首页 > 最新文献

International Journal of Advanced Manufacturing Technology最新文献

英文 中文
Performance assessment of mahogany oil-based cutting fluid in turning AISI 304 steel alloy 红木油基切削液在车削 AISI 304 钢合金时的性能评估
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-20 DOI: 10.1007/s00170-024-13374-5
Joseph Abutu, Paul Akene, Kabiru Musa, Emmanuel Chukwudi Onunze, Sunday Albert Lawal

In this study, mahogany seed oil was sourced and prepared, and the performances were compared with mineral oils. The extracted oil was characterized to recognize properties related to pyto-chemical, physio-chemical lubricity and thereafter used along with mineral oil for the formulation of cutting fluid using emulsifying agent, anti-corrosive agent, biocides, and anti-foam agent as additives. These additives were added to oil and water by using 24 full factorial design to achieve the optimal combination. In addition, central composite design (CCD) was adopted for the experimental design, and the performance of the mahogany oil-based cutting fluid (MBCF) was investigated in terms of surface finish, cutting temperature, material removal rate, machine sound level, and chips formation and, thereafter, compared with conventional mineral oil (CBCF) in turning of AISI 304 steel under flood cooling technique. Experimental data were analyzed using analysis of variance (ANOVA) and grey relational analysis (GRA). The experimental findings showed that optimal multi-response performance of the MBCF can be achieved using spindle speed, feed rate and depth of cut of 1100 rev/min, 0.27 mm/rev, and 0.23 mm, respectively, while optimal multi-response performance of CBCF can be achieved with spindle speed, feed rate, and depth of cut of 900 rev/min, 0.62 mm/rev, and 0.23 mm, respectively.

在这项研究中,我们采集并制备了桃花心木种子油,并将其性能与矿物油进行了比较。对提取的油进行了表征,以识别与热化学和物理化学润滑性相关的特性,然后使用乳化剂、抗腐蚀剂、杀菌剂和消泡剂作为添加剂,与矿物油一起用于配制切削液。采用 24 全因子设计将这些添加剂添加到油和水中,以获得最佳组合。此外,实验设计还采用了中心复合设计(CCD),并从表面光洁度、切削温度、材料去除率、机器声级和切屑形成等方面考察了红木油基切削液(MBCF)的性能,随后将其与传统矿物油(CBCF)进行了比较,以在洪流冷却技术下车削 AISI 304 钢。实验数据采用方差分析(ANOVA)和灰色关系分析(GRA)进行分析。实验结果表明,主轴转速、进给速度和切削深度分别为 1100 转/分钟、0.27 毫米/转和 0.23 毫米时,MBCF 可达到最佳多响应性能;而主轴转速、进给速度和切削深度分别为 900 转/分钟、0.62 毫米/转和 0.23 毫米时,CBCF 可达到最佳多响应性能。
{"title":"Performance assessment of mahogany oil-based cutting fluid in turning AISI 304 steel alloy","authors":"Joseph Abutu, Paul Akene, Kabiru Musa, Emmanuel Chukwudi Onunze, Sunday Albert Lawal","doi":"10.1007/s00170-024-13374-5","DOIUrl":"https://doi.org/10.1007/s00170-024-13374-5","url":null,"abstract":"<p>In this study, mahogany seed oil was sourced and prepared, and the performances were compared with mineral oils. The extracted oil was characterized to recognize properties related to pyto-chemical, physio-chemical lubricity and thereafter used along with mineral oil for the formulation of cutting fluid using emulsifying agent, anti-corrosive agent, biocides, and anti-foam agent as additives. These additives were added to oil and water by using 2<sup>4</sup> full factorial design to achieve the optimal combination. In addition, central composite design (CCD) was adopted for the experimental design, and the performance of the mahogany oil-based cutting fluid (MBCF) was investigated in terms of surface finish, cutting temperature, material removal rate, machine sound level, and chips formation and, thereafter, compared with conventional mineral oil (CBCF) in turning of AISI 304 steel under flood cooling technique. Experimental data were analyzed using analysis of variance (ANOVA) and grey relational analysis (GRA). The experimental findings showed that optimal multi-response performance of the MBCF can be achieved using spindle speed, feed rate and depth of cut of 1100 rev/min, 0.27 mm/rev, and 0.23 mm, respectively, while optimal multi-response performance of CBCF can be achieved with spindle speed, feed rate, and depth of cut of 900 rev/min, 0.62 mm/rev, and 0.23 mm, respectively.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"4 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility study of using digital twins for conceptual design of air-quenching processes 利用数字双胞胎进行空气淬火工艺概念设计的可行性研究
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-20 DOI: 10.1007/s00170-024-13444-8
Zhuming Bi, Donald Mueller, Aki Mikkola

The concepts of digital twins (DTs) have been widely studied to predict system performance, shorten design cycles, and implement preventive maintenance, but mainly, in large-scale enterprises. It is extremely beneficial to the whole manufacturing sector, since DTs can be readily implemented in small and medium-sized enterprises (SMEs) with basic computer aided engineering (CAE) tools; over 95% enterprises are SMEs. This paper aims to prove the feasibility of using commercial CAE tools, such as SolidWorks Simulation, to design air-quenching processes for SMEs. SMEs can benefit to explore new business opportunities, reduce system design cycle, and improve existing air-quenching processes. To our knowledge, it will be the first work of adopting DTs in conceptual design of an air-quenching process in sense that (1) the need of simulating an air-quenching process before physical implementation is discussed thoroughly; (2) heat transfer processes are classified, governing mathematical models for various heat transfer behaviors are introduced to present an evaluation model of a heat transfer process; (3) main process variables of air-quenching are identified; (4) a DT of an air-quenching process is developed and simulated to verify the capabilities of commercial SolidWorks Simulation; (5) case studies are developed to show how a CAE tool can be used in DTs. The findings from the reported work are summarized with a debrief of our future work.

数字孪生(DTs)的概念已在预测系统性能、缩短设计周期和实施预防性维护方面得到广泛研究,但主要是在大型企业中。但数字孪生(DTs)的概念已被广泛研究,但主要是在大型企业中应用,而在中小型企业(SMEs)中,只要有基本的计算机辅助工程(CAE)工具,就可以轻松实现数字孪生(DTs),这对整个制造业都极为有利;超过 95% 的企业都是中小型企业。本文旨在证明使用商业 CAE 工具(如 SolidWorks 仿真)设计中小型企业空气淬火工艺的可行性。中小型企业可以从中获益,开拓新的商机,缩短系统设计周期,改进现有气淬工艺。据我们所知,这将是首次在气淬工艺概念设计中采用 DTs 的工作,其意义在于:(1)深入讨论了在物理实施之前模拟气淬工艺的必要性;(2)对传热工艺进行了分类,引入了各种传热行为的支配数学模型,从而提出了传热工艺的评估模型;(3) 确定空气淬火的主要过程变量;(4) 开发并模拟空气淬火过程的 DT,以验证商用 SolidWorks 仿真的能力;(5) 开展案例研究,以说明如何在 DT 中使用 CAE 工具。在总结报告工作成果的同时,还对我们未来的工作进行了汇报。
{"title":"Feasibility study of using digital twins for conceptual design of air-quenching processes","authors":"Zhuming Bi, Donald Mueller, Aki Mikkola","doi":"10.1007/s00170-024-13444-8","DOIUrl":"https://doi.org/10.1007/s00170-024-13444-8","url":null,"abstract":"<p>The concepts of <i>digital twins</i> (DTs) have been widely studied to predict system performance, shorten design cycles, and implement preventive maintenance, but mainly, in large-scale enterprises. It is extremely beneficial to the whole manufacturing sector, since DTs can be readily implemented in small and medium-sized enterprises (SMEs) with basic <i>computer aided engineering</i> (CAE) tools; over 95% enterprises are SMEs. This paper aims to prove the feasibility of using commercial CAE tools, such as SolidWorks Simulation, to design air-quenching processes for SMEs. SMEs can benefit to explore new business opportunities, reduce system design cycle, and improve existing air-quenching processes. To our knowledge, it will be the first work of adopting DTs in conceptual design of an air-quenching process in sense that (1) the need of simulating an air-quenching process before physical implementation is discussed thoroughly; (2) heat transfer processes are classified, governing mathematical models for various heat transfer behaviors are introduced to present an evaluation model of a heat transfer process; (3) main process variables of air-quenching are identified; (4) a DT of an air-quenching process is developed and simulated to verify the capabilities of commercial SolidWorks Simulation; (5) case studies are developed to show how a CAE tool can be used in DTs. The findings from the reported work are summarized with a debrief of our future work.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on coated wiper insert for milling of compacted graphite iron 用于铣削压实石墨铁的涂层刮刀片研究
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-20 DOI: 10.1007/s00170-024-13453-7
Jun Tan, Jianping Wang, Xiuqing Hao, Xiaonan Ai, Guoqiang Guo, Lu Lu, Zhenming Yang, Liang Li, Ning He

Compacted graphite iron (CGI) is increasingly used in industrial production due to its excellent mechanical property, especially in the field of high-performance automotive engine manufacturing, and has become a substitute for gray cast iron (GCI). However, the hard-to-machine problem caused by its excellent physical properties was the main issue affecting the surface quality of the CGI workpiece. As a new type of tool, the wiper insert could effectively improve the surface quality. In order to develop a long lifespan and high-stability wiper insert tool for CGI milling, this study conducted a series of experiments, including tool design and simulation, coating preparation and testing, and tool cutting performance testing. In the optimization of simulation analysis of tool geometric parameters, it was found that the numerical value of curved cutting-edge radius had a more significant impact on the cutting performance of wiper insert. In the coating test, AlCrN-coated wiper insert C with a coating thickness of 2.84 µm had the best load bearing and fracture toughness performance in the coating mechanic test and had the best coating bonding performance in the scratch test. In the milling experiment with a cutting speed of 125.7 mm/min, a feed rate of 0.15 mm/r, and a cutting depth of 0.5 mm, the coated wiper insert C had the longest tool life and the best machined surface quality of the workpiece. Compared to other coated tools, the tool life was extended by at least 15.7%, and the effective cutting area was increased by 20%, which means it was the most suitable tool for machining CGI.

压实石墨铸铁(CGI)因其优异的机械性能,在工业生产中的应用日益广泛,尤其是在高性能汽车发动机制造领域,已成为灰铸铁(GCI)的替代品。然而,其优异的物理性能所带来的难加工问题是影响 CGI 工件表面质量的主要问题。作为一种新型工具,雨刷刀片可有效改善表面质量。为了开发出一种长寿命、高稳定性的用于 CGI 铣削的雨刮刀片刀具,本研究进行了一系列实验,包括刀具设计与仿真、涂层制备与测试、刀具切削性能测试等。在刀具几何参数的优化仿真分析中发现,曲面切削刃半径数值对刮板刀片切削性能的影响较为显著。在涂层试验中,涂层厚度为 2.84 µm 的 AlCrN 涂层刮刀片 C 在涂层力学试验中的承载性能和断裂韧性最好,在划痕试验中的涂层结合性能最好。在切削速度为 125.7 mm/min、进给速度为 0.15 mm/r、切削深度为 0.5 mm 的铣削实验中,涂层刮刀片 C 的刀具寿命最长,工件的加工表面质量最好。与其他涂层刀具相比,刀具寿命至少延长了 15.7%,有效切削面积增加了 20%,这意味着它是最适合加工 CGI 的刀具。
{"title":"Research on coated wiper insert for milling of compacted graphite iron","authors":"Jun Tan, Jianping Wang, Xiuqing Hao, Xiaonan Ai, Guoqiang Guo, Lu Lu, Zhenming Yang, Liang Li, Ning He","doi":"10.1007/s00170-024-13453-7","DOIUrl":"https://doi.org/10.1007/s00170-024-13453-7","url":null,"abstract":"<p>Compacted graphite iron (CGI) is increasingly used in industrial production due to its excellent mechanical property, especially in the field of high-performance automotive engine manufacturing, and has become a substitute for gray cast iron (GCI). However, the hard-to-machine problem caused by its excellent physical properties was the main issue affecting the surface quality of the CGI workpiece. As a new type of tool, the wiper insert could effectively improve the surface quality. In order to develop a long lifespan and high-stability wiper insert tool for CGI milling, this study conducted a series of experiments, including tool design and simulation, coating preparation and testing, and tool cutting performance testing. In the optimization of simulation analysis of tool geometric parameters, it was found that the numerical value of curved cutting-edge radius had a more significant impact on the cutting performance of wiper insert. In the coating test, AlCrN-coated wiper insert C with a coating thickness of 2.84 µm had the best load bearing and fracture toughness performance in the coating mechanic test and had the best coating bonding performance in the scratch test. In the milling experiment with a cutting speed of 125.7 mm/min, a feed rate of 0.15 mm/r, and a cutting depth of 0.5 mm, the coated wiper insert C had the longest tool life and the best machined surface quality of the workpiece. Compared to other coated tools, the tool life was extended by at least 15.7%, and the effective cutting area was increased by 20%, which means it was the most suitable tool for machining CGI.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal error modeling of electric spindles based on cuckoo algorithm optimized Elman network 基于杜鹃算法优化埃尔曼网络的电主轴热误差建模
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-20 DOI: 10.1007/s00170-024-13327-y
Ye Dai, Xin Wang, Zhaolong Li, Sai He, Baolei Yu, Xingwen Zhou

In order to improve the accuracy of the thermal error model of the electric spindle, a thermal error modeling method based on the optimized Elman neural network using the cuckoo algorithm is proposed. To analyze the thermal behavior of the electric spindle, an ANSYS analysis approach is utilized to create a temperature map. Based on the simulation analysis outcomes, an experimental platform is established to gather temperature data and thermal displacement data. The electric spindle temperature is optimized through the utilization of fuzzy cluster analysis and the Spearman rank correlation coefficient method in combination. The comparison between the established model and the Elman model and the GA-Elman model proves that the CS-Elman model has good prediction accuracy and stability.

为了提高电主轴热误差模型的精度,提出了一种基于优化 Elman 神经网络的热误差建模方法,该方法使用杜鹃算法。为了分析电主轴的热行为,利用 ANSYS 分析方法创建了温度图。根据仿真分析结果,建立了一个实验平台来收集温度数据和热位移数据。结合使用模糊聚类分析和斯皮尔曼等级相关系数法,对电主轴温度进行了优化。通过将建立的模型与 Elman 模型和 GA-Elman 模型进行比较,证明 CS-Elman 模型具有良好的预测精度和稳定性。
{"title":"Thermal error modeling of electric spindles based on cuckoo algorithm optimized Elman network","authors":"Ye Dai, Xin Wang, Zhaolong Li, Sai He, Baolei Yu, Xingwen Zhou","doi":"10.1007/s00170-024-13327-y","DOIUrl":"https://doi.org/10.1007/s00170-024-13327-y","url":null,"abstract":"<p>In order to improve the accuracy of the thermal error model of the electric spindle, a thermal error modeling method based on the optimized Elman neural network using the cuckoo algorithm is proposed. To analyze the thermal behavior of the electric spindle, an ANSYS analysis approach is utilized to create a temperature map. Based on the simulation analysis outcomes, an experimental platform is established to gather temperature data and thermal displacement data. The electric spindle temperature is optimized through the utilization of fuzzy cluster analysis and the Spearman rank correlation coefficient method in combination. The comparison between the established model and the Elman model and the GA-Elman model proves that the CS-Elman model has good prediction accuracy and stability.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"85 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tool path optimization with stability constraints for ball-end milling cutters based on frequency domain controlling strategy 基于频域控制策略的带稳定性约束的球头铣刀刀具路径优化
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-20 DOI: 10.1007/s00170-024-13069-x
Yangyang Xu, Liqiang Zhang, Gang Liu, Nana Wang, Jian Mao

Ball-end milling cutters are commonly used for precision processing of complex curved parts in CNC systems. However, the milling process often experiences chatter, leading to final surface damage. To solve the problem, the method of automatically adjusting the tool posture was proposed to avoid chatter problems during the milling process. Frequency response function varies along the processing path. The frequency domain control equation for ball-end milling cutter machining under different operating conditions was established in the feed coordinate system, and the stability of the system at the cutting point can be quickly determined by Nyquist. In order to accurately solve the control equation, a method for solving the Cutter Workpiece Engagement (CWE) boundary under different tool postures was designed. The feasible region for the tool axis was searched based on geometric and stability constraints at each original tool path position. In the feasible domain, the tool axis path was optimized and the tool position file was updated with the constraint of machine tool rotation axis smoothness. Milling experiments were conducted on AL7050-T745 workpiece. From the simulation and experimental results, it can be concluded that milling width and tilt angle have significant impact on the milling process. The method proposed in this article has been experimentally validated in a five-axis ball-end milling experiment.

球端铣刀通常用于数控系统中复杂曲面零件的精密加工。然而,铣削过程中经常会出现颤振,导致最终表面损坏。为了解决这个问题,我们提出了自动调整刀具姿态的方法,以避免铣削过程中的颤振问题。频率响应函数沿加工路径变化。在进给坐标系下,建立了不同工作条件下球头铣刀加工的频域控制方程,并可通过奈奎斯特法快速确定系统在切削点处的稳定性。为了精确求解控制方程,设计了一种求解不同刀具姿态下刀具工件啮合(CWE)边界的方法。根据每个原始刀具路径位置的几何和稳定性约束条件,搜索刀具轴的可行区域。在可行区域内,对刀具轴路径进行了优化,并在机床旋转轴平稳性约束下更新了刀具位置文件。对 AL7050-T745 工件进行了铣削实验。从仿真和实验结果可以得出,铣削宽度和倾斜角度对铣削过程有显著影响。本文提出的方法已在五轴球头铣削实验中得到验证。
{"title":"Tool path optimization with stability constraints for ball-end milling cutters based on frequency domain controlling strategy","authors":"Yangyang Xu, Liqiang Zhang, Gang Liu, Nana Wang, Jian Mao","doi":"10.1007/s00170-024-13069-x","DOIUrl":"https://doi.org/10.1007/s00170-024-13069-x","url":null,"abstract":"<p>Ball-end milling cutters are commonly used for precision processing of complex curved parts in CNC systems. However, the milling process often experiences chatter, leading to final surface damage. To solve the problem, the method of automatically adjusting the tool posture was proposed to avoid chatter problems during the milling process. Frequency response function varies along the processing path. The frequency domain control equation for ball-end milling cutter machining under different operating conditions was established in the feed coordinate system, and the stability of the system at the cutting point can be quickly determined by Nyquist. In order to accurately solve the control equation, a method for solving the Cutter Workpiece Engagement (CWE) boundary under different tool postures was designed. The feasible region for the tool axis was searched based on geometric and stability constraints at each original tool path position. In the feasible domain, the tool axis path was optimized and the tool position file was updated with the constraint of machine tool rotation axis smoothness. Milling experiments were conducted on AL7050-T745 workpiece. From the simulation and experimental results, it can be concluded that milling width and tilt angle have significant impact on the milling process. The method proposed in this article has been experimentally validated in a five-axis ball-end milling experiment.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooling efficiency enhancement using a rapid tool with a surface-cooled waterfall cooling channel 利用带有表面冷却瀑布冷却通道的快速工具提高冷却效率
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13429-7
Chil-Chyuan Kuo, Pin-Han Lin, Jing-Yan Xu, Zhe-Xhi Lin, Zi-Huan Wang, Zhi-Jun Lai, Song-Hua Huang

The manufacturing technique known as investment casting has found extensive application in producing metal components featuring intricate geometries. The production efficiency of the wax patterns is an essential issue in the investment casting industry, especially for the mass production of wax patterns. A conformal cooling channel (CCC) performs the rapid uniform cooling process for injection molding. However, the significant pressure drop along the cooling channels is a distinct disadvantage of CCC. In this study, an innovative waterfall cooling channel (WCC) was proposed and implemented. The WCC cools the injected products by surface contact, replacing the conventional line contact to cool the injected products. The WCC was optimized using Moldex3D simulation software. Rapid tools with two kinds of cooling channels were designed and implemented. The cooling time of the molded part was investigated using a low-pressure wax injection molding machine. Considering a water cup characterized by a mouth diameter of 70 mm, a height of 60 mm, and a thickness of 2 mm, the experimental results confirmed that the use of WCC can save the cooling time of the product by about 265 s compared with the CCC. This result shows that the WCC can increase cooling efficiency by approximately 17.47% compared with conventional CCC.

被称为熔模铸造的制造技术已广泛应用于生产具有复杂几何形状的金属部件。蜡型的生产效率是熔模铸造行业的一个重要问题,尤其是在大规模生产蜡型时。保形冷却通道(CCC)可执行注塑成型的快速均匀冷却过程。然而,沿冷却通道的巨大压降是 CCC 的一个明显缺点。本研究提出并实施了一种创新的瀑布式冷却通道(WCC)。WCC 通过表面接触冷却注塑产品,取代了传统的线接触冷却注塑产品。通过 Moldex3D 仿真软件对 WCC 进行了优化。设计并实现了带有两种冷却通道的快速模具。使用低压蜡注射成型机研究了成型零件的冷却时间。考虑到水杯的口部直径为 70 毫米,高度为 60 毫米,厚度为 2 毫米,实验结果证实,与 CCC 相比,使用 WCC 可节省产品冷却时间约 265 秒。这一结果表明,与传统的 CCC 相比,WCC 可将冷却效率提高约 17.47%。
{"title":"Cooling efficiency enhancement using a rapid tool with a surface-cooled waterfall cooling channel","authors":"Chil-Chyuan Kuo, Pin-Han Lin, Jing-Yan Xu, Zhe-Xhi Lin, Zi-Huan Wang, Zhi-Jun Lai, Song-Hua Huang","doi":"10.1007/s00170-024-13429-7","DOIUrl":"https://doi.org/10.1007/s00170-024-13429-7","url":null,"abstract":"<p>The manufacturing technique known as investment casting has found extensive application in producing metal components featuring intricate geometries. The production efficiency of the wax patterns is an essential issue in the investment casting industry, especially for the mass production of wax patterns. A conformal cooling channel (CCC) performs the rapid uniform cooling process for injection molding. However, the significant pressure drop along the cooling channels is a distinct disadvantage of CCC. In this study, an innovative waterfall cooling channel (WCC) was proposed and implemented. The WCC cools the injected products by surface contact, replacing the conventional line contact to cool the injected products. The WCC was optimized using Moldex3D simulation software. Rapid tools with two kinds of cooling channels were designed and implemented. The cooling time of the molded part was investigated using a low-pressure wax injection molding machine. Considering a water cup characterized by a mouth diameter of 70 mm, a height of 60 mm, and a thickness of 2 mm, the experimental results confirmed that the use of WCC can save the cooling time of the product by about 265 s compared with the CCC. This result shows that the WCC can increase cooling efficiency by approximately 17.47% compared with conventional CCC.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"5 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the influence of ultrasonic vibration on physical, tensile, and morphological properties of fused deposition modeled specimens 评估超声波振动对熔融沉积模型试样的物理、拉伸和形态特性的影响
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13410-4
Raihan Quader, Leo Klinstein, David Grewell, Lokesh Karthik Narayanan

The use of fused deposition modeling (FDM) in printing polymers for various applications has been ever increasing. However, its utilization in printing polymers for high-strength and superior surface finish applications is still a challenge, primarily due to process intrinsic defects, i.e., voids between the layers and the rough exterior arising from unrestrained deposition of molten polymer. This research hypothesizes that application of ultrasonic vibration (USV) post-fabrication could minimize these shortcomings. For this investigation, ASTM D638 Type IV samples were FDM-printed using poly(lactic) acid (PLA). Through screening experiments, an optimized set of ultrasonic parameters was determined. Then, the effect of both-sided ultrasonic application was characterized. Subsequently, the impact of USV on the samples’ physical, tensile, and morphological properties was examined by varying the layer height, infill patterns, and % infill density. Up to 70% roughness reduction was observed as a result of post-FDM ultrasonic application. Additionally, the tensile strength of the samples increased by up to 15.31%. Moreover, for some lower % infill samples, post-ultrasonic tensile strengths were higher than 100% infill control samples. Analysis of scanning electron microscopy (SEM) and X-ray computed tomography (CT) imagery indicated enhanced layer consolidation and reduced void presence in samples treated with ultrasonic. The combination of ultrasonic-generated heat and downward pressure promoted a synergistic squeeze flow and intermolecular diffusion across consecutive layers of polymers. As a result, increased tensile strength and surface finish were achieved while dimensional change was marginal.

熔融沉积成型(FDM)在各种聚合物打印应用中的使用日益增多。然而,将其用于打印高强度和表面光洁度优异的聚合物仍是一项挑战,这主要是由于加工过程中的固有缺陷,即层间空隙和熔融聚合物无限制沉积产生的粗糙外观。本研究假设,在制造后应用超声波振动 (USV) 可以最大限度地减少这些缺陷。在这项研究中,使用聚乳酸(PLA)对 ASTM D638 IV 型样品进行了 FDM 印刷。通过筛选实验,确定了一组优化的超声参数。然后,对双面超声应用的效果进行了表征。随后,通过改变层高、填充模式和填充密度百分比,考察了 USV 对样品物理、拉伸和形态特性的影响。观察发现,FDM 后超声波应用最多可使粗糙度降低 70%。此外,样品的抗拉强度增加了 15.31%。此外,对于一些填充率较低的样品,超声波后的拉伸强度高于 100% 填充率的对照样品。扫描电子显微镜(SEM)和 X 射线计算机断层扫描(CT)图像分析表明,经过超声波处理的样品层固结增强,空隙减少。超声波产生的热量与向下的压力相结合,促进了聚合物连续层间的协同挤压流动和分子间扩散。因此,拉伸强度和表面光洁度都得到了提高,而尺寸变化却很小。
{"title":"Evaluation of the influence of ultrasonic vibration on physical, tensile, and morphological properties of fused deposition modeled specimens","authors":"Raihan Quader, Leo Klinstein, David Grewell, Lokesh Karthik Narayanan","doi":"10.1007/s00170-024-13410-4","DOIUrl":"https://doi.org/10.1007/s00170-024-13410-4","url":null,"abstract":"<p>The use of fused deposition modeling (FDM) in printing polymers for various applications has been ever increasing. However, its utilization in printing polymers for high-strength and superior surface finish applications is still a challenge, primarily due to process intrinsic defects, i.e., voids between the layers and the rough exterior arising from unrestrained deposition of molten polymer. This research hypothesizes that application of ultrasonic vibration (USV) post-fabrication could minimize these shortcomings. For this investigation, ASTM D638 Type IV samples were FDM-printed using poly(lactic) acid (PLA). Through screening experiments, an optimized set of ultrasonic parameters was determined. Then, the effect of both-sided ultrasonic application was characterized. Subsequently, the impact of USV on the samples’ physical, tensile, and morphological properties was examined by varying the layer height, infill patterns, and % infill density. Up to 70% roughness reduction was observed as a result of post-FDM ultrasonic application. Additionally, the tensile strength of the samples increased by up to 15.31%. Moreover, for some lower % infill samples, post-ultrasonic tensile strengths were higher than 100% infill control samples. Analysis of scanning electron microscopy (SEM) and X-ray computed tomography (CT) imagery indicated enhanced layer consolidation and reduced void presence in samples treated with ultrasonic. The combination of ultrasonic-generated heat and downward pressure promoted a synergistic squeeze flow and intermolecular diffusion across consecutive layers of polymers. As a result, increased tensile strength and surface finish were achieved while dimensional change was marginal.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and analysis of thermal behavior of feed system based on full-state thermal contact resistance 基于全状态热接触电阻的给料系统热行为建模与分析
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13408-y
Haiyang Liu, Xianying Feng, Peigang Li, Yandong Liu, Yanfei Li, Ming Yao

The dual-drive feed system can significantly reduce the effects of nonlinear friction. However, due to the numerous heat sources in its system, the thermal responsive mechanism is still unclear. The reason restricts the realization of high-precision micro-feed. Moreover, the existing thermal simulated model of the machine tool oversimplifies the calculation process of thermal contact resistance (TCR), resulting in a significant error in simulation. Therefore, a full-state TCR calculation model is proposed, and based on the model, a high-precision thermal behavior model of the dual-drive feed system is established. Firstly, the entire deformation process of the asperities is characterized by using fractal theory, and the TCR between the joint parts of the feed system is calculated by considering the thermal resistance of air or grease. A thermal simulated model of the dual-drive feed system is developed based on the solved heat generation and the heat transfer coefficients. Then, the temperature rise characteristics of the dual-drive feed system and the responsive mechanism of thermal deformation under different working conditions are analyzed. The influence of TCR on temperature field distribution and deformation field is discussed. Finally, the experiments on temperature rise and thermal deformation are conducted on the dual-drive feed system. The results of the simulated analysis and experiments show that the accuracy of the simulation can be significantly improved by using the full-state TCR model. The error of the thermal model based on the full-state TCR is much smaller than that of the general TCR model and the without TCR. The accurate description of the TCR has an essential impact on the accuracy of the simulated model, and the obstruction of the heat flow by air or grease cannot be neglected.

双驱动进给系统可显著降低非线性摩擦的影响。然而,由于其系统中热源众多,热响应机制尚不明确。这一原因制约了高精度微量进给的实现。此外,现有的机床热模拟模型过于简化了热接触电阻(TCR)的计算过程,导致模拟误差较大。因此,本文提出了一种全状态 TCR 计算模型,并基于该模型建立了双驱动进给系统的高精度热行为模型。首先,利用分形理论对凸面的整个变形过程进行表征,并通过考虑空气或润滑脂的热阻来计算进给系统连接部分之间的 TCR。根据求解的发热量和传热系数,建立了双驱动进给系统的热模拟模型。然后,分析了不同工况下双驱进给系统的温升特性和热变形响应机制。讨论了 TCR 对温度场分布和变形场的影响。最后,对双驱动进给系统进行了温升和热变形实验。模拟分析和实验结果表明,使用全状态 TCR 模型可以显著提高模拟精度。基于全状态 TCR 的热模型的误差远远小于一般 TCR 模型和无 TCR 模型。对 TCR 的准确描述对模拟模型的准确性有着至关重要的影响,而且空气或油脂对热流的阻碍也不容忽视。
{"title":"Modeling and analysis of thermal behavior of feed system based on full-state thermal contact resistance","authors":"Haiyang Liu, Xianying Feng, Peigang Li, Yandong Liu, Yanfei Li, Ming Yao","doi":"10.1007/s00170-024-13408-y","DOIUrl":"https://doi.org/10.1007/s00170-024-13408-y","url":null,"abstract":"<p>The dual-drive feed system can significantly reduce the effects of nonlinear friction. However, due to the numerous heat sources in its system, the thermal responsive mechanism is still unclear. The reason restricts the realization of high-precision micro-feed. Moreover, the existing thermal simulated model of the machine tool oversimplifies the calculation process of thermal contact resistance (TCR), resulting in a significant error in simulation. Therefore, a full-state TCR calculation model is proposed, and based on the model, a high-precision thermal behavior model of the dual-drive feed system is established. Firstly, the entire deformation process of the asperities is characterized by using fractal theory, and the TCR between the joint parts of the feed system is calculated by considering the thermal resistance of air or grease. A thermal simulated model of the dual-drive feed system is developed based on the solved heat generation and the heat transfer coefficients. Then, the temperature rise characteristics of the dual-drive feed system and the responsive mechanism of thermal deformation under different working conditions are analyzed. The influence of TCR on temperature field distribution and deformation field is discussed. Finally, the experiments on temperature rise and thermal deformation are conducted on the dual-drive feed system. The results of the simulated analysis and experiments show that the accuracy of the simulation can be significantly improved by using the full-state TCR model. The error of the thermal model based on the full-state TCR is much smaller than that of the general TCR model and the without TCR. The accurate description of the TCR has an essential impact on the accuracy of the simulated model, and the obstruction of the heat flow by air or grease cannot be neglected.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"290 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of peening conditions and sheet geometry on spherical to cylindrical deformation shifts 强化条件和板材几何形状对球形到圆柱形变形转变的影响
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13387-0

Abstract

Peen forming is a method for deforming metal sheets by introducing plastic strain near the peened surface through shot impacts. The resulting shape after peen forming is affected by peening conditions (such as shot velocity, shot diameter, and nozzle trajectory) and the specimen size. This study aimed to clarify the mechanism of the spherical to cylindrical deformation shift in peen forming, through experiments and numerical simulations using the finite element method by varying the specimen geometry, nozzle trajectory, and air pressure. The deformation of sheets, 200 mm × 200 mm × 2 mm (length, width, thickness), shifted from spherical to cylindrical at an approximate curvature of 0.4 m−1. These shifts occurred at smaller curvatures in wider specimens. Numerical simulation using a three-step finite element method was used to calculate the spherical to cylindrical deformation shift. The simple spherical bending model showed that the deformation shifted from spherical to cylindrical, when the strain in the center of the thickness at the edge of the sheet was compressive. This result was consistent with the experimental and numerical simulation results.

摘要 强化成形是一种通过喷丸冲击在强化表面附近引入塑性应变使金属板变形的方法。强化成形后的形状受强化条件(如喷丸速度、喷丸直径和喷嘴轨迹)和试样尺寸的影响。本研究旨在通过改变试样几何形状、喷嘴轨迹和气压,利用有限元方法进行实验和数值模拟,阐明强化成形过程中球形变形向圆柱形变形转变的机理。200 mm × 200 mm × 2 mm(长、宽、厚)的板材在曲率约为 0.4 m-1 时从球形变形转变为圆柱形。在较宽的试样中,当曲率较小时也会发生这些偏移。使用三步有限元法进行的数值模拟计算了球形到圆柱形的变形转变。简单的球形弯曲模型显示,当板材边缘厚度中心的应变为压缩应变时,变形从球形转变为圆柱形。这一结果与实验和数值模拟结果一致。
{"title":"Effects of peening conditions and sheet geometry on spherical to cylindrical deformation shifts","authors":"","doi":"10.1007/s00170-024-13387-0","DOIUrl":"https://doi.org/10.1007/s00170-024-13387-0","url":null,"abstract":"<h3>Abstract</h3> <p>Peen forming is a method for deforming metal sheets by introducing plastic strain near the peened surface through shot impacts. The resulting shape after peen forming is affected by peening conditions (such as shot velocity, shot diameter, and nozzle trajectory) and the specimen size. This study aimed to clarify the mechanism of the spherical to cylindrical deformation shift in peen forming, through experiments and numerical simulations using the finite element method by varying the specimen geometry, nozzle trajectory, and air pressure. The deformation of sheets, 200 mm × 200 mm × 2 mm (length, width, thickness), shifted from spherical to cylindrical at an approximate curvature of 0.4 m<sup>−1</sup>. These shifts occurred at smaller curvatures in wider specimens. Numerical simulation using a three-step finite element method was used to calculate the spherical to cylindrical deformation shift. The simple spherical bending model showed that the deformation shifted from spherical to cylindrical, when the strain in the center of the thickness at the edge of the sheet was compressive. This result was consistent with the experimental and numerical simulation results.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"122 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time surface roughness estimation and automatic regrinding of ground workpieces using a data-driven model and grinding force inputs 利用数据驱动模型和磨削力输入,实时估算表面粗糙度并自动修磨磨削过的工件
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13434-w
Jing-Yu Lai, Pei-Chun Lin

This study reports a methodology for predicting surface roughness using data-driven models with grinding force as the input data. Prior to the model training process, the critical grinding parameters for brass material were selected and optimized using the Taguchi method. The experimental grinding force data were then collected and preprocessed into three features: the raw feature as the baseline feature, the statistical feature, and the fast Fourier transform (FFT) feature. The data were imported into a linear regression model as the baseline model and a deep neural network (DNN) model as the proposed strategy. The widely used surface roughness (Ra) of the ground workpiece was experimentally measured and served as the performance index. The model’s performance was evaluated based on the mean absolute percentage error (MAPE) between the predicted and measured Ra values. The validation of the Ra prediction revealed that, among all test combinations, the DNN model with four hidden layers and the FFT feature as the input had the best performance of surface roughness prediction, with a MAPE of 3.17%. The independent testing and evaluation of the DNN model with the FFT feature yielded a MAPE of 6.96%, indicating that the proposed strategy effectively predicted the surface roughness of the workpiece. This work also proposes an automatic regrinding strategy in which the grinding system automatically regrinds the workpiece if the predicted Ra of the workpiece in the previous grinding process exceeds the threshold. Experimental results confirmed that among 24 ground areas, two areas have roughness exceeding the threshold and need to be regrind, and the proposed strategy can correctly identify and regrind these two areas (100% success rate). After automatic regrinding, the workpiece exhibited a roughness lower than the set threshold.

本研究报告介绍了一种以磨削力为输入数据,利用数据驱动模型预测表面粗糙度的方法。在模型训练过程之前,使用田口方法选择并优化了黄铜材料的关键磨削参数。然后收集磨削力实验数据,并将其预处理为三个特征:作为基线特征的原始特征、统计特征和快速傅立叶变换(FFT)特征。数据被导入线性回归模型作为基准模型,并导入深度神经网络(DNN)模型作为拟议策略。实验测量了广泛使用的磨削工件表面粗糙度(Ra),并将其作为性能指标。根据 Ra 预测值和测量值之间的平均绝对百分比误差 (MAPE) 来评估模型的性能。Ra 预测的验证结果表明,在所有测试组合中,具有四个隐藏层并以 FFT 特征作为输入的 DNN 模型的表面粗糙度预测性能最佳,MAPE 为 3.17%。对带有 FFT 特征的 DNN 模型进行的独立测试和评估得出的 MAPE 为 6.96%,表明所提出的策略能有效预测工件的表面粗糙度。这项工作还提出了一种自动修磨策略,即如果工件在上一次磨削过程中的预测 Ra 值超过阈值,磨削系统就会自动修磨工件。实验结果证实,在 24 个磨削区域中,有两个区域的粗糙度超过了阈值,需要重新磨削,而所提出的策略能够正确识别并重新磨削这两个区域(成功率为 100%)。自动修磨后,工件的粗糙度低于设定阈值。
{"title":"Real-time surface roughness estimation and automatic regrinding of ground workpieces using a data-driven model and grinding force inputs","authors":"Jing-Yu Lai, Pei-Chun Lin","doi":"10.1007/s00170-024-13434-w","DOIUrl":"https://doi.org/10.1007/s00170-024-13434-w","url":null,"abstract":"<p>This study reports a methodology for predicting surface roughness using data-driven models with grinding force as the input data. Prior to the model training process, the critical grinding parameters for brass material were selected and optimized using the Taguchi method. The experimental grinding force data were then collected and preprocessed into three features: the raw feature as the baseline feature, the statistical feature, and the fast Fourier transform (FFT) feature. The data were imported into a linear regression model as the baseline model and a deep neural network (DNN) model as the proposed strategy. The widely used surface roughness (Ra) of the ground workpiece was experimentally measured and served as the performance index. The model’s performance was evaluated based on the mean absolute percentage error (MAPE) between the predicted and measured Ra values. The validation of the Ra prediction revealed that, among all test combinations, the DNN model with four hidden layers and the FFT feature as the input had the best performance of surface roughness prediction, with a MAPE of 3.17%. The independent testing and evaluation of the DNN model with the FFT feature yielded a MAPE of 6.96%, indicating that the proposed strategy effectively predicted the surface roughness of the workpiece. This work also proposes an automatic regrinding strategy in which the grinding system automatically regrinds the workpiece if the predicted Ra of the workpiece in the previous grinding process exceeds the threshold. Experimental results confirmed that among 24 ground areas, two areas have roughness exceeding the threshold and need to be regrind, and the proposed strategy can correctly identify and regrind these two areas (100% success rate). After automatic regrinding, the workpiece exhibited a roughness lower than the set threshold.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"148 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140173140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Advanced Manufacturing Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1