Pub Date : 2024-03-14DOI: 10.1007/s00170-024-13274-8
Pejman Ebrahimzadeh, Luis Borja Peral Martínez, Inés Fernández Pariente, Francisco Javier Belzunce Varela
The study explores the application of shot-peening (SP) on AISI 316L stainless steel to enhance mechanical properties. It focuses on optimizing SP parameters—coverage percentage (C) ranging from 100 to 4500% and shot velocity (P) between 1.5 and 6 bar while other SP factors were maintained constant—using response surface methodology (RSM) entails creating a mathematical model to analyze data accurately. This model explores interactions among initial configurations to optimize mechanical properties and enhance the performance of the current steel after the SP surface treatment. These properties evaluated include cumulative compressive residual stress (CCRS), cumulative full-width at half-maximum (CFWHM) newfangled factors for researchers to analyze, austenite transformation to martensite, micro-hardness, and surface roughness. Through the RSM model, increasing P leads to an increase in all response values in each one, except for microhardness, which registers a minor decrease from 1.5 to 6 bar. Elevating C promotes responses, excluding roughness, decreasing until 2300% and reaching its minimum. At 4500% C, roughness peaks, exceeding the initial amount at 100% C. In the optimization section, it seeks a passable value for each parameter. Desired responses involve maximizing CCRS, CFWHM, and micro-hardness while minimizing martensite and roughness. For interactions in all responses, at P = 6 bar and C = 1860%, values for each response were CCRS = 218 (MPa.mm), CFWHM = 0.6871 (°.mm), micro-hardness = 394 (HV), martensite conversion = 48 (%), and roughness = 5.45 (µm). Response reassessment in the real tests by comparison RSM model in optimal points showed a minimum error of 4.05 for roughness and a maximum error of 12.09 for CCRS. Other responses contained errors between this spectrum.
{"title":"Optimization of shot-peening parameters for steel AISI 316L via response surface methodology (RSM): introducing two novel mechanical aspects","authors":"Pejman Ebrahimzadeh, Luis Borja Peral Martínez, Inés Fernández Pariente, Francisco Javier Belzunce Varela","doi":"10.1007/s00170-024-13274-8","DOIUrl":"https://doi.org/10.1007/s00170-024-13274-8","url":null,"abstract":"<p>The study explores the application of shot-peening (SP) on AISI 316L stainless steel to enhance mechanical properties. It focuses on optimizing SP parameters—coverage percentage (C) ranging from 100 to 4500% and shot velocity (P) between 1.5 and 6 bar while other SP factors were maintained constant—using response surface methodology (RSM) entails creating a mathematical model to analyze data accurately. This model explores interactions among initial configurations to optimize mechanical properties and enhance the performance of the current steel after the SP surface treatment. These properties evaluated include cumulative compressive residual stress (CCRS), cumulative full-width at half-maximum (CFWHM) newfangled factors for researchers to analyze, austenite transformation to martensite, micro-hardness, and surface roughness. Through the RSM model, increasing <i>P</i> leads to an increase in all response values in each one, except for microhardness, which registers a minor decrease from 1.5 to 6 bar. Elevating <i>C</i> promotes responses, excluding roughness, decreasing until 2300% and reaching its minimum. At 4500% <i>C</i>, roughness peaks, exceeding the initial amount at 100% <i>C</i>. In the optimization section, it seeks a passable value for each parameter. Desired responses involve maximizing CCRS, CFWHM, and micro-hardness while minimizing martensite and roughness. For interactions in all responses, at <i>P</i> = 6 bar and <i>C</i> = 1860%, values for each response were CCRS = 218 (MPa.mm), CFWHM = 0.6871 (°.mm), micro-hardness = 394 (HV), martensite conversion = 48 (%), and roughness = 5.45 (µm). Response reassessment in the real tests by comparison RSM model in optimal points showed a minimum error of 4.05 for roughness and a maximum error of 12.09 for CCRS. Other responses contained errors between this spectrum.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"17 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1007/s00170-024-13402-4
J. Antonio Banderas-Hernández, Carlos Rubio-González, Arturo Gómez-Ortega, Santiago Flores-García, Carlos Elí Martínez-Pérez
Additive manufacturing (AM) has shown advantages to fabricate complex components in an efficient way. However, it has some limitations related to imperfections on the as-built parts that may limit its mechanical behavior and performance. The aim of this paper is to investigate the effect of laser shock peening (LSP) as a post-processing technique of components produced by AM. Porosity, microstructure, residual stresses, and fatigue life of Inconel 718 samples manufactured by laser powder bed fusion (LPBF) and then treated by LSP have been evaluated. For the laser shock peening (LSP) treatment, a Nd:YAG pulsed laser operating at 10 Hz with 1064 nm of wavelength was used; pulse density was 2500 pulses/cm2. The LSP setup was the waterjet arrangement without protective coating. Residual stress distribution as a function of depth was determined by the hole-drilling method. Fatigue specimens were LSP treated on both sides and then cyclic loading was applied with R = 0.1. Residual stress profiles of as-built specimens showed tensile residual stresses while specimens with LSP exhibited compressive residual stresses. Fatigue life in specimens with stress relief heat treatment plus LSP showed an increase of 18–22% with respect to that of as-built specimens. Porosity levels were lower than 1% in the tested specimens, while surface microhardness increased due to LSP. It is shown that LSP is a viable alternative to improve the performance of IN718 components processed with AM.