This work explores the contribution of non-orthogonal multiple access (NOMA) signalling to improve some relevant metrics of a multibeam satellite downlink. Users are paired to exploit signal-to-noise ratio (SNR) imbalances coming from the coexistence of different types of terminals, and they can be flexibly allocated to the beams, thus relaxing the cell boundaries of the satellite footprint. Different practical considerations are accommodated, such as a spatially non-uniform traffic demand, non-linear amplification effects and the use of the DVB-S2X air interface. Results show how higher traffic volumes can be channelized by the satellite, thanks to the additional bit rates which are generated for the strong users under the superposition of signals, with carefully designed power levels for DVB-S2X modulation and coding schemes in the presence of non-linear impairments.
{"title":"Contribution of non-orthogonal multiple access signalling to practical multibeam satellite deployments","authors":"Tomás Ramírez, Carlos Mosquera","doi":"10.1002/sat.1492","DOIUrl":"10.1002/sat.1492","url":null,"abstract":"<p>This work explores the contribution of non-orthogonal multiple access (NOMA) signalling to improve some relevant metrics of a multibeam satellite downlink. Users are paired to exploit signal-to-noise ratio (SNR) imbalances coming from the coexistence of different types of terminals, and they can be flexibly allocated to the beams, thus relaxing the cell boundaries of the satellite footprint. Different practical considerations are accommodated, such as a spatially non-uniform traffic demand, non-linear amplification effects and the use of the DVB-S2X air interface. Results show how higher traffic volumes can be channelized by the satellite, thanks to the additional bit rates which are generated for the strong users under the superposition of signals, with carefully designed power levels for DVB-S2X modulation and coding schemes in the presence of non-linear impairments.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"44 1","pages":"73-88"},"PeriodicalIF":1.6,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41527470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Rabih Dakkak, Daniel Gaetano Riviello, Alessandro Guidotti, Alessandro Vanelli-Coralli
Satellite communication systems will be a key component of 5G and 6G networks to achieve the goal of providing unlimited and ubiquitous communications and deploying smart and sustainable networks. To meet the ever-increasing demand for higher throughput in 5G and beyond, aggressive frequency reuse schemes (i.e., full frequency reuse), combined with digital beamforming techniques to cope with the massive co-channel interference, are recognized as a key solution. Aimed at (i) eliminating the joint optimization problem among the beamforming vectors of all users, (ii) splitting it into distinct ones, and (iii) finding a closed-form solution, we propose a beamforming algorithm based on maximizing the users' signal-to-leakage-and-noise ratio served by a low Earth orbit satellite. We investigate and assess the performance of several beamforming algorithms, including both those based on channel state information at the transmitter, that is, minimum mean square error and zero forcing, and those only requiring the users' locations, that is, switchable multi-beam. Through a detailed numerical analysis, we provide a thorough comparison of the performance in terms of per-user achievable spectral efficiency of the aforementioned beamforming schemes, and we show that the proposed signal to-leakage-plus-noise ratio beamforming technique is able to outperform both minimum mean square error and multi-beam schemes in the presented satellite communication scenario.
{"title":"Evaluation of multi-user multiple-input multiple-output digital beamforming algorithms in B5G/6G low Earth orbit satellite systems","authors":"M. Rabih Dakkak, Daniel Gaetano Riviello, Alessandro Guidotti, Alessandro Vanelli-Coralli","doi":"10.1002/sat.1493","DOIUrl":"10.1002/sat.1493","url":null,"abstract":"<p>Satellite communication systems will be a key component of 5G and 6G networks to achieve the goal of providing unlimited and ubiquitous communications and deploying smart and sustainable networks. To meet the ever-increasing demand for higher throughput in 5G and beyond, aggressive frequency reuse schemes (i.e., full frequency reuse), combined with digital beamforming techniques to cope with the massive co-channel interference, are recognized as a key solution. Aimed at (i) eliminating the joint optimization problem among the beamforming vectors of all users, (ii) splitting it into distinct ones, and (iii) finding a closed-form solution, we propose a beamforming algorithm based on maximizing the users' signal-to-leakage-and-noise ratio served by a low Earth orbit satellite. We investigate and assess the performance of several beamforming algorithms, including both those based on channel state information at the transmitter, that is, minimum mean square error and zero forcing, and those only requiring the users' locations, that is, switchable multi-beam. Through a detailed numerical analysis, we provide a thorough comparison of the performance in terms of per-user achievable spectral efficiency of the aforementioned beamforming schemes, and we show that the proposed signal to-leakage-plus-noise ratio beamforming technique is able to outperform both minimum mean square error and multi-beam schemes in the presented satellite communication scenario.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"44 1","pages":"17-33"},"PeriodicalIF":1.6,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45817637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}