Pub Date : 2023-12-12DOI: 10.1088/1361-6420/ad10c8
Deyue Zhang, Yan Chang, Yukun Guo
A numerical method is developed for recovering both the source locations and the obstacle from the scattered Cauchy data of the time-harmonic acoustic field. First of all, the incident and scattered components are decomposed from the coupled Cauchy data by the representation of the single-layer potentials and the solution to the resulting linear integral system. As a consequence of this decomposition, the original problem of joint inversion is reformulated into two decoupled subproblems: an inverse source problem and an inverse obstacle scattering problem. Then, two sampling-type schemes are proposed to recover the shape of the obstacle and the source locations, respectively. The sampling methods rely on the specific indicator functions defined on target-oriented probing domains of circular shape. The error estimates of the decoupling procedure are established and the asymptotic behaviors of the indicator functions are analyzed. Extensive numerical experiments are also conducted to verify the performance of the sampling schemes.
{"title":"Jointly determining the point sources and obstacle from Cauchy data","authors":"Deyue Zhang, Yan Chang, Yukun Guo","doi":"10.1088/1361-6420/ad10c8","DOIUrl":"https://doi.org/10.1088/1361-6420/ad10c8","url":null,"abstract":"A numerical method is developed for recovering both the source locations and the obstacle from the scattered Cauchy data of the time-harmonic acoustic field. First of all, the incident and scattered components are decomposed from the coupled Cauchy data by the representation of the single-layer potentials and the solution to the resulting linear integral system. As a consequence of this decomposition, the original problem of joint inversion is reformulated into two decoupled subproblems: an inverse source problem and an inverse obstacle scattering problem. Then, two sampling-type schemes are proposed to recover the shape of the obstacle and the source locations, respectively. The sampling methods rely on the specific indicator functions defined on target-oriented probing domains of circular shape. The error estimates of the decoupling procedure are established and the asymptotic behaviors of the indicator functions are analyzed. Extensive numerical experiments are also conducted to verify the performance of the sampling schemes.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"6 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1088/1361-6420/ad149e
Ye Zhang, Chuchu Chen
The a posteriori stopping rule plays a significant role in the design of efficient stochastic algorithms for various tasks in computational mathematics, such as inverse problems, optimization, and machine learning. Through the lens of classical regularization theory, this paper describes a novel analysis of Morozov’s discrepancy principle for the stochastic generalized Landweber iteration and its continuous analog of generalized stochastic asymptotical regularization. Unlike existing results relating to convergence in probability, we prove the strong convergence of the regularization error using tools from stochastic analysis, namely the theory of martingales. Numerical experiments are conducted to verify the convergence of the discrepancy principle and demonstrate two new capabilities of stochastic generalized Landweber iteration, which should also be valid for other stochastic/statistical approaches: improved accuracy by selecting the optimal path and the identification of multi-solutions by clustering samples of obtained approximate solutions.
{"title":"Stochastic linear regularization methods: random discrepancy principle and applications","authors":"Ye Zhang, Chuchu Chen","doi":"10.1088/1361-6420/ad149e","DOIUrl":"https://doi.org/10.1088/1361-6420/ad149e","url":null,"abstract":"\u0000 The a posteriori stopping rule plays a significant role in the design of efficient stochastic algorithms for various tasks in computational mathematics, such as inverse problems, optimization, and machine learning. Through the lens of classical regularization theory, this paper describes a novel analysis of Morozov’s discrepancy principle for the stochastic generalized Landweber iteration and its continuous analog of generalized stochastic asymptotical regularization. Unlike existing results relating to convergence in probability, we prove the strong convergence of the regularization error using tools from stochastic analysis, namely the theory of martingales. Numerical experiments are conducted to verify the convergence of the discrepancy principle and demonstrate two new capabilities of stochastic generalized Landweber iteration, which should also be valid for other stochastic/statistical approaches: improved accuracy by selecting the optimal path and the identification of multi-solutions by clustering samples of obtained approximate solutions.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"15 11","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139009579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12DOI: 10.1088/1361-6420/ad14a1
Lorenzo Della Cioppa, Michela Tartaglione, Annalisa Pascarella, F. Pitolli
Electroencephalography (EEG) source imaging aims to reconstruct brain activity maps from the neuroelectric potential difference measured on the skull. To obtain the brain activity map, we need to solve an ill-posed and ill-conditioned inverse problem that requires regularization techniques to make the solution viable. When dealing with real-time applications, dimensionality reduction techniques can be used to reduce the computational load required to evaluate the numerical solution of the EEG inverse problem. To this end, in this paper we use the random dipole sampling method, in which a Monte Carlo technique is used to reduce the number of neural sources. This is equivalent to reducing the number of the unknowns in the inverse problem and can be seen as a first regularization step. Then, we solve the reduced EEG inverse problem with two popular inversion methods, the weighted Minimum Norm Estimate (wMNE) and the standardized LOw Resolution brain Electromagnetic TomogrAphy (sLORETA). The main result of this paper is the error estimates of the reconstructed activity map obtained with the randomized version of wMNE and sLORETA. Numerical experiments on synthetic EEG data demonstrate the effectiveness of the random dipole sampling method.
{"title":"Solution of the EEG inverse problem by random dipole sampling","authors":"Lorenzo Della Cioppa, Michela Tartaglione, Annalisa Pascarella, F. Pitolli","doi":"10.1088/1361-6420/ad14a1","DOIUrl":"https://doi.org/10.1088/1361-6420/ad14a1","url":null,"abstract":"\u0000 Electroencephalography (EEG) source imaging aims to reconstruct brain activity maps from the neuroelectric potential difference measured on the skull. To obtain the brain activity map, we need to solve an ill-posed and ill-conditioned inverse problem that requires regularization techniques to make the solution viable. When dealing with real-time applications, dimensionality reduction techniques can be used to reduce the computational load required to evaluate the numerical solution of the EEG inverse problem. To this end, in this paper we use the random dipole sampling method, in which a Monte Carlo technique is used to reduce the number of neural sources. This is equivalent to reducing the number of the unknowns in the inverse problem and can be seen as a first regularization step. Then, we solve the reduced EEG inverse problem with two popular inversion methods, the weighted Minimum Norm Estimate (wMNE) and the standardized LOw Resolution brain Electromagnetic TomogrAphy (sLORETA). The main result of this paper is the error estimates of the reconstructed activity map obtained with the randomized version of wMNE and sLORETA. Numerical experiments on synthetic EEG data demonstrate the effectiveness of the random dipole sampling method.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"80 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139008079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1088/1361-6420/ad0fad
Xiaofan Lu, Linan Zhang, Hongjin He
Automated model selection is an important application in science and engineering. In this work, we develop a learning approach for identifying structured dynamical systems from undersampled and noisy spatiotemporal data. The learning is performed by a sparse least-squares fitting over a large set of candidate functions via a nonconvex