首页 > 最新文献

Inverse Problems最新文献

英文 中文
A Bayesian approach for consistent reconstruction of inclusions 用贝叶斯方法重建内含物的一致性
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-23 DOI: 10.1088/1361-6420/ad2531
B M Afkham, K Knudsen, A K Rasmussen, T Tarvainen
This paper considers a Bayesian approach for inclusion detection in nonlinear inverse problems using two known and popular push-forward prior distributions: the star-shaped and level set prior distributions. We analyze the convergence of the corresponding posterior distributions in a small measurement noise limit. The methodology is general; it works for priors arising from any Hölder continuous transformation of Gaussian random fields and is applicable to a range of inverse problems. The level set and star-shaped prior distributions are examples of push-forward priors under Hölder continuous transformations that take advantage of the structure of inclusion detection problems. We show that the corresponding posterior mean converges to the ground truth in a proper probabilistic sense. Numerical tests on a two-dimensional quantitative photoacoustic tomography problem showcase the approach. The results highlight the convergence properties of the posterior distributions and the ability of the methodology to detect inclusions with sufficiently regular boundaries.
本文研究了一种贝叶斯方法,该方法利用两种已知且流行的前推先验分布:星形先验分布和水平集先验分布,对非线性逆问题中的包含性进行检测。我们分析了相应后验分布在小测量噪声极限下的收敛性。该方法是通用的;它适用于高斯随机场的任何赫尔德连续变换所产生的先验,并适用于一系列逆问题。水平集和星形先验分布是霍尔德连续变换下的前推先验的例子,它们利用了包含检测问题的结构。我们证明,相应的后验均值在适当的概率意义上收敛于地面实况。一个二维定量光声层析成像问题的数值测试展示了这种方法。结果凸显了后验分布的收敛特性,以及该方法检测具有足够规则边界的夹杂物的能力。
{"title":"A Bayesian approach for consistent reconstruction of inclusions","authors":"B M Afkham, K Knudsen, A K Rasmussen, T Tarvainen","doi":"10.1088/1361-6420/ad2531","DOIUrl":"https://doi.org/10.1088/1361-6420/ad2531","url":null,"abstract":"This paper considers a Bayesian approach for inclusion detection in nonlinear inverse problems using two known and popular push-forward prior distributions: the star-shaped and level set prior distributions. We analyze the convergence of the corresponding posterior distributions in a small measurement noise limit. The methodology is general; it works for priors arising from any Hölder continuous transformation of Gaussian random fields and is applicable to a range of inverse problems. The level set and star-shaped prior distributions are examples of push-forward priors under Hölder continuous transformations that take advantage of the structure of inclusion detection problems. We show that the corresponding posterior mean converges to the ground truth in a proper probabilistic sense. Numerical tests on a two-dimensional quantitative photoacoustic tomography problem showcase the approach. The results highlight the convergence properties of the posterior distributions and the ability of the methodology to detect inclusions with sufficiently regular boundaries.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"4 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging of nonlinear materials via the Monotonicity Principle 通过单调性原理成像非线性材料
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-13 DOI: 10.1088/1361-6420/ad22e9
Vincenzo Mottola, Antonio Corbo Esposito, Gianpaolo Piscitelli, Antonello Tamburrino
Inverse problems, which are related to Maxwell’s equations, in the presence of nonlinear materials is a quite new topic in the literature. The lack of contributions in this area can be ascribed to the significant challenges that such problems pose. Retrieving the spatial behavior of some unknown physical property, from boundary measurements, is a nonlinear and highly ill-posed problem even in the presence of linear materials. Furthermore, this complexity grows exponentially in the presence of nonlinear materials. In the tomography of linear materials, the Monotonicity Principle (MP) is the foundation of a class of non-iterative algorithms able to guarantee excellent performances and compatibility with real-time applications. Recently, the MP has been extended to nonlinear materials under very general assumptions. Starting from the theoretical background for this extension, we develop a first real-time inversion method for the inverse obstacle problem in the presence of nonlinear materials. The proposed method is intendend for all problems governed by the quasilinear Laplace equation, i.e. static problems involving nonlinear materials. In this paper, we provide some preliminary results which give the foundation of our method and some extended numerical examples.
在非线性材料存在的情况下,与麦克斯韦方程相关的逆问题在文献中是一个相当新的课题。这一领域的研究成果不多,可能是因为这类问题带来了巨大的挑战。即使在线性材料存在的情况下,从边界测量中检索某些未知物理特性的空间行为,也是一个非线性和高难度问题。此外,在存在非线性材料的情况下,这种复杂性还会呈指数级增长。在线性材料层析成像中,单调性原理(MP)是一类非迭代算法的基础,能够保证卓越的性能和与实时应用的兼容性。最近,MP 在非常一般的假设条件下扩展到了非线性材料。从这一扩展的理论背景出发,我们开发了第一种非线性材料存在时的反障碍问题实时反演方法。所提出的方法适用于所有受准线性拉普拉斯方程控制的问题,即涉及非线性材料的静态问题。本文提供了一些初步结果,为我们的方法奠定了基础,并提供了一些扩展的数值示例。
{"title":"Imaging of nonlinear materials via the Monotonicity Principle","authors":"Vincenzo Mottola, Antonio Corbo Esposito, Gianpaolo Piscitelli, Antonello Tamburrino","doi":"10.1088/1361-6420/ad22e9","DOIUrl":"https://doi.org/10.1088/1361-6420/ad22e9","url":null,"abstract":"Inverse problems, which are related to Maxwell’s equations, in the presence of nonlinear materials is a quite new topic in the literature. The lack of contributions in this area can be ascribed to the significant challenges that such problems pose. Retrieving the spatial behavior of some unknown physical property, from boundary measurements, is a nonlinear and highly ill-posed problem even in the presence of linear materials. Furthermore, this complexity grows exponentially in the presence of nonlinear materials. In the tomography of linear materials, the Monotonicity Principle (MP) is the foundation of a class of non-iterative algorithms able to guarantee excellent performances and compatibility with real-time applications. Recently, the MP has been extended to nonlinear materials under very general assumptions. Starting from the theoretical background for this extension, we develop a first real-time inversion method for the inverse obstacle problem in the presence of nonlinear materials. The proposed method is intendend for all problems governed by the quasilinear Laplace equation, i.e. static problems involving nonlinear materials. In this paper, we provide some preliminary results which give the foundation of our method and some extended numerical examples.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"6 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems 用于大规模逆问题的多层次维度独立似然信息 MCMC
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-05 DOI: 10.1088/1361-6420/ad1e2c
Tiangang Cui, Gianluca Detommaso, Robert Scheichl
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui et al 2016) and the multilevel MCMC (Dodwell et al 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al 2014)—which involves a number of forward and adjoint model simulations—to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh–Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
我们提出了一种与维度无关的似然信息(DILI)MCMC(Cui 等人,2016 年)和多级 MCMC(Dodwell 等人,2015 年)的非难整合,以探索后验分布的层次结构。这种整合具有几个优势:首先,DILI-MCMC 采用内在似然信息子空间(LIS)(Cui 等人,2014 年)--其中涉及大量前向和邻接模型模拟--来设计加速算子加权建议。通过利用离散参数和离散前向模型的多层次结构,我们设计了一种 Rayleigh-Ritz 程序,以显著减少构建 LIS 和使用 DILI 建议的计算量。其次,由此产生的 DILI-MCMC 可以大幅提高各层次 MCMC 的采样效率,从而在 CPU 时间固定的情况下降低多层次算法的积分误差。数值结果证实了多级 DILI 方法提高了计算效率。
{"title":"Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems","authors":"Tiangang Cui, Gianluca Detommaso, Robert Scheichl","doi":"10.1088/1361-6420/ad1e2c","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1e2c","url":null,"abstract":"We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui <italic toggle=\"yes\">et al</italic> 2016) and the multilevel MCMC (Dodwell <italic toggle=\"yes\">et al</italic> 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic <italic toggle=\"yes\">likelihood-informed subspace</italic> (LIS) (Cui <italic toggle=\"yes\">et al</italic> 2014)—which involves a number of forward and adjoint model simulations—to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a <italic toggle=\"yes\">Rayleigh–Ritz procedure</italic> to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"69 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fourier series-based approximation of time-varying parameters in ordinary differential equations 基于傅里叶级数的常微分方程时变参数近似法
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-02-01 DOI: 10.1088/1361-6420/ad1fe5
Anna Fitzpatrick, Molly Folino, Andrea Arnold
Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters (TVPs) in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic TVPs of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions.
现实世界中许多使用微分方程建模的系统都涉及未知或不确定参数。在这种情况下,解决参数估计逆问题的标准方法通常侧重于估计常数;然而,在没有已知演化模型的情况下,一些不可观测的系统参数可能会随时间变化。在这项工作中,我们受傅立叶级数的启发,提出了一种新的近似方法,用于估计以常微分方程建模的确定性动态系统中的时变参数(TVPs)。我们将集合卡尔曼滤波与基于傅立叶级数的近似模型结合使用,详细介绍了两种可能的实施方案,用于在对系统状态进行噪声观测的情况下顺序更新时变参数估计。我们通过几个使用受迫谐波振荡器的计算实例,展示了所提方法在估计周期参数(包括已知和未知周期)以及不同形式的非周期性 TVP 方面的能力。结果强调了近似模型项的频率和数量对时变参数估计和相应动力系统预测的重要性。
{"title":"Fourier series-based approximation of time-varying parameters in ordinary differential equations","authors":"Anna Fitzpatrick, Molly Folino, Andrea Arnold","doi":"10.1088/1361-6420/ad1fe5","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1fe5","url":null,"abstract":"Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters (TVPs) in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic TVPs of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"23 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
V-line 2-tensor tomography in the plane 平面 V 线 2 张量断层扫描
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-31 DOI: 10.1088/1361-6420/ad1f83
Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar
In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in R2. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.
本文介绍并研究了定义在 R2 中对称 2 张量场上的各种 V 线变换(VLT)。我们感兴趣的算子包括纵向、横向和混合 VLT、它们的积分矩以及星变换。除星形变换外,所有这些算子都是对破碎射线轨迹的自然概括,而破碎射线轨迹是为直线积分路径定义的相应概念。我们描述了 VLT 的内核特征,并推导出从这些变换的各种组合中重建张量场的精确公式。张量场的星形变换是之前研究过的向量场和标量场(函数)相应概念的扩展。我们描述了对称 2 张量场上星形变换的所有注入配置,并推导出该算子的精确闭式反演公式。
{"title":"V-line 2-tensor tomography in the plane","authors":"Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar","doi":"10.1088/1361-6420/ad1f83","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1f83","url":null,"abstract":"In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in <inline-formula>\u0000<tex-math><?CDATA $mathbb{R}^2$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\u0000<inline-graphic xlink:href=\"ipad1f83ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"8 2 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularization of the inverse Laplace transform by mollification 反拉普拉斯变换的规范化摩尔化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-16 DOI: 10.1088/1361-6420/ad1609
Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee
In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.
本文研究反拉普拉斯变换。我们首先推导出一个新的全局对数稳定性估计值,它表明反演是一个严重的问题。然后,我们提出了一种正则化方法,利用 "钝化 "概念计算反拉普拉斯变换。考虑到指数不稳定性,我们得出了正则化参数的选择标准。我们证明,通过取该参数的最优值,可以显著改善该方法的收敛性。最后,利用拉普拉斯变换的全态扩展,我们提出了一种新的基于 PDEs 的数值方法来计算解。我们通过几个数值示例证明了所提出的正则化方法的有效性。
{"title":"Regularization of the inverse Laplace transform by mollification","authors":"Pierre Maréchal, Faouzi Triki, Walter C Simo Tao Lee","doi":"10.1088/1361-6420/ad1609","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1609","url":null,"abstract":"In this paper we study the inverse Laplace transform. We first derive a new global logarithmic stability estimate that shows that the inversion is severely ill-posed. Then we propose a regularization method to compute the inverse Laplace transform using the concept of mollification. Taking into account the exponential instability we derive a criterion for selection of the regularization parameter. We show that by taking the optimal value of this parameter we improve significantly the convergence of the method. Finally, making use of the holomorphic extension of the Laplace transform, we suggest a new PDEs based numerical method for the computation of the solution. The effectiveness of the proposed regularization method is demonstrated through several numerical examples.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining a parabolic system by boundary observation of its non-negative solutions with biological applications 通过边界观测确定抛物线系统的非负解及生物应用
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-08 DOI: 10.1088/1361-6420/ad149f
Hongyu Liu, Catharine W K Lo
In this paper, we consider the inverse problem of determining some coefficients within a coupled nonlinear parabolic system, through boundary observation of its non-negative solutions. In the physical setup, the non-negative solutions represent certain probability densities in different contexts. We innovate the successive linearisation method by further developing a high-order variation scheme which can both ensure the positivity of the solutions and effectively tackle the nonlinear inverse problem. This enables us to establish several novel unique identifiability results for the inverse problem in a rather general setup. For a theoretical perspective, our study addresses an important topic in partial differential equation (PDE) analysis on how to characterise the function spaces generated by the products of non-positive solutions of parabolic PDEs. As a typical and practically interesting application, we apply our general results to inverse problems for ecological population models, where the positive solutions signify the population densities.
在本文中,我们考虑的逆问题是,通过对非负解的边界观测,确定耦合非线性抛物线系统中的某些系数。在物理设置中,非负解代表了不同情况下的某些概率密度。我们创新了连续线性化方法,进一步开发了一种高阶变化方案,既能确保解的正向性,又能有效解决非线性逆问题。这使我们能够在一个相当普遍的设置中为逆问题建立几个新颖独特的可识别性结果。从理论角度看,我们的研究涉及偏微分方程(PDE)分析中的一个重要课题,即如何表征抛物线 PDE 非正解的乘积所生成的函数空间。作为一个典型和实际有趣的应用,我们将我们的一般结果应用于生态种群模型的逆问题,其中正解表示种群密度。
{"title":"Determining a parabolic system by boundary observation of its non-negative solutions with biological applications","authors":"Hongyu Liu, Catharine W K Lo","doi":"10.1088/1361-6420/ad149f","DOIUrl":"https://doi.org/10.1088/1361-6420/ad149f","url":null,"abstract":"In this paper, we consider the inverse problem of determining some coefficients within a coupled nonlinear parabolic system, through boundary observation of its non-negative solutions. In the physical setup, the non-negative solutions represent certain probability densities in different contexts. We innovate the successive linearisation method by further developing a high-order variation scheme which can both ensure the positivity of the solutions and effectively tackle the nonlinear inverse problem. This enables us to establish several novel unique identifiability results for the inverse problem in a rather general setup. For a theoretical perspective, our study addresses an important topic in partial differential equation (PDE) analysis on how to characterise the function spaces generated by the products of non-positive solutions of parabolic PDEs. As a typical and practically interesting application, we apply our general results to inverse problems for ecological population models, where the positive solutions signify the population densities.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep unfolding as iterative regularization for imaging inverse problems 深度展开作为成像逆问题的迭代正则化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2024-01-03 DOI: 10.1088/1361-6420/ad1a3c
Zhuoxu Cui, Qingyong Zhu, Jing Cheng, Bo Zhang, Dong Liang
Deep unfolding methods have gained significant popularity in the field of inverse problems as they have driven the design of deep neural networks (DNNs) using iterative algorithms. In contrast to general DNNs, unfolding methods offer improved interpretability and performance. However, their theoretical stability or regularity in solving inverse problems remains subject to certain limitations. To address this, we reevaluate unfolded DNNs and observe that their algorithmically-driven cascading structure exhibits a closer resemblance to iterative regularization. Recognizing this, we propose a modified training approach and configure termination criteria for unfolded DNNs, thereby establishing the unfolding method as an iterative regularization technique. Specifically, our method involves the joint learning of a convex penalty function using an input-convex neural network (ICNN) to quantify distance to a real data manifold. Then, we train a DNN unfolded from the proximal gradient descent algorithm, incorporating this learned penalty. Additionally, we introduce a new termination criterion for the unfolded DNN. Under the assumption that the real data manifold intersects the solutions of the inverse problem with a unique real solution, even when measurements contain perturbations, we provide a theoretical proof of the stable convergence of the unfolded DNN to this solution. Furthermore, we demonstrate with an example of MRI reconstruction that the proposed method outperforms original unfolding methods and traditional regularization methods in terms of reconstruction quality, stability, and convergence speed.
深度展开方法在逆问题领域大受欢迎,因为它们推动了使用迭代算法的深度神经网络(DNN)的设计。与一般的 DNNs 相比,展开方法具有更好的可解释性和性能。然而,它们在解决逆问题时的理论稳定性或规律性仍然受到某些限制。为了解决这个问题,我们重新评估了展开 DNN,发现其算法驱动的级联结构与迭代正则化更为相似。认识到这一点后,我们提出了一种改进的训练方法,并为展开 DNN 配置了终止标准,从而将展开方法确立为一种迭代正则化技术。具体来说,我们的方法涉及使用输入-凸神经网络(ICNN)联合学习凸惩罚函数,以量化与真实数据流形的距离。然后,我们通过近似梯度下降算法,结合学习到的惩罚函数,训练一个展开的 DNN。此外,我们还为展开的 DNN 引入了一个新的终止准则。假设真实数据流形与逆问题的解相交,即使测量包含扰动,也有唯一的真实解,我们从理论上证明了展开 DNN 对该解的稳定收敛。此外,我们还以核磁共振成像重建为例证明,所提出的方法在重建质量、稳定性和收敛速度方面都优于原始的展开方法和传统的正则化方法。
{"title":"Deep unfolding as iterative regularization for imaging inverse problems","authors":"Zhuoxu Cui, Qingyong Zhu, Jing Cheng, Bo Zhang, Dong Liang","doi":"10.1088/1361-6420/ad1a3c","DOIUrl":"https://doi.org/10.1088/1361-6420/ad1a3c","url":null,"abstract":"\u0000 Deep unfolding methods have gained significant popularity in the field of inverse problems as they have driven the design of deep neural networks (DNNs) using iterative algorithms. In contrast to general DNNs, unfolding methods offer improved interpretability and performance. However, their theoretical stability or regularity in solving inverse problems remains subject to certain limitations. To address this, we reevaluate unfolded DNNs and observe that their algorithmically-driven cascading structure exhibits a closer resemblance to iterative regularization. Recognizing this, we propose a modified training approach and configure termination criteria for unfolded DNNs, thereby establishing the unfolding method as an iterative regularization technique. Specifically, our method involves the joint learning of a convex penalty function using an input-convex neural network (ICNN) to quantify distance to a real data manifold. Then, we train a DNN unfolded from the proximal gradient descent algorithm, incorporating this learned penalty. Additionally, we introduce a new termination criterion for the unfolded DNN. Under the assumption that the real data manifold intersects the solutions of the inverse problem with a unique real solution, even when measurements contain perturbations, we provide a theoretical proof of the stable convergence of the unfolded DNN to this solution. Furthermore, we demonstrate with an example of MRI reconstruction that the proposed method outperforms original unfolding methods and traditional regularization methods in terms of reconstruction quality, stability, and convergence speed.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"14 6","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical recovery of a time-dependent potential in subdiffusion * 次扩散中与时间相关的势的数值恢复 *
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-28 DOI: 10.1088/1361-6420/ad14a0
Bangti Jin, Kwancheol Shin, Zhi Zhou
In this work we investigate an inverse problem of recovering a time-dependent potential in a semilinear subdiffusion model from an integral measurement of the solution over the domain. The model involves the Djrbashian–Caputo fractional derivative in time. Theoretically, we prove a novel conditional Lipschitz stability result, and numerically, we develop an easy-to-implement fixed point iteration for recovering the unknown coefficient. In addition, we establish rigorous error bounds on the discrete approximation. These results are obtained by crucially using smoothing properties of the solution operators and suitable choice of a weighted Lp(0,T) norm. The efficiency and accuracy of the scheme are showcased on several numerical experiments in one- and two-dimensions.
在这项工作中,我们研究了一个逆问题,即从对域内溶液的积分测量中恢复半线性亚扩散模型中与时间相关的势。该模型涉及时间上的 Djrbashian-Caputo 分数导数。在理论上,我们证明了一个新颖的条件 Lipschitz 稳定性结果;在数值上,我们开发了一种易于实现的定点迭代方法,用于恢复未知系数。此外,我们还建立了离散近似的严格误差边界。这些结果主要是利用求解算子的平滑特性和适当选择加权 Lp(0,T) 准则得到的。该方案的效率和准确性在多个一维和二维数值实验中得到了展示。
{"title":"Numerical recovery of a time-dependent potential in subdiffusion *","authors":"Bangti Jin, Kwancheol Shin, Zhi Zhou","doi":"10.1088/1361-6420/ad14a0","DOIUrl":"https://doi.org/10.1088/1361-6420/ad14a0","url":null,"abstract":"In this work we investigate an inverse problem of recovering a time-dependent potential in a semilinear subdiffusion model from an integral measurement of the solution over the domain. The model involves the Djrbashian–Caputo fractional derivative in time. Theoretically, we prove a novel conditional Lipschitz stability result, and numerically, we develop an easy-to-implement fixed point iteration for recovering the unknown coefficient. In addition, we establish rigorous error bounds on the discrete approximation. These results are obtained by crucially using smoothing properties of the solution operators and suitable choice of a weighted <inline-formula>\u0000<tex-math><?CDATA $L^p(0,T)$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math>\u0000<inline-graphic xlink:href=\"ipad14a0ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> norm. The efficiency and accuracy of the scheme are showcased on several numerical experiments in one- and two-dimensions.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"30 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning 通过 SOLIT-Sharp Optimal Lepskiĭ-Inspired Tuning 在统计逆问题中实现自适应最小优化
IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2023-12-27 DOI: 10.1088/1361-6420/ad12e0
Housen Li, Frank Werner
We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form <inline-formula><tex-math><?CDATA $widehat f_alpha = q_alpha left(T,^*Tright)T,^*Y$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub><mml:mfenced close=")" open="("><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>T</mml:mi></mml:mrow></mml:mfenced><mml:msup><mml:mi>T</mml:mi><mml:mo>∗</mml:mo></mml:msup><mml:mi>Y</mml:mi></mml:math><inline-graphic xlink:href="ipad12e0ieqn1.gif" xlink:type="simple"></inline-graphic></inline-formula>, where <italic toggle="yes">Y</italic> is the available data, <italic toggle="yes">T</italic> the forward operator, <inline-formula><tex-math><?CDATA $left(q_alpharight)_{alpha in mathcal A}$?></tex-math><mml:math overflow="scroll"><mml:msub><mml:mfenced close=")" open="("><mml:msub><mml:mi>q</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:mfenced><mml:mrow><mml:mi>α</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mi>A</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:math><inline-graphic xlink:href="ipad12e0ieqn2.gif" xlink:type="simple"></inline-graphic></inline-formula> an ordered filter, and <italic toggle="yes">α</italic> > 0 a regularization parameter. Whenever such a method is used in practice, <italic toggle="yes">α</italic> has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible <italic toggle="yes">α</italic> in the sense that mean squared error (MSE) <inline-formula><tex-math><?CDATA $mathbb{E} [Vert widehat f_alpha - f^daggerVert^2]$?></tex-math><mml:math overflow="scroll"><mml:mrow><mml:mi mathvariant="double-struck">E</mml:mi></mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mo>∥</mml:mo><mml:msub><mml:mover><mml:mi>f</mml:mi><mml:mo>ˆ</mml:mo></mml:mover><mml:mi>α</mml:mi></mml:msub><mml:mo>−</mml:mo><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup><mml:mrow><mml:msup><mml:mo>∥</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:math><inline-graphic xlink:href="ipad12e0ieqn3.gif" xlink:type="simple"></inline-graphic></inline-formula> w.r.t. the true solution <inline-formula><tex-math><?CDATA $f^dagger$?></tex-math><mml:math overflow="scroll"><mml:msup><mml:mi>f</mml:mi><mml:mo>†</mml:mo></mml:msup></mml:math><inline-graphic xlink:href="ipad12e0ieqn4.gif" xlink:type="simple"></inline-graphic></inline-formula> is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an <italic toggle="yes">a posteriori</italic> parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on <italic toggle="yes">Y</italic> and the noise level <italic toggle="yes">σ</italic> as well as the operator <italic toggle="yes">T</italic> and th
我们考虑的是可分离希尔伯特空间中的统计线性逆问题和基于滤波器的重构方法,其形式为 fˆα=qαT∗TT∗Y,其中 Y 是可用数据,T 是前向算子,qαα∈A 是有序滤波器,α > 0 是正则化参数。无论何时在实践中使用这种方法,都必须适当地选择 α。通常情况下,我们的目标是找到或至少近似找到最佳的 α,即与真解 f† 的均方误差(MSE)E[∥fˆα-f†∥2]最小。在本文中,我们介绍了锐利最优 Lepskiĭ-Inspired Tuning (SOLIT) 方法,它产生了一种后验参数选择规则,确保了自适应最小收敛速率。它只取决于 Y 和噪声水平 σ 以及算子 T 和滤波器 qαα∈A,不需要根据问题调整其他参数。我们证明了一般情况下相应 MSE 的oracle 不等式,并推导出不同情况下的收敛率。通过仔细分析,我们发现就 MSE 收敛率的阶数而言,没有其他后验参数选择规则能产生更好的性能。特别是,我们的结果表明,在逆问题中,对 Lepskiĭ 型方法会导致对数因子损失的典型理解是错误的。此外,我们还通过仿真检验了 SOLIT 的经验性能。
{"title":"Adaptive minimax optimality in statistical inverse problems via SOLIT—Sharp Optimal Lepskiĭ-Inspired Tuning","authors":"Housen Li, Frank Werner","doi":"10.1088/1361-6420/ad12e0","DOIUrl":"https://doi.org/10.1088/1361-6420/ad12e0","url":null,"abstract":"We consider statistical linear inverse problems in separable Hilbert spaces and filter-based reconstruction methods of the form &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $widehat f_alpha = q_alpha left(T,^*Tright)T,^*Y$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;ˆ&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;q&lt;/mml:mi&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mo&gt;∗&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mfenced&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;T&lt;/mml:mi&gt;&lt;mml:mo&gt;∗&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mi&gt;Y&lt;/mml:mi&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn1.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt;, where &lt;italic toggle=\"yes\"&gt;Y&lt;/italic&gt; is the available data, &lt;italic toggle=\"yes\"&gt;T&lt;/italic&gt; the forward operator, &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $left(q_alpharight)_{alpha in mathcal A}$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msub&gt;&lt;mml:mfenced close=\")\" open=\"(\"&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;q&lt;/mml:mi&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;/mml:mfenced&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;mml:mo&gt;∈&lt;/mml:mo&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn2.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; an ordered filter, and &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; &gt; 0 a regularization parameter. Whenever such a method is used in practice, &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; has to be appropriately chosen. Typically, the aim is to find or at least approximate the best possible &lt;italic toggle=\"yes\"&gt;α&lt;/italic&gt; in the sense that mean squared error (MSE) &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $mathbb{E} [Vert widehat f_alpha - f^daggerVert^2]$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"double-struck\"&gt;E&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;[&lt;/mml:mo&gt;&lt;mml:mo&gt;∥&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mover&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;ˆ&lt;/mml:mo&gt;&lt;/mml:mover&gt;&lt;mml:mi&gt;α&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;−&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;†&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mo&gt;∥&lt;/mml:mo&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;]&lt;/mml:mo&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn3.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; w.r.t. the true solution &lt;inline-formula&gt;\u0000&lt;tex-math&gt;&lt;?CDATA $f^dagger$?&gt;&lt;/tex-math&gt;\u0000&lt;mml:math overflow=\"scroll\"&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;f&lt;/mml:mi&gt;&lt;mml:mo&gt;†&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;/mml:math&gt;\u0000&lt;inline-graphic xlink:href=\"ipad12e0ieqn4.gif\" xlink:type=\"simple\"&gt;&lt;/inline-graphic&gt;\u0000&lt;/inline-formula&gt; is minimized. In this paper, we introduce the Sharp Optimal Lepskiĭ-Inspired Tuning (SOLIT) method, which yields an &lt;italic toggle=\"yes\"&gt;a posteriori&lt;/italic&gt; parameter choice rule ensuring adaptive minimax rates of convergence. It depends only on &lt;italic toggle=\"yes\"&gt;Y&lt;/italic&gt; and the noise level &lt;italic toggle=\"yes\"&gt;σ&lt;/italic&gt; as well as the operator &lt;italic toggle=\"yes\"&gt;T&lt;/italic&gt; and th","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"43 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Inverse Problems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1