Pub Date : 2024-03-12DOI: 10.1007/s00170-024-13252-0
Zhipeng Ding, Pietro Soccio, Marina Indri, Alessandro Rizzo
Productively reducing the time required to cut numerous through holes in automotive workpieces is crucial for enhancing parts manufacturing in the 3D laser cutting process. However, the conventional cutting strategy, in which the laser beam maintains a stationary posture along the hole path, lacks flexibility and fails to effectively leverage processing tolerances. In this study, we conduct a thorough analysis of the kinematics of a six-axis redundant laser cutting machine and resolve through a decoupling method with singularity management. We propose an innovative conic posture cutting strategy for 3D laser hole-cutting with thin materials. This approach adopts the geometry of a cone as the posture while cutting the hole path. In order to obtain the optimal vertex of the cone while minimizing the taper error generated by the conic posture and kinetic energy consumption of the actuators during motion, we formulate a multi-objective optimization problem and solve it using a genetic algorithm. Furthermore, we enhance the optimization by adopting a time minimization approach. Through the implementation of a B-pillar workpiece cutting experiment, we have successfully validated the credibility of our proposed cutting strategy, thereby demonstrating an enhancement of time on 26 hole-cutting paths.
有效缩短在汽车工件上切割大量通孔所需的时间,对于提高三维激光切割工艺中的零件制造水平至关重要。然而,传统的切割策略(激光束沿孔路径保持静止姿态)缺乏灵活性,无法有效利用加工公差。在本研究中,我们对六轴冗余激光切割机的运动学进行了深入分析,并通过奇异性管理解耦方法加以解决。我们为薄材料的三维激光孔切割提出了一种创新的圆锥姿态切割策略。该方法采用圆锥体的几何形状作为切割孔路径的姿态。为了获得圆锥体的最佳顶点,同时最大限度地减少圆锥姿态产生的锥度误差和运动过程中致动器的动能消耗,我们提出了一个多目标优化问题,并使用遗传算法进行了求解。此外,我们还采用了时间最小化方法来增强优化效果。通过实施 B 柱工件切割实验,我们成功地验证了我们所提出的切割策略的可信度,从而证明了在 26 个孔切割路径上时间的延长。
{"title":"Through hole-cutting conic posture optimization for a redundant 3D laser cutting machine","authors":"Zhipeng Ding, Pietro Soccio, Marina Indri, Alessandro Rizzo","doi":"10.1007/s00170-024-13252-0","DOIUrl":"https://doi.org/10.1007/s00170-024-13252-0","url":null,"abstract":"<p>Productively reducing the time required to cut numerous through holes in automotive workpieces is crucial for enhancing parts manufacturing in the 3D laser cutting process. However, the conventional cutting strategy, in which the laser beam maintains a stationary posture along the hole path, lacks flexibility and fails to effectively leverage processing tolerances. In this study, we conduct a thorough analysis of the kinematics of a six-axis redundant laser cutting machine and resolve through a decoupling method with singularity management. We propose an innovative conic posture cutting strategy for 3D laser hole-cutting with thin materials. This approach adopts the geometry of a cone as the posture while cutting the hole path. In order to obtain the optimal vertex of the cone while minimizing the taper error generated by the conic posture and kinetic energy consumption of the actuators during motion, we formulate a multi-objective optimization problem and solve it using a genetic algorithm. Furthermore, we enhance the optimization by adopting a time minimization approach. Through the implementation of a B-pillar workpiece cutting experiment, we have successfully validated the credibility of our proposed cutting strategy, thereby demonstrating an enhancement of time on 26 hole-cutting paths.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"18 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reliable prediction of the grinding force is essential for improving the grinding efficiency and service life of the grinding head. To better optimize and control the grinding process of the grinding head, this paper proposes a grinding force prediction method of the grinding head that combines surface measurement, statistical analysis, and finite element method (FEM). Firstly, a grinding head surface measurement system is constructed according to the principle of focused imaging. The distribution model of abrasive grains in terms of size, spacing, and protruding height has been established by measuring and counting the characteristics of abrasive grains on the surface of a real grinding head. Then, the undeformed chip thicknesses when the abrasive grains are cut are analyzed in depth, the material model of abrasive grains and workpiece is established, and the cutting process of abrasive grains with different characteristics on the surface of the grinding head is analyzed by finite element simulation. A single abrasive grain grinding force model is obtained. Finally, the grinding force prediction of the grinding head was realized by combining finite element simulation with grinding kinematics analysis. In addition, grinding experiments with different grinding parameters were conducted to verify the grinding force prediction model. The results show that the predicted grinding force of the grinding head is in good agreement with the experimental values. The average error of tangential grinding force is 7.42%, and the average error of normal grinding force is 9.77%. This indicates that the grinding force prediction method has good accuracy and reliability.
{"title":"Prediction and analysis of grinding force on grinding heads based on grain measurement statistics and single-grain grinding simulation","authors":"Baichun Li, Xiaokun Li, Shenghui Hou, Shangru Yang, Zhi Li, Junze Qian, Zhenpeng He","doi":"10.1007/s00170-024-13370-9","DOIUrl":"https://doi.org/10.1007/s00170-024-13370-9","url":null,"abstract":"<p>Reliable prediction of the grinding force is essential for improving the grinding efficiency and service life of the grinding head. To better optimize and control the grinding process of the grinding head, this paper proposes a grinding force prediction method of the grinding head that combines surface measurement, statistical analysis, and finite element method (FEM). Firstly, a grinding head surface measurement system is constructed according to the principle of focused imaging. The distribution model of abrasive grains in terms of size, spacing, and protruding height has been established by measuring and counting the characteristics of abrasive grains on the surface of a real grinding head. Then, the undeformed chip thicknesses when the abrasive grains are cut are analyzed in depth, the material model of abrasive grains and workpiece is established, and the cutting process of abrasive grains with different characteristics on the surface of the grinding head is analyzed by finite element simulation. A single abrasive grain grinding force model is obtained. Finally, the grinding force prediction of the grinding head was realized by combining finite element simulation with grinding kinematics analysis. In addition, grinding experiments with different grinding parameters were conducted to verify the grinding force prediction model. The results show that the predicted grinding force of the grinding head is in good agreement with the experimental values. The average error of tangential grinding force is 7.42%, and the average error of normal grinding force is 9.77%. This indicates that the grinding force prediction method has good accuracy and reliability.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"24 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The demand for surface wear-resistant metal components is increasing, but the current traditional preparation method of surface heat treatment for forgings and castings can hardly satisfy the trend of green development. In this study, we developed wire arc additive manufacturing laser cladding (WAAM-LC) hybrid manufacturing technology for the integrated preparation of 304 component with Ni60B reinforced coating. The microstructure and mechanical properties of 304 WAAM entity and Ni60B coating were systematically investigated. The results show that a good metallurgical bond is achieved between the Ni60B coating and 304 substrate. Both γ-Fe and δ-Fe phases appear in the 304 WAAM region, and γ-(Ni,Fe), FeNi3, (Cr,Fe)mCn, and NimSin phases are detected in the Ni60B LC coating. Slender columnar crystals and cellular crystals coexist in the 304 bonding region, while the bottom of the Ni60B coating consists of plane crystal and columnar crystals. Both molten pools appear to have a haphazardly growing dendrite structure inside. Compared to the 304 substrate, the hardness of Ni60B coating increases by 2.76 times, and the friction and wear mass loss is only 10.54% of the 304, significantly improving the wear resistance of the 304 substrate. This work indicates that WAAM-LC hybrid technology is expected to become a promising new solution for manufacturing surface wear-resistant metal components.