{"title":"Hitching a ride: Bamboo mosaic virus satellite RNA hijacks the methyltransferase Fibrillarin for a ride across the plant.","authors":"Yu-Hung Hung","doi":"10.1093/plcell/koaf226","DOIUrl":"https://doi.org/10.1093/plcell/koaf226","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145127107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitogen-activated protein kinase (MAPK) cascades play vital roles in plant responses to biotic and abiotic stresses; however, their regulation during viral infection and the mechanisms by which viruses counteract these defenses remain poorly understood. Here, we report that the Arabidopsis thaliana atypical dual specificity phosphatase (DSP) DSP4 negatively regulates plant immunity against turnip mosaic virus (TuMV), a member of the Potyviridae family. Subcellular localization, fractionation, and mutagenesis revealed that DSP4 is anchored to the cellular membrane via its C-terminus. Notably, only the membrane-bound form of DSP4 interacts with and dephosphorylates the MAPKs MPK6 and MPK3, which redundantly restrict TuMV infection. Furthermore, TuMV P3 protein binds to DSP4, maintaining it on the membrane to dephosphorylate MPKs, whereas DSP4 is typically released from the membrane during immune priming. These findings unveil a molecular mechanism wherein TuMV P3 exploits this membrane-associated phosphatase to dampen MAPK-mediated immunity and promote virus infection.
{"title":"A plant RNA virus hijacks a membrane-anchored dual-specificity phosphatase to attenuate MAPK-mediated immunity for robust infection.","authors":"Yameng Luan,Xue Jiang,Yuting Wang,Mengzhu Chai,Fangfang Li,Aiming Wang,Xiaoyun Wu,Xiaofei Cheng","doi":"10.1093/plcell/koaf232","DOIUrl":"https://doi.org/10.1093/plcell/koaf232","url":null,"abstract":"Mitogen-activated protein kinase (MAPK) cascades play vital roles in plant responses to biotic and abiotic stresses; however, their regulation during viral infection and the mechanisms by which viruses counteract these defenses remain poorly understood. Here, we report that the Arabidopsis thaliana atypical dual specificity phosphatase (DSP) DSP4 negatively regulates plant immunity against turnip mosaic virus (TuMV), a member of the Potyviridae family. Subcellular localization, fractionation, and mutagenesis revealed that DSP4 is anchored to the cellular membrane via its C-terminus. Notably, only the membrane-bound form of DSP4 interacts with and dephosphorylates the MAPKs MPK6 and MPK3, which redundantly restrict TuMV infection. Furthermore, TuMV P3 protein binds to DSP4, maintaining it on the membrane to dephosphorylate MPKs, whereas DSP4 is typically released from the membrane during immune priming. These findings unveil a molecular mechanism wherein TuMV P3 exploits this membrane-associated phosphatase to dampen MAPK-mediated immunity and promote virus infection.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145127106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant anatomy: The next episode - high throughput sectioning and image processing with AnatomyArray.","authors":"Gwendolyn K Kirschner","doi":"10.1093/plcell/koaf228","DOIUrl":"https://doi.org/10.1093/plcell/koaf228","url":null,"abstract":"","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenrong Tan, Xiaolan Yue, Yangzhou Pan, Jin Hu, Rong Huang, Haili Tan, Feiyan Lan, Fei Yang, Hongbin Wei, Lucas Gutiérrez Rodríguez, Víctor Resco de Dios, Keming Luo, Yinan Yao
The spatial arrangement of phloem, cambium and xylem is crucial for secondary growth in tree species. During secondary growth, cambium cells produce secondary xylem inwards and secondary phloem outwards. While phytohormone regulators and differentiation mediators coordinate vascular development, their signaling crosstalk remains poorly understood. Here, we reveal that in poplar (Populus tomentosa), the GSK3 kinase BRASSINOSTEROID INSENSITIVE 2.1 (PtoBIN2.1), integrates brassinosteroid (BR) and auxin signaling during secondary growth by phosphorylating the transcription factor KANADI1 (KAN1), which functions as abaxial determinant. In the phloem/abaxial side, BIN2-mediated phosphorylation stabilizes KAN1, enhancing its suppression of auxin biosynthesis/signaling and HD-ZIP III adaxial determinants, thereby promoting phloem development while inhibiting cambial activity and xylem differentiation. Conversely, BR and auxin synergistically promote xylem formation, with auxin signaling being required for BR-mediated secondary growth. BRs or lower BIN2.1 levels decrease KAN1 stability through diminished phosphorylation, attenuating KAN1-driven inhibition of auxin signaling and consequently enhancing cambial proliferation and xylem development. Our findings establish a BIN2–KAN1 regulatory module that orchestrates phloem–xylem patterning and demonstrate how poplar integrates BR and auxin signaling to control secondary growth.
{"title":"BIN2-mediated phosphorylation of KAN1 integrates brassinosteroid and auxin signaling during poplar secondary growth","authors":"Wenrong Tan, Xiaolan Yue, Yangzhou Pan, Jin Hu, Rong Huang, Haili Tan, Feiyan Lan, Fei Yang, Hongbin Wei, Lucas Gutiérrez Rodríguez, Víctor Resco de Dios, Keming Luo, Yinan Yao","doi":"10.1093/plcell/koaf222","DOIUrl":"https://doi.org/10.1093/plcell/koaf222","url":null,"abstract":"The spatial arrangement of phloem, cambium and xylem is crucial for secondary growth in tree species. During secondary growth, cambium cells produce secondary xylem inwards and secondary phloem outwards. While phytohormone regulators and differentiation mediators coordinate vascular development, their signaling crosstalk remains poorly understood. Here, we reveal that in poplar (Populus tomentosa), the GSK3 kinase BRASSINOSTEROID INSENSITIVE 2.1 (PtoBIN2.1), integrates brassinosteroid (BR) and auxin signaling during secondary growth by phosphorylating the transcription factor KANADI1 (KAN1), which functions as abaxial determinant. In the phloem/abaxial side, BIN2-mediated phosphorylation stabilizes KAN1, enhancing its suppression of auxin biosynthesis/signaling and HD-ZIP III adaxial determinants, thereby promoting phloem development while inhibiting cambial activity and xylem differentiation. Conversely, BR and auxin synergistically promote xylem formation, with auxin signaling being required for BR-mediated secondary growth. BRs or lower BIN2.1 levels decrease KAN1 stability through diminished phosphorylation, attenuating KAN1-driven inhibition of auxin signaling and consequently enhancing cambial proliferation and xylem development. Our findings establish a BIN2–KAN1 regulatory module that orchestrates phloem–xylem patterning and demonstrate how poplar integrates BR and auxin signaling to control secondary growth.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145116550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Root metabolites are essential for plant development and environmental stress adaptation. However, the genetic basis controlling root metabolome variation in crops and its role in stress resilience remain largely uncharacterized. In this study, we employed a comprehensive multi-omics approach, integrating root metabolome and transcriptome profiles of 273 maize (Zea mays L.) inbred lines at the seedling stage. Our analysis annotated 407 metabolites, of which 155 exhibited significant correlations with root traits. Using a variome-transcriptome-metabolome association (VTM) network, we identified the glutamate decarboxylase (GAD) gene ZmGAD as a crucial regulator that enhances root growth and stress tolerance by modulating gamma-aminobutyric acid (GABA) biosynthesis. ZmGAD-derived GABA confers stress tolerance by regulating stomatal aperture and scavenging reactive oxygen species. A transcription factor, ZmZIM2, acts as a negative regulator of ZmGAD expression and GABA accumulation. Moreover, a 2-bp insertion in ZmGAD causes a premature translation termination, resulting in reduced GABA content, shorter roots, and decreased stress tolerance in maize. The reduced frequency of a 2-bp deletion suggests it may have been inadvertently lost during maize domestication and modern breeding. This study elucidates the genetic and molecular framework underlying root metabolite regulation in maize and provides a valuable resource for enhancing root traits and stress tolerance in maize breeding.
{"title":"A variome-transcriptome-metabolome network links GABA biosynthesis to stress resilience in maize","authors":"Yunyun Wang, Dan Sun, Yamin Duan, Aiqing Yang, Xiaoyi Yang, Tianze Zhu, Yuxing Yan, Wei Li, Wenye Rui, Shuai Fang, Baoqing Wang, Yimei Tian, Houmiao Wang, Fanjun Chen, Zhongtao Jia, Qingchun Pan, Zefeng Yang, Lixing Yuan, Chenwu Xu, Pengcheng Li","doi":"10.1093/plcell/koaf221","DOIUrl":"https://doi.org/10.1093/plcell/koaf221","url":null,"abstract":"Root metabolites are essential for plant development and environmental stress adaptation. However, the genetic basis controlling root metabolome variation in crops and its role in stress resilience remain largely uncharacterized. In this study, we employed a comprehensive multi-omics approach, integrating root metabolome and transcriptome profiles of 273 maize (Zea mays L.) inbred lines at the seedling stage. Our analysis annotated 407 metabolites, of which 155 exhibited significant correlations with root traits. Using a variome-transcriptome-metabolome association (VTM) network, we identified the glutamate decarboxylase (GAD) gene ZmGAD as a crucial regulator that enhances root growth and stress tolerance by modulating gamma-aminobutyric acid (GABA) biosynthesis. ZmGAD-derived GABA confers stress tolerance by regulating stomatal aperture and scavenging reactive oxygen species. A transcription factor, ZmZIM2, acts as a negative regulator of ZmGAD expression and GABA accumulation. Moreover, a 2-bp insertion in ZmGAD causes a premature translation termination, resulting in reduced GABA content, shorter roots, and decreased stress tolerance in maize. The reduced frequency of a 2-bp deletion suggests it may have been inadvertently lost during maize domestication and modern breeding. This study elucidates the genetic and molecular framework underlying root metabolite regulation in maize and provides a valuable resource for enhancing root traits and stress tolerance in maize breeding.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145116551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tracie A Hennen-Bierwagen, Martha G James, Carter J Newton, Emily M Juhl, Ugo Cenci, Steven Ball, Christophe Colleoni, Stacie L Shuler, William F Tracy, Alan T Culbertson, Alan M Myers
Starch arose in chloroplast-containing species from a combination of prokaryotic and eukaryotic genes involved in the metabolism of soluble branched α-polyglucan, i.e., glycogen. Non-mutant plants entirely lack such soluble polymers and instead contain amylopectin in insoluble starch granules. The transition between soluble and insoluble branched α-polyglucans during plant evolution is not well understood. This study generated maize (Zea mays L.) lines exhibiting a gradually varying distribution between soluble α-polyglucan and starch in the endosperm. These chemotypes were determined by complexes of conserved α-(1→6)-glucosidases of the isoamylase class (ISA). Four independent spontaneous missense substitutions in the ISA1 subunit of these complexes each cause a distinct soluble/insoluble α-polyglucan ratio, even though all four ISA1 variants lack detectable catalytic activity. These substitutions are located near each other in a domain distant from the active site. A separate region of ISA1 binds its non-catalytic paralog ISA2. Removal of ISA2 from the ISA1 mutant lines conditions further variability in the proportions of soluble α-polyglucan and starch. Thus, the extent of precursor α-polyglucan crystallization is determined by aspects of the ISA complexes beyond enzymatic activity. Various arrangements of multiple glucan-binding sites in different forms of the ISA1/ISA2 assemblies are proposed to determine how those complexes interact with precursor polymers. In turn, structural organization of the polymers is proposed to influence their crystallization, independent of α-1,6-glucosidase activity. Gradual change from soluble α-polyglucan metabolism to starch metabolism is proposed as a selective advantage leading to ISA2 conservation despite its lack of a functional catalytic site.
{"title":"Non-catalytic functions of ISOAMYLASE 1 and 2 affect the proportion of insoluble and soluble α-polyglucans in maize","authors":"Tracie A Hennen-Bierwagen, Martha G James, Carter J Newton, Emily M Juhl, Ugo Cenci, Steven Ball, Christophe Colleoni, Stacie L Shuler, William F Tracy, Alan T Culbertson, Alan M Myers","doi":"10.1093/plcell/koaf220","DOIUrl":"https://doi.org/10.1093/plcell/koaf220","url":null,"abstract":"Starch arose in chloroplast-containing species from a combination of prokaryotic and eukaryotic genes involved in the metabolism of soluble branched α-polyglucan, i.e., glycogen. Non-mutant plants entirely lack such soluble polymers and instead contain amylopectin in insoluble starch granules. The transition between soluble and insoluble branched α-polyglucans during plant evolution is not well understood. This study generated maize (Zea mays L.) lines exhibiting a gradually varying distribution between soluble α-polyglucan and starch in the endosperm. These chemotypes were determined by complexes of conserved α-(1→6)-glucosidases of the isoamylase class (ISA). Four independent spontaneous missense substitutions in the ISA1 subunit of these complexes each cause a distinct soluble/insoluble α-polyglucan ratio, even though all four ISA1 variants lack detectable catalytic activity. These substitutions are located near each other in a domain distant from the active site. A separate region of ISA1 binds its non-catalytic paralog ISA2. Removal of ISA2 from the ISA1 mutant lines conditions further variability in the proportions of soluble α-polyglucan and starch. Thus, the extent of precursor α-polyglucan crystallization is determined by aspects of the ISA complexes beyond enzymatic activity. Various arrangements of multiple glucan-binding sites in different forms of the ISA1/ISA2 assemblies are proposed to determine how those complexes interact with precursor polymers. In turn, structural organization of the polymers is proposed to influence their crystallization, independent of α-1,6-glucosidase activity. Gradual change from soluble α-polyglucan metabolism to starch metabolism is proposed as a selective advantage leading to ISA2 conservation despite its lack of a functional catalytic site.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145116498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
RNA trafficking is crucial in almost every phase of plant development. Fibrillarin (FIB), a highly conserved nucleolar protein with methyltransferase (MTase) activity, functions in methylation and rRNA processing and facilitates the transport of several RNA viruses in plants. Previously, we demonstrated that bamboo mosaic virus satellite RNA (satBaMV) traffics autonomously and systemically in a helper virus-independent but FIB-dependent manner by forming a mobile ribonucleoprotein (RNP) complex comprising satBaMV, FIB, and satBaMV-encoded P20 movement protein. Here, we show that FIB methylates the arginine-rich motif (ARM) of P20 and relies on its MTase activity for the systemic movement of satBaMV. FIB MTase-defective mutants failed to complement long-distance satBaMV transport in FIBi plants, despite still binding to satBaMV in vivo. We also demonstrate that the ARM of P20 guides its nucleolar localization for FIB-mediated methylation. P20 methylation not only contributes to its plasmodesmata (PD) targeting but also triggers nucleocytoplasmic shuttling of FIB with P20 as the RNP complex to PD. A satBaMV mutant harboring a non-methylated P20, but not a methylation-mimic P20, exhibited disrupted PD targeting and impaired P20-assisted satBaMV trafficking. Our findings provide mechanistic insights into how FIB-mediated P20 methylation positively regulates systemic trafficking of a subviral agent in plants.
{"title":"Nucleolar fibrillarin methyltransferase regulates systemic trafficking of a plant virus satellite RNA","authors":"Chih-Hao Chang, Jiun-Da Wang, Shu-Chuan Lee, Yau-Heiu Hsu, Chung-Chi Hu, Na-Sheng Lin","doi":"10.1093/plcell/koaf224","DOIUrl":"https://doi.org/10.1093/plcell/koaf224","url":null,"abstract":"RNA trafficking is crucial in almost every phase of plant development. Fibrillarin (FIB), a highly conserved nucleolar protein with methyltransferase (MTase) activity, functions in methylation and rRNA processing and facilitates the transport of several RNA viruses in plants. Previously, we demonstrated that bamboo mosaic virus satellite RNA (satBaMV) traffics autonomously and systemically in a helper virus-independent but FIB-dependent manner by forming a mobile ribonucleoprotein (RNP) complex comprising satBaMV, FIB, and satBaMV-encoded P20 movement protein. Here, we show that FIB methylates the arginine-rich motif (ARM) of P20 and relies on its MTase activity for the systemic movement of satBaMV. FIB MTase-defective mutants failed to complement long-distance satBaMV transport in FIBi plants, despite still binding to satBaMV in vivo. We also demonstrate that the ARM of P20 guides its nucleolar localization for FIB-mediated methylation. P20 methylation not only contributes to its plasmodesmata (PD) targeting but also triggers nucleocytoplasmic shuttling of FIB with P20 as the RNP complex to PD. A satBaMV mutant harboring a non-methylated P20, but not a methylation-mimic P20, exhibited disrupted PD targeting and impaired P20-assisted satBaMV trafficking. Our findings provide mechanistic insights into how FIB-mediated P20 methylation positively regulates systemic trafficking of a subviral agent in plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145116500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The anatomy or the arrangement of cells often determines the organization and function of plant tissues. However, current methods in large-scale imaging and accurate quantification of anatomical traits face major limitations. To address these challenges, we introduce the AnatomyArray system, an integrated platform for multiplexed tissue sectioning and anatomical phenotyping in plants. This system includes a highly adaptable device for high-throughput paraffin sectioning and multi-channel slide imaging of various plant tissues, along with AnatomyNet, a deep learning tool for analyzing tissue-scale patterns of cell arrangement and morphology. AnatomyNet delivers accurate, automated quantification of anatomical traits at both the tissue and cellular levels, outperforming existing tools in image analysis. Using the AnatomyArray system, we dissected the genetic basis of root anatomy in a diverse wheat (Triticum aestivum L.) population through anatomcis-based genome-wide association studies (GWAS). Among the candidate genes identified, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14 (TaSPL14) was associated with stele and pericycle size in roots. Analysis of Taspl14 mutants confirmed that TaSPL14 plays a critical role in regulating root growth and tissue size by influencing phytohormone pathways. The AnatomyArray platform enables high-throughput characterization of cellular-level features and provides insights into the mechanisms shaping anatomical structure in plants.
{"title":"AnatomyArray: a high-throughput platform for anatomical phenotyping in plants.","authors":"Yikeng Cheng,Jiawei Shi,Zhanghan Pang,Nuo Xu,Kejie Chai,Jie Gao,Zhen Jia,Bingqian Hao,Huanran Yin,Ruiling Fang,Shangyuan Xie,Wei Chen,Daoquan Xiang,Zhuqing Zhou,Wanneng Yang,Qiang Li","doi":"10.1093/plcell/koaf223","DOIUrl":"https://doi.org/10.1093/plcell/koaf223","url":null,"abstract":"The anatomy or the arrangement of cells often determines the organization and function of plant tissues. However, current methods in large-scale imaging and accurate quantification of anatomical traits face major limitations. To address these challenges, we introduce the AnatomyArray system, an integrated platform for multiplexed tissue sectioning and anatomical phenotyping in plants. This system includes a highly adaptable device for high-throughput paraffin sectioning and multi-channel slide imaging of various plant tissues, along with AnatomyNet, a deep learning tool for analyzing tissue-scale patterns of cell arrangement and morphology. AnatomyNet delivers accurate, automated quantification of anatomical traits at both the tissue and cellular levels, outperforming existing tools in image analysis. Using the AnatomyArray system, we dissected the genetic basis of root anatomy in a diverse wheat (Triticum aestivum L.) population through anatomcis-based genome-wide association studies (GWAS). Among the candidate genes identified, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14 (TaSPL14) was associated with stele and pericycle size in roots. Analysis of Taspl14 mutants confirmed that TaSPL14 plays a critical role in regulating root growth and tissue size by influencing phytohormone pathways. The AnatomyArray platform enables high-throughput characterization of cellular-level features and provides insights into the mechanisms shaping anatomical structure in plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145103530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna van Weringh,Paul J Gamueda,Hasna Khan,Asher Pasha,Eddi Esteban,Nicholas J Provart
Drought is an important environmental stress that limits crop production. Guard cells (GCs) act to control the rate of water loss. To better understand how gene expression in GCs changes during progressive drought, we generated GC-specific RNA-seq transcriptomes during mild, moderate, and severe drought stress. Additionally, we sampled re-watered plants after severe drought. These transcriptomes were generated using the INTACT (isolation of nuclei tagged in specific cell types) system to capture the RNA from GC nuclei. We optimized the INTACT protocol for Arabidopsis thaliana leaf tissue, incorporating fixation to preserve RNA during nuclear isolation. To identify gene expression changes unique to GCs, we also generated INTACT transcriptomes from all leaf cell types, using the 35S viral promoter. These data sets highlight shared and unique gene expression changes between GCs and the bulk leaf tissue. Only GCs have detectable gene expression changes at the earliest drought time point and a high percentage of moderate drought GC DEGs are not observed in severe drought, unlike the bulk leaf tissue, showing that GCs tailor their gene expression changes to drought severity. A thermal imaging screen of mutants of 80 candidate early drought-responsive genes revealed that ten of these exhibit a cooler-than-wild-type phenotype under moderate drought conditions. The drought-responsive GC and leaf RNA-seq transcriptomes are available in the Arabidopsis ePlant at the Bio-Analytic Resource for Plant Biology website. These findings provide valuable insights into GC-specific drought responses and identify targets for enhancing drought tolerance in crops.
{"title":"INTACT-based guard cell transcriptomes from a progressive drought time course reveal targets for modifying stomatal responses.","authors":"Anna van Weringh,Paul J Gamueda,Hasna Khan,Asher Pasha,Eddi Esteban,Nicholas J Provart","doi":"10.1093/plcell/koaf218","DOIUrl":"https://doi.org/10.1093/plcell/koaf218","url":null,"abstract":"Drought is an important environmental stress that limits crop production. Guard cells (GCs) act to control the rate of water loss. To better understand how gene expression in GCs changes during progressive drought, we generated GC-specific RNA-seq transcriptomes during mild, moderate, and severe drought stress. Additionally, we sampled re-watered plants after severe drought. These transcriptomes were generated using the INTACT (isolation of nuclei tagged in specific cell types) system to capture the RNA from GC nuclei. We optimized the INTACT protocol for Arabidopsis thaliana leaf tissue, incorporating fixation to preserve RNA during nuclear isolation. To identify gene expression changes unique to GCs, we also generated INTACT transcriptomes from all leaf cell types, using the 35S viral promoter. These data sets highlight shared and unique gene expression changes between GCs and the bulk leaf tissue. Only GCs have detectable gene expression changes at the earliest drought time point and a high percentage of moderate drought GC DEGs are not observed in severe drought, unlike the bulk leaf tissue, showing that GCs tailor their gene expression changes to drought severity. A thermal imaging screen of mutants of 80 candidate early drought-responsive genes revealed that ten of these exhibit a cooler-than-wild-type phenotype under moderate drought conditions. The drought-responsive GC and leaf RNA-seq transcriptomes are available in the Arabidopsis ePlant at the Bio-Analytic Resource for Plant Biology website. These findings provide valuable insights into GC-specific drought responses and identify targets for enhancing drought tolerance in crops.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}