical NER datasets in languages other than English. These difficulties have hampered data development, affecting both the domain itself and its multilingual coverage. The purpose of this study is to overcome the scarcity of biomedical data for NER in Spanish, for which only two datasets exist, by developing a robust bilingual NER model. Inspired by back-translation, this paper leverages the progress in Neural Machine Translation (NMT) to create a synthetic version of the Colorado Richly Annotated Full-Text (CRAFT) dataset in Spanish. Additionally, a new CRAFT dataset is constructed by replacing 20% of the entities in the original dataset generating a new augmented dataset. We evaluate two training methods: concatenation of datasets and continuous training to assess the transfer learning capabilities of transformers using the newly obtained datasets. The best performing NER system in the development set achieved an F-1 score of 86.39%. The novel methodology proposed in this paper presents the first bilingual NER system and it has the potential to improve applications across under-resourced languages.
随着生物医学领域数据产量的增加和互联网势不可挡的发展,对信息提取(IE)技术的需求急剧上升。命名实体识别(NER)是此类 IE 任务之一,对不同领域的专业人员都很有用。生物医学 NER 有多种应用场合,例如生物医学文献的提取和分析、关系提取、生物医学文档的组织以及知识库的完善。然而,对生物医学领域的实体进行计算处理面临着许多挑战,包括注释成本高、模棱两可以及缺乏英语以外语言的生物医学 NER 数据集。这些困难阻碍了数据的开发,影响了该领域本身及其多语言覆盖范围。本研究的目的是通过开发一种稳健的双语 NER 模型,克服西班牙语 NER 生物医学数据稀缺的问题(目前仅有两个数据集)。受到反向翻译的启发,本文利用神经机器翻译(NMT)领域的进展,创建了科罗拉多富注释全文(CRAFT)数据集的西班牙语合成版本。此外,我们还通过替换原始数据集中 20% 的实体构建了一个新的 CRAFT 数据集,并生成了一个新的增强数据集。我们评估了两种训练方法:数据集连接和连续训练,以评估转换器使用新获得的数据集进行迁移学习的能力。开发集中表现最好的 NER 系统的 F-1 得分为 86.39%。本文提出的新方法是首个双语 NER 系统,它有望改善资源不足语言的应用。
{"title":"Data augmentation and transfer learning for cross-lingual Named Entity Recognition in the biomedical domain","authors":"Brayan Stiven Lancheros, Gloria Corpas Pastor, Ruslan Mitkov","doi":"10.1007/s10579-024-09738-8","DOIUrl":"https://doi.org/10.1007/s10579-024-09738-8","url":null,"abstract":"<p>Given the increase in production of data for the biomedical field and the unstoppable growth of the internet, the need for Information Extraction (IE) techniques has skyrocketed. Named Entity Recognition (NER) is one of such IE tasks useful for professionals in different areas. There are several settings where biomedical NER is needed, for instance, extraction and analysis of biomedical literature, relation extraction, organisation of biomedical documents, and knowledge-base completion. However, the computational treatment of entities in the biomedical domain has faced a number of challenges including its high cost of annotation, ambiguity, and lack of biomedical NER datasets in languages other than English. These difficulties have hampered data development, affecting both the domain itself and its multilingual coverage. The purpose of this study is to overcome the scarcity of biomedical data for NER in Spanish, for which only two datasets exist, by developing a robust bilingual NER model. Inspired by back-translation, this paper leverages the progress in Neural Machine Translation (NMT) to create a synthetic version of the Colorado Richly Annotated Full-Text (CRAFT) dataset in Spanish. Additionally, a new CRAFT dataset is constructed by replacing 20% of the entities in the original dataset generating a new augmented dataset. We evaluate two training methods: concatenation of datasets and continuous training to assess the transfer learning capabilities of transformers using the newly obtained datasets. The best performing NER system in the development set achieved an F-1 score of 86.39%. The novel methodology proposed in this paper presents the first bilingual NER system and it has the potential to improve applications across under-resourced languages.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"47 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Text summarization has been one of the most challenging areas of research in NLP. Much effort has been made to overcome this challenge by using either abstractive or extractive methods. Extractive methods are preferable due to their simplicity compared with the more elaborate abstractive methods. In extractive supervised single-document approaches, the system will not generate sentences. Instead, via supervised learning, it learns how to score sentences within the document based on some textual features and subsequently selects those with the highest rank. Therefore, the core objective is ranking, which enormously depends on the document structure and context. These dependencies have been unnoticed by many state-of-the-art solutions. In this work, document-related features such as topic and relative length are integrated into the vectors of every sentence to enhance the quality of summaries. Our experiment results show that the system takes contextual and structural patterns into account, which will increase the precision of the learned model. Consequently, our method will produce more comprehensive and concise summaries.
{"title":"Features in extractive supervised single-document summarization: case of Persian news","authors":"Hosein Rezaei, Seyed Amid Moeinzadeh Mirhosseini, Azar Shahgholian, Mohamad Saraee","doi":"10.1007/s10579-024-09739-7","DOIUrl":"https://doi.org/10.1007/s10579-024-09739-7","url":null,"abstract":"<p>Text summarization has been one of the most challenging areas of research in NLP. Much effort has been made to overcome this challenge by using either abstractive or extractive methods. Extractive methods are preferable due to their simplicity compared with the more elaborate abstractive methods. In extractive supervised single-document approaches, the system will not generate sentences. Instead, via supervised learning, it learns how to score sentences within the document based on some textual features and subsequently selects those with the highest rank. Therefore, the core objective is ranking, which enormously depends on the document structure and context. These dependencies have been unnoticed by many state-of-the-art solutions. In this work, document-related features such as topic and relative length are integrated into the vectors of every sentence to enhance the quality of summaries. Our experiment results show that the system takes contextual and structural patterns into account, which will increase the precision of the learned model. Consequently, our method will produce more comprehensive and concise summaries.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"130 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-05DOI: 10.1007/s10579-024-09727-x
Fatemeh Azadi, Heshaam Faili, Mohammad Javad Dousti
Translation Quality Estimation (QE) is the task of predicting the quality of machine translation (MT) output without any reference. This task has gained increasing attention as an important component in the practical applications of MT. In this paper, we first propose XLMRScore, which is a cross-lingual counterpart of BERTScore computed via the XLM-RoBERTa (XLMR) model. This metric can be used as a simple unsupervised QE method, nevertheless facing two issues: firstly, the untranslated tokens leading to unexpectedly high translation scores, and secondly, the issue of mismatching errors between source and hypothesis tokens when applying the greedy matching in XLMRScore. To mitigate these issues, we suggest replacing untranslated words with the unknown token and the cross-lingual alignment of the pre-trained model to represent aligned words closer to each other, respectively. We evaluate the proposed method on four low-resource language pairs of the WMT21 QE shared task, as well as a new English(rightarrow)Persian (En-Fa) test dataset introduced in this paper. Experiments show that our method could get comparable results with the supervised baseline for two zero-shot scenarios, i.e., with less than 0.01 difference in Pearson correlation, while outperforming unsupervised rivals in all the low-resource language pairs for above 8%, on average.
{"title":"Mismatching-aware unsupervised translation quality estimation for low-resource languages","authors":"Fatemeh Azadi, Heshaam Faili, Mohammad Javad Dousti","doi":"10.1007/s10579-024-09727-x","DOIUrl":"https://doi.org/10.1007/s10579-024-09727-x","url":null,"abstract":"<p>Translation Quality Estimation (QE) is the task of predicting the quality of machine translation (MT) output without any reference. This task has gained increasing attention as an important component in the practical applications of MT. In this paper, we first propose XLMRScore, which is a cross-lingual counterpart of BERTScore computed via the XLM-RoBERTa (XLMR) model. This metric can be used as a simple unsupervised QE method, nevertheless facing two issues: firstly, the untranslated tokens leading to unexpectedly high translation scores, and secondly, the issue of mismatching errors between source and hypothesis tokens when applying the greedy matching in XLMRScore. To mitigate these issues, we suggest replacing untranslated words with the unknown token and the cross-lingual alignment of the pre-trained model to represent aligned words closer to each other, respectively. We evaluate the proposed method on four low-resource language pairs of the WMT21 QE shared task, as well as a new English<span>(rightarrow)</span>Persian (En-Fa) test dataset introduced in this paper. Experiments show that our method could get comparable results with the supervised baseline for two zero-shot scenarios, i.e., with less than 0.01 difference in Pearson correlation, while outperforming unsupervised rivals in all the low-resource language pairs for above 8%, on average.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"128 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-27DOI: 10.1007/s10579-024-09741-z
Abubakr H. Ombabi, Wael Ouarda, Adel M. Alimi
With the enormous growth of social data in recent years, sentiment analysis has gained increasing research attention and has been widely explored in various languages. Arabic language nature imposes several challenges, such as the complicated morphological structure and the limited resources, Thereby, the current state-of-the-art methods for sentiment analysis remain to be enhanced. This inspired us to explore the application of the emerging deep-learning architecture to Arabic text classification. In this paper, we present an ensemble model which integrates a convolutional neural network, bidirectional long short-term memory (Bi-LSTM), and attention mechanism, to predict the sentiment orientation of Arabic sentences. The convolutional layer is used for feature extraction from the higher-level sentence representations layer, the BiLSTM is integrated to further capture the contextual information from the produced set of features. Two attention mechanism units are incorporated to highlight the critical information from the contextual feature vectors produced by the Bi-LSTM hidden layers. The context-related vectors generated by the attention mechanism layers are then concatenated and passed into a classifier to predict the final label. To disentangle the influence of these components, the proposed model is validated as three variant architectures on a multi-domains corpus, as well as four benchmarks. Experimental results show that incorporating Bi-LSTM and attention mechanism improves the model’s performance while yielding 96.08% in accuracy. Consequently, this architecture consistently outperforms the other State-of-The-Art approaches with up to + 14.47%, + 20.38%, and + 18.45% improvements in accuracy, precision, and recall respectively. These results demonstrated the strengths of this model in addressing the challenges of text classification tasks.
{"title":"Improving Arabic sentiment analysis across context-aware attention deep model based on natural language processing","authors":"Abubakr H. Ombabi, Wael Ouarda, Adel M. Alimi","doi":"10.1007/s10579-024-09741-z","DOIUrl":"https://doi.org/10.1007/s10579-024-09741-z","url":null,"abstract":"<p>With the enormous growth of social data in recent years, sentiment analysis has gained increasing research attention and has been widely explored in various languages. Arabic language nature imposes several challenges, such as the complicated morphological structure and the limited resources, Thereby, the current state-of-the-art methods for sentiment analysis remain to be enhanced. This inspired us to explore the application of the emerging deep-learning architecture to Arabic text classification. In this paper, we present an ensemble model which integrates a convolutional neural network, bidirectional long short-term memory (Bi-LSTM), and attention mechanism, to predict the sentiment orientation of Arabic sentences. The convolutional layer is used for feature extraction from the higher-level sentence representations layer, the BiLSTM is integrated to further capture the contextual information from the produced set of features. Two attention mechanism units are incorporated to highlight the critical information from the contextual feature vectors produced by the Bi-LSTM hidden layers. The context-related vectors generated by the attention mechanism layers are then concatenated and passed into a classifier to predict the final label. To disentangle the influence of these components, the proposed model is validated as three variant architectures on a multi-domains corpus, as well as four benchmarks. Experimental results show that incorporating Bi-LSTM and attention mechanism improves the model’s performance while yielding 96.08% in accuracy. Consequently, this architecture consistently outperforms the other State-of-The-Art approaches with up to + 14.47%, + 20.38%, and + 18.45% improvements in accuracy, precision, and recall respectively. These results demonstrated the strengths of this model in addressing the challenges of text classification tasks.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"8 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1007/s10579-024-09732-0
Shankar Biradar, Sunil Saumya, Arun Chauhan
Social media has undeniably transformed the way people communicate; however, it also comes with unquestionable drawbacks, notably the proliferation of fake and hateful comments. Recent observations have indicated that these two issues often coexist, with discussions on hate topics frequently being dominated by the fake. Therefore, it has become imperative to explore the role of fake narratives in the dissemination of hate in contemporary times. In this direction, the proposed article introduces a novel data set known as the Faux Hate Multi-Label Data set (FHMLD) comprising 8014 fake-instigated hateful comments in Hindi-English code-mixed text. To the best of our knowledge, this marks the first endeavour to bring together both fake and hateful content within a unified framework. Further, the proposed data set is collected from diverse platforms such as YouTube and Twitter to mitigate user-associated bias. To investigate a relation between the presence of fake narratives and its impact on the intensity of the hate, this study presents a statistical analysis using the Chi-square test. The statistical findings indicate that the calculated (chi ^2) value is greater than the value from the standard table, leading to the rejection of the null hypothesis. Additionally, the current study present baseline methods for categorizing multi-class and multi-label data set, utilizing syntactical and semantic features at both word and sentence levels. The experimental results demonstrate that the fastText and SVM based method outperforms others models with an accuracy of 71% and 58% for binary fake–hate and severity prediction respectively.
{"title":"Faux Hate: unravelling the web of fake narratives in spreading hateful stories: a multi-label and multi-class dataset in cross-lingual Hindi-English code-mixed text","authors":"Shankar Biradar, Sunil Saumya, Arun Chauhan","doi":"10.1007/s10579-024-09732-0","DOIUrl":"https://doi.org/10.1007/s10579-024-09732-0","url":null,"abstract":"<p>Social media has undeniably transformed the way people communicate; however, it also comes with unquestionable drawbacks, notably the proliferation of fake and hateful comments. Recent observations have indicated that these two issues often coexist, with discussions on hate topics frequently being dominated by the fake. Therefore, it has become imperative to explore the role of fake narratives in the dissemination of hate in contemporary times. In this direction, the proposed article introduces a novel data set known as the Faux Hate Multi-Label Data set (FHMLD) comprising 8014 fake-instigated hateful comments in Hindi-English code-mixed text. To the best of our knowledge, this marks the first endeavour to bring together both fake and hateful content within a unified framework. Further, the proposed data set is collected from diverse platforms such as YouTube and Twitter to mitigate user-associated bias. To investigate a relation between the presence of fake narratives and its impact on the intensity of the hate, this study presents a statistical analysis using the Chi-square test. The statistical findings indicate that the calculated <span>(chi ^2)</span> value is greater than the value from the standard table, leading to the rejection of the null hypothesis. Additionally, the current study present baseline methods for categorizing multi-class and multi-label data set, utilizing syntactical and semantic features at both word and sentence levels. The experimental results demonstrate that the fastText and SVM based method outperforms others models with an accuracy of 71% and 58% for binary fake–hate and severity prediction respectively.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"38 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.1007/s10579-024-09720-4
Nawshad Farruque, Randy Goebel, Sudhakar Sivapalan, Osmar R. Zaïane
A fundamental component of user-level social media language based clinical depression modelling is depression symptoms detection (DSD). Unfortunately, there does not exist any DSD dataset that reflects both the clinical insights and the distribution of depression symptoms from the samples of self-disclosed depressed population. In our work, we describe a semi-supervised learning (SSL) framework which uses an initial supervised learning model that leverages (1) a state-of-the-art large mental health forum text pre-trained language model further fine-tuned on a clinician annotated DSD dataset, (2) a Zero-Shot learning model for DSD, and couples them together to harvest depression symptoms related samples from our large self-curated depressive tweets repository (DTR). Our clinician annotated dataset is the largest of its kind. Furthermore, DTR is created from the samples of tweets in self-disclosed depressed users Twitter timeline from two datasets, including one of the largest benchmark datasets for user-level depression detection from Twitter. This further helps preserve the depression symptoms distribution of self-disclosed tweets. Subsequently, we iteratively retrain our initial DSD model with the harvested data. We discuss the stopping criteria and limitations of this SSL process, and elaborate the underlying constructs which play a vital role in the overall SSL process. We show that we can produce a final dataset which is the largest of its kind. Furthermore, a DSD and a Depression Post Detection model trained on it achieves significantly better accuracy than their initial version.
{"title":"Depression symptoms modelling from social media text: an LLM driven semi-supervised learning approach","authors":"Nawshad Farruque, Randy Goebel, Sudhakar Sivapalan, Osmar R. Zaïane","doi":"10.1007/s10579-024-09720-4","DOIUrl":"https://doi.org/10.1007/s10579-024-09720-4","url":null,"abstract":"<p>A fundamental component of user-level social media language based clinical depression modelling is depression symptoms detection (DSD). Unfortunately, there does not exist any DSD dataset that reflects both the clinical insights and the distribution of depression symptoms from the samples of self-disclosed depressed population. In our work, we describe a semi-supervised learning (SSL) framework which uses an initial supervised learning model that leverages (1) a state-of-the-art large mental health forum text pre-trained language model further fine-tuned on a clinician annotated DSD dataset, (2) a Zero-Shot learning model for DSD, and couples them together to harvest depression symptoms related samples from our large self-curated depressive tweets repository (DTR). Our clinician annotated dataset is the largest of its kind. Furthermore, DTR is created from the samples of tweets in self-disclosed depressed users Twitter timeline from two datasets, including one of the largest benchmark datasets for user-level depression detection from Twitter. This further helps preserve the depression symptoms distribution of self-disclosed tweets. Subsequently, we iteratively retrain our initial DSD model with the harvested data. We discuss the stopping criteria and limitations of this SSL process, and elaborate the underlying constructs which play a vital role in the overall SSL process. We show that we can produce a final dataset which is the largest of its kind. Furthermore, a DSD and a Depression Post Detection model trained on it achieves significantly better accuracy than their initial version.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"86 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1007/s10579-023-09718-4
Abstract
Dementia affects cognitive functions of adults, including memory, language, and behaviour. Standard diagnostic biomarkers such as MRI are costly, whilst neuropsychological tests suffer from sensitivity issues in detecting dementia onset. The analysis of speech and language has emerged as a promising and non-intrusive technology to diagnose and monitor dementia. Currently, most work in this direction ignores the multi-modal nature of human communication and interactive aspects of everyday conversational interaction. Moreover, most studies ignore changes in cognitive status over time due to the lack of consistent longitudinal data. Here we introduce a novel fine-grained longitudinal multi-modal corpus collected in a natural setting from healthy controls and people with dementia over two phases, each spanning 28 sessions. The corpus consists of spoken conversations, a subset of which are transcribed, as well as typed and written thoughts and associated extra-linguistic information such as pen strokes and keystrokes. We present the data collection process and describe the corpus in detail. Furthermore, we establish baselines for capturing longitudinal changes in language across different modalities for two cohorts, healthy controls and people with dementia, outlining future research directions enabled by the corpus.
{"title":"A longitudinal multi-modal dataset for dementia monitoring and diagnosis","authors":"","doi":"10.1007/s10579-023-09718-4","DOIUrl":"https://doi.org/10.1007/s10579-023-09718-4","url":null,"abstract":"<h3>Abstract</h3> <p>Dementia affects cognitive functions of adults, including memory, language, and behaviour. Standard diagnostic biomarkers such as MRI are costly, whilst neuropsychological tests suffer from sensitivity issues in detecting dementia onset. The analysis of speech and language has emerged as a promising and non-intrusive technology to diagnose and monitor dementia. Currently, most work in this direction ignores the multi-modal nature of human communication and interactive aspects of everyday conversational interaction. Moreover, most studies ignore changes in cognitive status over time due to the lack of consistent longitudinal data. Here we introduce a novel fine-grained longitudinal multi-modal corpus collected in a natural setting from healthy controls and people with dementia over two phases, each spanning 28 sessions. The corpus consists of spoken conversations, a subset of which are transcribed, as well as typed and written thoughts and associated extra-linguistic information such as pen strokes and keystrokes. We present the data collection process and describe the corpus in detail. Furthermore, we establish baselines for capturing longitudinal changes in language across different modalities for two cohorts, healthy controls and people with dementia, outlining future research directions enabled by the corpus.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"42 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel lexical resource for treating speech impairments from childhood to senility: DILLo—Database Italiano del Lessico per Logopedisti (i.e., Italian Database for Speech-Language Pathologists) is presented. DILLo is a free online web application that allows extraction of filtered wordlists for flexible rehabilitative purposes. Its major aim is to provide Italian speech-language pathologists (SLPs) with a resource that takes advantage of Information and Communication Technologies for language in a healthcare setting. DILLo’s design adopts an integrated approach that envisages fruitful cooperation between clinical and linguistic professionals. The 7690 Italian words in the database have been selected based on phonological, phonotactic, and morphological properties, and their frequency of use. These linguistic features are encoded in the tool, which includes the orthographic and phonological transcriptions, and the phonotactic structure of each word. Moreover, most of the entries are associated with their respective ARASAAC pictogram, providing an additional and inclusive tool for treating speech impairments. The user-friendly interface is structured to allow for different and adaptable search options. DILLo allows Speech-Language Pathologists (SLPs) to obtain a rich, tailored, and varied selection of suitable linguistic stimuli. It can be used to customize the treatment of many impairments, e.g., Speech Sound Disorders, Childhood Apraxia of Speech, Specific Learning Disabilities, aphasia, dysarthria, dysphonia, and the auditory training that follows cochlear implantations.
用于治疗从儿童到老年的语言障碍的新型词汇资源:介绍了 DILLo-Database Italiano del Lessico per Logopedisti(即意大利语言病理学家数据库)。DILLo 是一个免费的在线网络应用程序,可提取过滤词表用于灵活的康复目的。其主要目的是为意大利语言病理学家(SLPs)提供一种资源,利用信息和通信技术在医疗保健环境中进行语言治疗。DILLo 的设计采用了一种综合方法,设想在临床和语言专业人员之间开展富有成效的合作。数据库中的 7690 个意大利语单词是根据语音、音素学和形态学特性及其使用频率筛选出来的。这些语言特点都已编码在工具中,其中包括每个单词的正字法和语音转写以及音素结构。此外,大多数词条都与各自的 ARASAAC 象形图相关联,为治疗语言障碍提供了一个额外的包容性工具。用户友好的界面结构允许不同和可调整的搜索选项。DILLo 允许语言病理学家 (SLP) 获得丰富的、量身定制的、多样的合适语言刺激选择。它可用于定制多种障碍的治疗,如言语发音障碍、儿童语言障碍、特殊学习障碍、失语症、构音障碍、发音障碍以及人工耳蜗植入术后的听觉训练。
{"title":"DILLo: an Italian lexical database for speech-language pathologists","authors":"Federica Beccaria, Angela Cristiano, Flavio Pisciotta, Noemi Usardi, Elisa Borgogni, Filippo Prayer Galletti, Giulia Corsi, Lorenzo Gregori, Gloria Gagliardi","doi":"10.1007/s10579-024-09722-2","DOIUrl":"https://doi.org/10.1007/s10579-024-09722-2","url":null,"abstract":"<p>A novel lexical resource for treating speech impairments from childhood to senility: DILLo—<i>Database Italiano del Lessico per Logopedisti</i> (i.e., Italian Database for Speech-Language Pathologists) is presented. DILLo is a free online web application that allows extraction of filtered wordlists for flexible rehabilitative purposes. Its major aim is to provide Italian speech-language pathologists (SLPs) with a resource that takes advantage of Information and Communication Technologies for language in a healthcare setting. DILLo’s design adopts an integrated approach that envisages fruitful cooperation between clinical and linguistic professionals. The 7690 Italian words in the database have been selected based on phonological, phonotactic, and morphological properties, and their frequency of use. These linguistic features are encoded in the tool, which includes the orthographic and phonological transcriptions, and the phonotactic structure of each word. Moreover, most of the entries are associated with their respective ARASAAC pictogram, providing an additional and inclusive tool for treating speech impairments. The user-friendly interface is structured to allow for different and adaptable search options. DILLo allows Speech-Language Pathologists (SLPs) to obtain a rich, tailored, and varied selection of suitable linguistic stimuli. It can be used to customize the treatment of many impairments, e.g., Speech Sound Disorders, Childhood Apraxia of Speech, Specific Learning Disabilities, aphasia, dysarthria, dysphonia, and the auditory training that follows cochlear implantations.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"80 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s10579-024-09721-3
Borja Herce, Bogdan Pricop
This paper presents VeLeRo, an inflected lexicon of Standard Romanian which contains the full paradigm of 7297 verbs in phonological form. We explain the process by which the resource was compiled, and how stress, diphthongs and hiatus, consonant palatalization, and other relevant issues were handled in phonemization. On the basis of the most token-frequent verbs in VeLeRo, we also perform a quantitative analysis of morphological predictability in Romanian verbs, whose complexity patterns are presented within the broader Romance context.
{"title":"VeLeRo: an inflected verbal lexicon of standard Romanian and a quantitative analysis of morphological predictability","authors":"Borja Herce, Bogdan Pricop","doi":"10.1007/s10579-024-09721-3","DOIUrl":"https://doi.org/10.1007/s10579-024-09721-3","url":null,"abstract":"<p>This paper presents VeLeRo, an inflected lexicon of Standard Romanian which contains the full paradigm of 7297 verbs in phonological form. We explain the process by which the resource was compiled, and how stress, diphthongs and hiatus, consonant palatalization, and other relevant issues were handled in phonemization. On the basis of the most token-frequent verbs in VeLeRo, we also perform a quantitative analysis of morphological predictability in Romanian verbs, whose complexity patterns are presented within the broader Romance context.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.1007/s10579-023-09709-5
Beatrice Biancardi, Mathieu Chollet, Chloé Clavel
In most public speaking datasets, judgements are given after watching the entire performance, or on thin slices randomly selected from the presentations, without focusing on the temporal location of these slices. This does not allow to investigate how people’s judgements develop over time during presentations. This contrasts with primacy and recency theories, which suggest that some moments of the speech could be more salient than others and contribute disproportionately to the perception of the speaker’s performance. To provide novel insights on this phenomenon, we present the 3MT_French dataset. It contains a set of public speaking annotations collected on a crowd-sourcing platform through a novel annotation scheme and protocol. Global evaluation, persuasiveness, perceived self-confidence of the speaker and audience engagement were annotated on different time windows (i.e., the beginning, middle or end of the presentation, or the full video). This new resource will be useful to researchers working on public speaking assessment and training. It will allow to fine-tune the analysis of presentations under a novel perspective relying on socio-cognitive theories rarely studied before in this context, such as first impressions and primacy and recency theories. An exploratory correlation analysis on the annotations provided in the dataset suggests that the early moments of a presentation have a stronger impact on the judgements.
{"title":"Introducing the 3MT_French dataset to investigate the timing of public speaking judgements","authors":"Beatrice Biancardi, Mathieu Chollet, Chloé Clavel","doi":"10.1007/s10579-023-09709-5","DOIUrl":"https://doi.org/10.1007/s10579-023-09709-5","url":null,"abstract":"<p>In most public speaking datasets, judgements are given after watching the entire performance, or on thin slices randomly selected from the presentations, without focusing on the temporal location of these slices. This does not allow to investigate how people’s judgements develop over time during presentations. This contrasts with primacy and recency theories, which suggest that some moments of the speech could be more salient than others and contribute disproportionately to the perception of the speaker’s performance. To provide novel insights on this phenomenon, we present the 3MT_French dataset. It contains a set of public speaking annotations collected on a crowd-sourcing platform through a novel annotation scheme and protocol. Global evaluation, persuasiveness, perceived self-confidence of the speaker and audience engagement were annotated on different time windows (i.e., the beginning, middle or end of the presentation, or the full video). This new resource will be useful to researchers working on public speaking assessment and training. It will allow to fine-tune the analysis of presentations under a novel perspective relying on socio-cognitive theories rarely studied before in this context, such as first impressions and primacy and recency theories. An exploratory correlation analysis on the annotations provided in the dataset suggests that the early moments of a presentation have a stronger impact on the judgements.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"142 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}