首页 > 最新文献

Inverse Problems最新文献

英文 中文
V-line 2-tensor tomography in the plane 平面 V 线 2 张量断层扫描
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-31 DOI: 10.1088/1361-6420/ad1f83
Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar
In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in R2. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.
本文介绍并研究了定义在 R2 中对称 2 张量场上的各种 V 线变换(VLT)。我们感兴趣的算子包括纵向、横向和混合 VLT、它们的积分矩以及星变换。除星形变换外,所有这些算子都是对破碎射线轨迹的自然概括,而破碎射线轨迹是为直线积分路径定义的相应概念。我们描述了 VLT 的内核特征,并推导出从这些变换的各种组合中重建张量场的精确公式。张量场的星形变换是之前研究过的向量场和标量场(函数)相应概念的扩展。我们描述了对称 2 张量场上星形变换的所有注入配置,并推导出该算子的精确闭式反演公式。
{"title":"V-line 2-tensor tomography in the plane","authors":"Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar","doi":"10.1088/1361-6420/ad1f83","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1f83","url":null,"abstract":"In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in <inline-formula>\u0000<tex-math><?CDATA $mathbb{R}^2$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\u0000<inline-graphic xlink:href=\"ipad1f83ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"8 2 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularization of the inverse Laplace transform by mollification 反拉普拉斯变换的规范化摩尔化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-16 DOI: 10.1088/1361-6420/ad1609
Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee
In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.
本文研究反拉普拉斯变换。我们首先推导出一个新的全局对数稳定性估计值,它表明反演是一个严重的问题。然后,我们提出了一种正则化方法,利用 "钝化 "概念计算反拉普拉斯变换。考虑到指数不稳定性,我们得出了正则化参数的选择标准。我们证明,通过取该参数的最优值,可以显著改善该方法的收敛性。最后,利用拉普拉斯变换的全态扩展,我们提出了一种新的基于 PDEs 的数值方法来计算解。我们通过几个数值示例证明了所提出的正则化方法的有效性。
{"title":"Regularization of the inverse Laplace transform by mollification","authors":"Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee","doi":"10.1088/1361-6420/ad1609","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1609","url":null,"abstract":"In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining a parabolic system by boundary observation of its non-negative solutions with biological applications 通过边界观测确定抛物线系统的非负解及生物应用
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-08 DOI: 10.1088/1361-6420/ad149f
Hongyu Liu, Catharine W K Lo
In this paper, we consider the inverse problem of determining some coefficients within a coupled nonlinear parabolic system, through boundary observation of its non-negative solutions. In the physical setup, the non-negative solutions represent certain probability densities in different contexts. We innovate the successive linearisation method by further developing a high-order variation scheme which can both ensure the positivity of the solutions and effectively tackle the nonlinear inverse problem. This enables us to establish several novel unique identifiability results for the inverse problem in a rather general setup. For a theoretical perspective, our study addresses an important topic in partial differential equation (PDE) analysis on how to characterise the function spaces generated by the products of non-positive solutions of parabolic PDEs. As a typical and practically interesting application, we apply our general results to inverse problems for ecological population models, where the positive solutions signify the population densities.
在本文中,我们考虑的逆问题是,通过对非负解的边界观测,确定耦合非线性抛物线系统中的某些系数。在物理设置中,非负解代表了不同情况下的某些概率密度。我们创新了连续线性化方法,进一步开发了一种高阶变化方案,既能确保解的正向性,又能有效解决非线性逆问题。这使我们能够在一个相当普遍的设置中为逆问题建立几个新颖独特的可识别性结果。从理论角度看,我们的研究涉及偏微分方程(PDE)分析中的一个重要课题,即如何表征抛物线 PDE 非正解的乘积所生成的函数空间。作为一个典型和实际有趣的应用,我们将我们的一般结果应用于生态种群模型的逆问题,其中正解表示种群密度。
{"title":"Determining a parabolic system by boundary observation of its non-negative solutions with biological applications","authors":"Hongyu Liu, Catharine W K Lo","doi":"10.1088/1361-6420/ad149f","DOIUrl":"https://doi.org/10.1088/1361-6420/ad149f","url":null,"abstract":"In this paper, we consider the inverse problem of determining some coefficients within a coupled nonlinear parabolic system, through boundary observation of its non-negative solutions. In the physical setup, the non-negative solutions represent certain probability densities in different contexts. We innovate the successive linearisation method by further developing a high-order variation scheme which can both ensure the positivity of the solutions and effectively tackle the nonlinear inverse problem. This enables us to establish several novel unique identifiability results for the inverse problem in a rather general setup. For a theoretical perspective, our study addresses an important topic in partial differential equation (PDE) analysis on how to characterise the function spaces generated by the products of non-positive solutions of parabolic PDEs. As a typical and practically interesting application, we apply our general results to inverse problems for ecological population models, where the positive solutions signify the population densities.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep unfolding as iterative regularization for imaging inverse problems 深度展开作为成像逆问题的迭代正则化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-03 DOI: 10.1088/1361-6420/ad1a3c
Zhuoxu Cui, Qingyong Zhu, Jing Cheng, Bo Zhang, Dong Liang
Deep unfolding methods have gained significant popularity in the field of inverse problems as they have driven the design of deep neural networks (DNNs) using iterative algorithms. In contrast to general DNNs, unfolding methods offer improved interpretability and performance. However, their theoretical stability or regularity in solving inverse problems remains subject to certain limitations. To address this, we reevaluate unfolded DNNs and observe that their algorithmically-driven cascading structure exhibits a closer resemblance to iterative regularization. Recognizing this, we propose a modified training approach and configure termination criteria for unfolded DNNs, thereby establishing the unfolding method as an iterative regularization technique. Specifically, our method involves the joint learning of a convex penalty function using an input-convex neural network (ICNN) to quantify distance to a real data manifold. Then, we train a DNN unfolded from the proximal gradient descent algorithm, incorporating this learned penalty. Additionally, we introduce a new termination criterion for the unfolded DNN. Under the assumption that the real data manifold intersects the solutions of the inverse problem with a unique real solution, even when measurements contain perturbations, we provide a theoretical proof of the stable convergence of the unfolded DNN to this solution. Furthermore, we demonstrate with an example of MRI reconstruction that the proposed method outperforms original unfolding methods and traditional regularization methods in terms of reconstruction quality, stability, and convergence speed.
深度展开方法在逆问题领域大受欢迎,因为它们推动了使用迭代算法的深度神经网络(DNN)的设计。与一般的 DNNs 相比,展开方法具有更好的可解释性和性能。然而,它们在解决逆问题时的理论稳定性或规律性仍然受到某些限制。为了解决这个问题,我们重新评估了展开 DNN,发现其算法驱动的级联结构与迭代正则化更为相似。认识到这一点后,我们提出了一种改进的训练方法,并为展开 DNN 配置了终止标准,从而将展开方法确立为一种迭代正则化技术。具体来说,我们的方法涉及使用输入-凸神经网络(ICNN)联合学习凸惩罚函数,以量化与真实数据流形的距离。然后,我们通过近似梯度下降算法,结合学习到的惩罚函数,训练一个展开的 DNN。此外,我们还为展开的 DNN 引入了一个新的终止准则。假设真实数据流形与逆问题的解相交,即使测量包含扰动,也有唯一的真实解,我们从理论上证明了展开 DNN 对该解的稳定收敛。此外,我们还以核磁共振成像重建为例证明,所提出的方法在重建质量、稳定性和收敛速度方面都优于原始的展开方法和传统的正则化方法。
{"title":"Deep unfolding as iterative regularization for imaging inverse problems","authors":"Zhuoxu Cui, Qingyong Zhu, Jing Cheng, Bo Zhang, Dong Liang","doi":"10.1088/1361-6420/ad1a3c","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1a3c","url":null,"abstract":"\u0000 Deep unfolding methods have gained significant popularity in the field of inverse problems as they have driven the design of deep neural networks (DNNs) using iterative algorithms. In contrast to general DNNs, unfolding methods offer improved interpretability and performance. However, their theoretical stability or regularity in solving inverse problems remains subject to certain limitations. To address this, we reevaluate unfolded DNNs and observe that their algorithmically-driven cascading structure exhibits a closer resemblance to iterative regularization. Recognizing this, we propose a modified training approach and configure termination criteria for unfolded DNNs, thereby establishing the unfolding method as an iterative regularization technique. Specifically, our method involves the joint learning of a convex penalty function using an input-convex neural network (ICNN) to quantify distance to a real data manifold. Then, we train a DNN unfolded from the proximal gradient descent algorithm, incorporating this learned penalty. Additionally, we introduce a new termination criterion for the unfolded DNN. Under the assumption that the real data manifold intersects the solutions of the inverse problem with a unique real solution, even when measurements contain perturbations, we provide a theoretical proof of the stable convergence of the unfolded DNN to this solution. Furthermore, we demonstrate with an example of MRI reconstruction that the proposed method outperforms original unfolding methods and traditional regularization methods in terms of reconstruction quality, stability, and convergence speed.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"14 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical recovery of a time-dependent potential in subdiffusion * 次扩散中与时间相关的势的数值恢复 *
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-28 DOI: 10.1088/1361-6420/ad14a0
Bangti Jin, Kwancheol Shin, Zhi Zhou
In this work we investigate an inverse problem of recovering a time-dependent potential in a semilinear subdiffusion model from an integral measurement of the solution over the domain. The model involves the Djrbashian–Caputo fractional derivative in time. Theoretically, we prove a novel conditional Lipschitz stability result, and numerically, we develop an easy-to-implement fixed point iteration for recovering the unknown coefficient. In addition, we establish rigorous error bounds on the discrete approximation. These results are obtained by crucially using smoothing properties of the solution operators and suitable choice of a weighted Lp(0,T) norm. The efficiency and accuracy of the scheme are showcased on several numerical experiments in one- and two-dimensions.
在这项工作中,我们研究了一个逆问题,即从对域内溶液的积分测量中恢复半线性亚扩散模型中与时间相关的势。该模型涉及时间上的 Djrbashian-Caputo 分数导数。在理论上,我们证明了一个新颖的条件 Lipschitz 稳定性结果;在数值上,我们开发了一种易于实现的定点迭代方法,用于恢复未知系数。此外,我们还建立了离散近似的严格误差边界。这些结果主要是利用求解算子的平滑特性和适当选择加权 Lp(0,T) 准则得到的。该方案的效率和准确性在多个一维和二维数值实验中得到了展示。
{"title":"Numerical recovery of a time-dependent potential in subdiffusion *","authors":"Bangti Jin, Kwancheol Shin, Zhi Zhou","doi":"10.1088/1361-6420/ad14a0","DOIUrl":"https://doi.org/10.1088/1361-6420/ad14a0","url":null,"abstract":"In this work we investigate an inverse problem of recovering a time-dependent potential in a semilinear subdiffusion model from an integral measurement of the solution over the domain. The model involves the Djrbashian–Caputo fractional derivative in time. Theoretically, we prove a novel conditional Lipschitz stability result, and numerically, we develop an easy-to-implement fixed point iteration for recovering the unknown coefficient. In addition, we establish rigorous error bounds on the discrete approximation. These results are obtained by crucially using smoothing properties of the solution operators and suitable choice of a weighted <inline-formula>\u0000<tex-math><?CDATA $L^p(0,T)$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>\u0000<inline-graphic xlink:href=\"ipad14a0ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> norm. The efficiency and accuracy of the scheme are showcased on several numerical experiments in one- and two-dimensions.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"30 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning 通过 SOLIT-Sharp Optimal Lepskiĭ-Inspired Tuning 在统计逆问题中实现自适应最小优化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-27 DOI: 10.1088/1361-6420/ad12e0
Housen Li, Frank Werner
We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form <inline-formula><tex-math><?CDATA $widehat f_alpha = q_alpha left(T,^*Tright)T,^*Y$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub><mml:mfenced close=")" open="("><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>T</mml:mi></mml:mrow></mml:mfenced><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>Y</mml:mi></mml:math><inline-graphic xlink:href="ipad12e0ieqn1.gif" xlink:type="simple"></inline-graphic></inline-formula>, where <italic toggle="yes">Y</italic> is the available data, <italic toggle="yes">T</italic> the forward operator, <inline-formula><tex-math><?CDATA $left(q_alpharight)_{alpha in mathcal A}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mfenced close=")" open="("><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:mfenced><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="ipad12e0ieqn2.gif" xlink:type="simple"></inline-graphic></inline-formula> an ordered filter, and <italic toggle="yes">α</italic> > 0 a regularization parameter. Whenever such a method is used in practice, <italic toggle="yes">α</italic> has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible <italic toggle="yes">α</italic> in the sense that mean squared error (MSE) <inline-formula><tex-math><?CDATA $mathbb{E} [Vert widehat f_alpha - f^daggerVert^2]$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi mathvariant="double-struck">E</mml:mi></mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mo>∥</mml:mo><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup><mml:mrow><mml:msup><mml:mo>∥</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:math><inline-graphic xlink:href="ipad12e0ieqn3.gif" xlink:type="simple"></inline-graphic></inline-formula> w.r.t. the true solution <inline-formula><tex-math><?CDATA $f^dagger$?></tex-math><mml:math overflow="scroll"><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup></mml:math><inline-graphic xlink:href="ipad12e0ieqn4.gif" xlink:type="simple"></inline-graphic></inline-formula> is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an <italic toggle="yes">a posteriori</italic> parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on <italic toggle="yes">Y</italic> and the noise level <italic toggle="yes">σ</italic> as well as the operator <italic toggle="yes">T</italic> and th
我们考虑的是可分离希尔伯特空间中的统计线性逆问题和基于滤波器的重构方法,其形式为 fˆα=qαT∗TT∗Y,其中 Y 是可用数据,T 是前向算子,qαα∈A 是有序滤波器,α > 0 是正则化参数。无论何时在实践中使用这种方法,都必须适当地选择 α。通常情况下,我们的目标是找到或至少近似找到最佳的 α,即与真解 f† 的均方误差(MSE)E[∥fˆα-f†∥2]最小。在本文中,我们介绍了锐利最优 Lepskiĭ-Inspired Tuning (SOLIT) 方法,它产生了一种后验参数选择规则,确保了自适应最小收敛速率。它只取决于 Y 和噪声水平 σ 以及算子 T 和滤波器 qαα∈A,不需要根据问题调整其他参数。我们证明了一般情况下相应 MSE 的oracle 不等式,并推导出不同情况下的收敛率。通过仔细分析,我们发现就 MSE 收敛率的阶数而言,没有其他后验参数选择规则能产生更好的性能。特别是,我们的结果表明,在逆问题中,对 Lepskiĭ 型方法会导致对数因子损失的典型理解是错误的。此外,我们还通过仿真检验了 SOLIT 的经验性能。
{"title":"Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning","authors":"Housen Li, Frank Werner","doi":"10.1088/1361-6420/ad12e0","DOIUrl":"https://doi.org/10.1088/1361-6420/ad12e0","url":null,"abstract":"We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $widehat f_alpha = q_alpha left(T,^*Tright)T,^*Y$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;ˆ&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;q&lt;/mml:mi&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mo&gt;∗&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mfenced&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mo&gt;∗&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mi&gt;Y&lt;/mml:mi&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn1.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;, where &lt;italic toggle=\"yes\"&gt;Y&lt;/italic&gt; is the available data, &lt;italic toggle=\"yes\"&gt;T&lt;/italic&gt; the forward operator, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $left(q_alpharight)_{alpha in mathcal A}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;q&lt;/mml:mi&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;/mml:mfenced&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;mml:mo&gt;∈&lt;/mml:mo&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn2.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; an ordered filter, and &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; &gt; 0 a regularization parameter. Whenever such a method is used in practice, &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; in the sense that mean squared error (MSE) &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $mathbb{E} [Vert widehat f_alpha - f^daggerVert^2]$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"double-struck\"&gt;E&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt;&lt;mml:mo&gt;∥&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;ˆ&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;†&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mo&gt;∥&lt;/mml:mo&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;]&lt;/mml:mo&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn3.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; w.r.t. the true solution &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $f^dagger$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;†&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn4.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an &lt;italic toggle=\"yes\"&gt;a posteriori&lt;/italic&gt; parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on &lt;italic toggle=\"yes\"&gt;Y&lt;/italic&gt; and the noise level &lt;italic toggle=\"yes\"&gt;σ&lt;/italic&gt; as well as the operator &lt;italic toggle=\"yes\"&gt;T&lt;/italic&gt; and th","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"43 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving inverse scattering problems via reduced-order model embedding procedures 通过降阶模型嵌入程序解决反向散射问题
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-22 DOI: 10.1088/1361-6420/ad149d
Jörn Zimmerling, Vladimir Druskin, Murthy Guddati, Elena Cherkaev, Rob Remis
We present a reduced-order model (ROM) methodology for inverse scattering problems in which the ROMs are data-driven, i.e. they are constructed directly from data gathered by sensors. Moreover, the entries of the ROM contain localised information about the coefficients of the wave equation. We solve the inverse problem by embedding the ROM in physical space. Such an approach is also followed in the theory of ‘optimal grids,’ where the ROMs are interpreted as two-point finite-difference discretisations of an underlying set of equations of a first-order continuous system on this special grid. Here, we extend this line of work to wave equations and introduce a new embedding technique, which we call Krein embedding, since it is inspired by Krein’s seminal work on vibrations of a string. In this embedding approach, an adaptive grid and a set of medium parameters can be directly extracted from a ROM and we show that several limitations of optimal grid embeddings can be avoided. Furthermore, we show how Krein embedding is connected to classical optimal grid embedding and that convergence results for optimal grids can be extended to this novel embedding approach. Finally, we also briefly discuss Krein embedding for open domains, that is, semi-infinite domains that extend to infinity in one direction.
我们提出了一种用于反向散射问题的降阶模型(ROM)方法,其中的 ROM 由数据驱动,即直接从传感器收集的数据中构建。此外,ROM 的条目包含波方程系数的局部信息。我们通过将 ROM 嵌入物理空间来解决逆问题。这种方法在 "最优网格 "理论中也有应用,在这种特殊网格上,ROM 被解释为一阶连续系统底层方程组的两点有限差分离散。在这里,我们将这一研究思路扩展到波方程,并引入了一种新的嵌入技术,我们称之为 Krein 嵌入,因为它受到了 Krein 在弦振动方面的开创性工作的启发。在这种嵌入方法中,自适应网格和介质参数集可以直接从 ROM 中提取,而且我们证明可以避免最优网格嵌入的一些限制。此外,我们还展示了 Krein 嵌入与经典最优网格嵌入之间的联系,以及最优网格的收敛结果可以扩展到这种新颖的嵌入方法。最后,我们还简要讨论了开放域的 Krein 嵌入,即在一个方向上延伸到无穷大的半无限域。
{"title":"Solving inverse scattering problems via reduced-order model embedding procedures","authors":"Jörn Zimmerling, Vladimir Druskin, Murthy Guddati, Elena Cherkaev, Rob Remis","doi":"10.1088/1361-6420/ad149d","DOIUrl":"https://doi.org/10.1088/1361-6420/ad149d","url":null,"abstract":"We present a reduced-order model (ROM) methodology for inverse scattering problems in which the ROMs are data-driven, i.e. they are constructed directly from data gathered by sensors. Moreover, the entries of the ROM contain localised information about the coefficients of the wave equation. We solve the inverse problem by embedding the ROM in physical space. Such an approach is also followed in the theory of ‘optimal grids,’ where the ROMs are interpreted as two-point finite-difference discretisations of an underlying set of equations of a first-order continuous system on this special grid. Here, we extend this line of work to wave equations and introduce a new embedding technique, which we call <italic toggle=\"yes\">Krein embedding</italic>, since it is inspired by Krein’s seminal work on vibrations of a string. In this embedding approach, an adaptive grid and a set of medium parameters can be directly extracted from a ROM and we show that several limitations of optimal grid embeddings can be avoided. Furthermore, we show how Krein embedding is connected to classical optimal grid embedding and that convergence results for optimal grids can be extended to this novel embedding approach. Finally, we also briefly discuss Krein embedding for open domains, that is, semi-infinite domains that extend to infinity in one direction.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"10 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chilled sampling for uncertainty quantification: a motivation from a meteorological inverse problem * 用于不确定性量化的冷冻采样:气象反问题的动机 *
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-22 DOI: 10.1088/1361-6420/ad141f
P Héas, F Cérou, M Rousset
Atmospheric motion vectors (AMVs) extracted from satellite imagery are the only wind observations with good global coverage. They are important features for feeding numerical weather prediction (NWP) models. Several Bayesian models have been proposed to estimate AMVs. Although critical for correct assimilation into NWP models, very few methods provide a thorough characterization of the estimation errors. The difficulty of estimating errors stems from the specificity of the posterior distribution, which is both very high dimensional, and highly ill-conditioned due to a singular likelihood, which becomes critical in particular in the case of missing data (unobserved pixels). Motivated by this difficult inverse problem, this work studies the evaluation of the (expected) estimation errors using gradient-based Markov chain Monte Carlo (MCMC) algorithms. The main contribution is to propose a general strategy, called here ‘chilling’, which amounts to sampling a local approximation of the posterior distribution in the neighborhood of a point estimate. From a theoretical point of view, we show that under regularity assumptions, the family of chilled posterior distributions converges in distribution as temperature decreases to an optimal Gaussian approximation at a point estimate given by the maximum a posteriori, also known as the Laplace approximation. Chilled sampling therefore provides access to this approximation generally out of reach in such high-dimensional nonlinear contexts. From an empirical perspective, we evaluate the proposed approach based on some quantitative Bayesian criteria. Our numerical simulations are performed on synthetic and real meteorological data. They reveal that not only the proposed chilling exhibits a significant gain in terms of accuracy of the AMV point estimates and of their associated expected error estimates, but also a substantial acceleration in the convergence speed of the MCMC algorithms.
从卫星图像中提取的大气运动矢量(AMV)是唯一覆盖全球的风观测数据。它们是为数值天气预报(NWP)模型提供资料的重要特征。已经提出了几种贝叶斯模型来估算 AMV。虽然这对正确同化到 NWP 模型至关重要,但很少有方法能对估计误差进行全面描述。估算误差的困难源于后验分布的特殊性,后验分布的维度非常高,而且由于奇异似然的存在,后验分布的条件非常不完善,尤其是在数据缺失(未观测到的像素)的情况下,这一点变得尤为重要。受这一困难逆问题的启发,这项工作研究了使用基于梯度的马尔科夫链蒙特卡罗(MCMC)算法对(预期)估计误差进行评估。其主要贡献在于提出了一种通用策略,在此称为 "冷却",相当于在点估计附近对后验分布进行局部近似采样。从理论角度来看,我们证明了在规则性假设下,冷冻后验分布族的分布会随着温度的降低而收敛到由最大后验值(也称为拉普拉斯近似值)给出的点估计值的最佳高斯近似值。因此,冷冻采样提供了在此类高维非线性环境中通常无法获得的近似值。从经验的角度来看,我们根据一些贝叶斯定量标准对所提出的方法进行了评估。我们对合成和真实气象数据进行了数值模拟。结果表明,所提出的寒冷法不仅在 AMV 点估计及其相关预期误差估计的准确性方面有显著提高,而且还大大加快了 MCMC 算法的收敛速度。
{"title":"Chilled sampling for uncertainty quantification: a motivation from a meteorological inverse problem *","authors":"P Héas, F Cérou, M Rousset","doi":"10.1088/1361-6420/ad141f","DOIUrl":"https://doi.org/10.1088/1361-6420/ad141f","url":null,"abstract":"Atmospheric motion vectors (AMVs) extracted from satellite imagery are the only wind observations with good global coverage. They are important features for feeding numerical weather prediction (NWP) models. Several Bayesian models have been proposed to estimate AMVs. Although critical for correct assimilation into NWP models, very few methods provide a thorough characterization of the estimation errors. The difficulty of estimating errors stems from the specificity of the posterior distribution, which is both very high dimensional, and highly ill-conditioned due to a singular likelihood, which becomes critical in particular in the case of missing data (unobserved pixels). Motivated by this difficult inverse problem, this work studies the evaluation of the (expected) estimation errors using gradient-based Markov chain Monte Carlo (MCMC) algorithms. The main contribution is to propose a general strategy, called here ‘chilling’, which amounts to sampling a local approximation of the posterior distribution in the neighborhood of a point estimate. From a theoretical point of view, we show that under regularity assumptions, the family of chilled posterior distributions converges in distribution as temperature decreases to an optimal Gaussian approximation at a point estimate given by the maximum <italic toggle=\"yes\">a posteriori</italic>, also known as the Laplace approximation. Chilled sampling therefore provides access to this approximation generally out of reach in such high-dimensional nonlinear contexts. From an empirical perspective, we evaluate the proposed approach based on some quantitative Bayesian criteria. Our numerical simulations are performed on synthetic and real meteorological data. They reveal that not only the proposed chilling exhibits a significant gain in terms of accuracy of the AMV point estimates and of their associated expected error estimates, but also a substantial acceleration in the convergence speed of the MCMC algorithms.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"44 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative parameter reconstruction from optical coherence tomographic data 从光学相干断层扫描数据中重建定量参数
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-19 DOI: 10.1088/1361-6420/ad0fab
Leopold Veselka, Peter Elbau, Leonidas Mindrinos, Lisa Krainz, Wolfgang Drexler
Quantitative tissue information, like the light scattering properties, is considered as a key player in the detection of cancerous cells in medical diagnosis. A promising method to obtain these data is optical coherence tomography (OCT). In this article, we will therefore discuss the refractive index reconstruction from OCT data, employing a Gaussian beam based forward model. We consider in particular samples with a layered structure, meaning that the refractive index as a function of depth is well approximated by a piecewise constant function. For the reconstruction, we present a layer-by-layer method where in every step the refractive index is obtained via a discretized least squares minimization. For an approximated form of the minimization problem, we present an existence and uniqueness result. The applicability of the proposed method is then verified by reconstructing refractive indices of layered media from both simulated and experimental OCT data.
在医学诊断中,组织的定量信息(如光散射特性)被认为是检测癌细胞的关键因素。光学相干断层扫描(OCT)是获得这些数据的一种很有前途的方法。因此,在本文中,我们将采用基于高斯光束的前向模型,讨论从 OCT 数据重建折射率的问题。我们特别考虑了具有分层结构的样本,这意味着折射率与深度的函数关系可以很好地近似为片状常数函数。为了重构,我们提出了一种逐层方法,在每一步中,折射率都是通过离散最小二乘法最小化得到的。对于最小化问题的近似形式,我们提出了存在性和唯一性结果。然后,我们从模拟和实验 OCT 数据中重建了层介质的折射率,从而验证了所提方法的适用性。
{"title":"Quantitative parameter reconstruction from optical coherence tomographic data","authors":"Leopold Veselka, Peter Elbau, Leonidas Mindrinos, Lisa Krainz, Wolfgang Drexler","doi":"10.1088/1361-6420/ad0fab","DOIUrl":"https://doi.org/10.1088/1361-6420/ad0fab","url":null,"abstract":"Quantitative tissue information, like the light scattering properties, is considered as a key player in the detection of cancerous cells in medical diagnosis. A promising method to obtain these data is optical coherence tomography (OCT). In this article, we will therefore discuss the refractive index reconstruction from OCT data, employing a Gaussian beam based forward model. We consider in particular samples with a layered structure, meaning that the refractive index as a function of depth is well approximated by a piecewise constant function. For the reconstruction, we present a layer-by-layer method where in every step the refractive index is obtained via a discretized least squares minimization. For an approximated form of the minimization problem, we present an existence and uniqueness result. The applicability of the proposed method is then verified by reconstructing refractive indices of layered media from both simulated and experimental OCT data.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"38 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D tomographic phase retrieval and unwrapping 三维断层相位检索和解包
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-14 DOI: 10.1088/1361-6420/ad11a9
Albert Fannjiang
This paper develops uniqueness theory for 3D phase retrieval with finite, discrete measurement data for strong phase objects and weak phase objects, including: (i) Unique determination of (phase) projections from diffraction patterns—General measurement schemes with coded and uncoded apertures are proposed and shown to ensure unique reduction of diffraction patterns to the phase projection for a strong phase object (respectively, the projection for a weak phase object) in each direction separately without the knowledge of relative orientations and locations. (ii) Uniqueness for 3D phase unwrapping—General conditions for unique determination of a 3D strong phase object from its phase projection data are established, including, but not limited to, random tilt schemes densely sampled from a spherical triangle of vertexes in three orthogonal directions and other deterministic tilt schemes. (iii) Uniqueness for projection tomography—Unique determination of an object of n3 voxels from generic n projections or n + 1 coded diffraction patterns is proved. This approach of reducing 3D phase retrieval to the problem of (phase) projection tomography has the practical implication of enabling classification and alignment, when relative orientations are unknown, to be carried out in terms of (phase) projections, instead of diffraction patterns. The applications with the measurement schemes such as single-axis tilt, conical tilt, dual-axis tilt, random conical tilt and general random tilt are discussed.
本文提出了利用有限、离散测量数据对强相位物体和弱相位物体进行三维相位检索的唯一性理论,包括:(i) 从衍射图样唯一确定(相位)投影--本文提出并展示了具有编码和非编码孔径的通用测量方案,以确保在不知道相对方向和位置的情况下,将衍射图样分别在每个方向上唯一还原为强相位物体的相位投影(分别为弱相位物体的投影)。(ii) 三维相位解包的唯一性--建立了从相位投影数据唯一确定三维强相位对象的一般条件,包括但不限于从三个正交方向的球面三角形顶点密集采样的随机倾斜方案和其他确定性倾斜方案。(iii) 投影层析成像的唯一性--证明了从一般 n 个投影或 n + 1 个编码衍射图样中确定 n3 个体素对象的唯一性。这种将三维相位检索简化为(相位)投影层析成像问题的方法具有实际意义,即在相对方向未知的情况下,可以根据(相位)投影而不是衍射图样进行分类和配准。本文讨论了单轴倾斜、锥形倾斜、双轴倾斜、随机锥形倾斜和一般随机倾斜等测量方案的应用。
{"title":"3D tomographic phase retrieval and unwrapping","authors":"Albert Fannjiang","doi":"10.1088/1361-6420/ad11a9","DOIUrl":"https://doi.org/10.1088/1361-6420/ad11a9","url":null,"abstract":"This paper develops uniqueness theory for 3D phase retrieval with finite, discrete measurement data for strong phase objects and weak phase objects, including: (i) <italic toggle=\"yes\">Unique determination of (phase) projections from diffraction patterns</italic>—General measurement schemes with coded and uncoded apertures are proposed and shown to ensure unique reduction of diffraction patterns to the phase projection for a strong phase object (respectively, the projection for a weak phase object) in each direction separately without the knowledge of relative orientations and locations. (ii) <italic toggle=\"yes\">Uniqueness for 3D phase unwrapping</italic>—General conditions for unique determination of a 3D strong phase object from its phase projection data are established, including, but not limited to, random tilt schemes densely sampled from a spherical triangle of vertexes in three orthogonal directions and other deterministic tilt schemes. (iii) <italic toggle=\"yes\">Uniqueness for projection tomography</italic>—Unique determination of an object of <italic toggle=\"yes\">n</italic>\u0000<sup>3</sup> voxels from generic <italic toggle=\"yes\">n</italic> projections or <italic toggle=\"yes\">n</italic> + 1 coded diffraction patterns is proved. This approach of reducing 3D phase retrieval to the problem of (phase) projection tomography has the practical implication of enabling classification and alignment, when relative orientations are unknown, to be carried out in terms of (phase) projections, instead of diffraction patterns. The applications with the measurement schemes such as single-axis tilt, conical tilt, dual-axis tilt, random conical tilt and general random tilt are discussed.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"204 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Inverse Problems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1