首页 > 最新文献

International Journal of Advanced Manufacturing Technology最新文献

英文 中文
Joining of AA5052 to CF/PEEK by friction lap welding 通过摩擦搭接焊将 AA5052 与 CF/PEEK 焊接在一起
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13457-3
Jamal Sheikh-Ahmad, Redouane Zitoune, Claire Morel, Jean-François Ferrero, Benoit Vieille

The joining of aluminum alloy AA5052 and carbon-fiber-reinforced polyether ether ketone (CF/PEEK) by friction lap welding was investigated under different conditions of surface texturing and process temperatures. The joint quality was evaluated by measurement of the tensile shear force and examination of the joint morphology. The aluminum alloy underwent two different types of surface texturing—mechanical engraving and sandblasting. The welding experiments were then conducted under different tool rotational speeds for each. The temperatures across the weld line were measured during the welding process using thermocouples mounted at specific locations. The temperature distribution at the interface was determined by an inverse heat conduction method. It was found that the temperatures at the interface exceeded the melting temperature of PEEK for all testing conditions but was always below PEEK thermal degradation temperature. It was also found that joint performance of mechanically engraved samples increased with the increase of interface temperatures. This was attributed to the increased mechanical interlocking due to the flow of melted PEEK into the engraved sample’s surface features. The joint strength of sandblasted samples did not change considerably with interface temperatures.

在不同的表面纹理和加工温度条件下,研究了通过摩擦搭接焊连接铝合金 AA5052 和碳纤维增强聚醚醚酮(CF/PEEK)的情况。通过测量拉伸剪切力和检查接头形态来评估接头质量。铝合金经过了两种不同的表面纹理处理--机械雕刻和喷砂。然后分别以不同的工具转速进行焊接实验。在焊接过程中,使用安装在特定位置的热电偶测量焊缝的温度。界面处的温度分布是通过反热传导法确定的。结果发现,在所有测试条件下,界面温度都超过了 PEEK 的熔化温度,但始终低于 PEEK 的热降解温度。研究还发现,机械雕刻样品的连接性能随着界面温度的升高而提高。这是由于熔化的 PEEK 流入雕刻样品的表面特征,增加了机械互锁性。喷砂样品的连接强度并没有随着界面温度的升高而发生显著变化。
{"title":"Joining of AA5052 to CF/PEEK by friction lap welding","authors":"Jamal Sheikh-Ahmad, Redouane Zitoune, Claire Morel, Jean-François Ferrero, Benoit Vieille","doi":"10.1007/s00170-024-13457-3","DOIUrl":"https://doi.org/10.1007/s00170-024-13457-3","url":null,"abstract":"<p>The joining of aluminum alloy AA5052 and carbon-fiber-reinforced polyether ether ketone (CF/PEEK) by friction lap welding was investigated under different conditions of surface texturing and process temperatures. The joint quality was evaluated by measurement of the tensile shear force and examination of the joint morphology. The aluminum alloy underwent two different types of surface texturing—mechanical engraving and sandblasting. The welding experiments were then conducted under different tool rotational speeds for each. The temperatures across the weld line were measured during the welding process using thermocouples mounted at specific locations. The temperature distribution at the interface was determined by an inverse heat conduction method. It was found that the temperatures at the interface exceeded the melting temperature of PEEK for all testing conditions but was always below PEEK thermal degradation temperature. It was also found that joint performance of mechanically engraved samples increased with the increase of interface temperatures. This was attributed to the increased mechanical interlocking due to the flow of melted PEEK into the engraved sample’s surface features. The joint strength of sandblasted samples did not change considerably with interface temperatures.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"26 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of a tetrahedron compliant spherical joint via computer-aided engineering tools 通过计算机辅助工程工具优化四面体顺应性球形接头
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13314-3
Seyyed Masoud Kargar, Alberto Parmiggiani, Mario Baggetta, Emilio Ottonello, Guangbo Hao, Giovanni Berselli

This article focuses on enhancing the range of motion (ROM) of the Tetra II joint, a spherical compliant joint consisting of three internally interconnected tetrahedron-shaped elements that achieve motion through elastic deformation. Despite its excellent precision, this specific design is constrained in terms of ROM due to internal contacts among the tetrahedral elements. To overcome this limitation, this study utilizes a computer-aided engineering (CAE) framework to optimize the configuration of the Tetra II joint and enhance its ROM. The resultant optimized joint, referred to as Tetra III, is subsequently compared to Tetra II in terms of both ROM and center shift. Finite element models (FEM) are employed to validate the optimization results and examine how various tetrahedron-shaped geometries impact the joint’s performance. The newly optimized joint exhibits a significantly higher ROM compared to the previous version, while maintaining excellent precision and overall smaller dimensions. Finally, to demonstrate its manufacturability, the Tetra III joint is produced using selective laser sintering (SLS) technology, with Duraform PA serving as the construction material. The successful fabrication serves as a demonstrative example of the improved design of the Tetra III joint.

Tetra II 关节是一种球形顺应性关节,由三个内部相互连接的四面体元件组成,通过弹性变形实现运动。尽管其精度极高,但由于四面体元件之间存在内部接触,这种特殊设计在 ROM 方面受到限制。为了克服这一限制,本研究利用计算机辅助工程(CAE)框架来优化 Tetra II 接头的配置,并提高其 ROM。优化后的关节(称为 Tetra III)在 ROM 和中心偏移方面与 Tetra II 进行了比较。采用有限元模型(FEM)来验证优化结果,并研究各种四面体几何形状对关节性能的影响。与之前的版本相比,新优化的关节显示出更高的 ROM,同时保持了出色的精度和更小的整体尺寸。最后,为了证明其可制造性,Tetra III 接头采用选择性激光烧结(SLS)技术制造,并使用 Duraform PA 作为结构材料。成功的制造是 Tetra III 接头改进设计的一个示范实例。
{"title":"Optimization of a tetrahedron compliant spherical joint via computer-aided engineering tools","authors":"Seyyed Masoud Kargar, Alberto Parmiggiani, Mario Baggetta, Emilio Ottonello, Guangbo Hao, Giovanni Berselli","doi":"10.1007/s00170-024-13314-3","DOIUrl":"https://doi.org/10.1007/s00170-024-13314-3","url":null,"abstract":"<p>This article focuses on enhancing the range of motion (ROM) of the Tetra II joint, a spherical compliant joint consisting of three internally interconnected tetrahedron-shaped elements that achieve motion through elastic deformation. Despite its excellent precision, this specific design is constrained in terms of ROM due to internal contacts among the tetrahedral elements. To overcome this limitation, this study utilizes a computer-aided engineering (CAE) framework to optimize the configuration of the Tetra II joint and enhance its ROM. The resultant optimized joint, referred to as Tetra III, is subsequently compared to Tetra II in terms of both ROM and center shift. Finite element models (FEM) are employed to validate the optimization results and examine how various tetrahedron-shaped geometries impact the joint’s performance. The newly optimized joint exhibits a significantly higher ROM compared to the previous version, while maintaining excellent precision and overall smaller dimensions. Finally, to demonstrate its manufacturability, the Tetra III joint is produced using selective laser sintering (SLS) technology, with Duraform PA serving as the construction material. The successful fabrication serves as a demonstrative example of the improved design of the Tetra III joint.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"40 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and optimization of a prediction system model for mechanical properties in rotary friction-welded polyamide joints using the SVM approach and GA optimization 利用 SVM 方法和 GA 优化技术开发和优化旋转摩擦焊接聚酰胺接头机械性能预测系统模型
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13450-w
Elhadj Raouache, Aissa Laouissi, Fares Khalfallah, Yazid Chetbani

The objective of this experimental study is to utilize rotary friction welding (FW) for assembling similar polyamide materials. The application of the SVM approach enables the development of a predictive model for estimating mechanical properties in RFW processes. Furthermore, the optimization of RFW parameters through GA proves pivotal in selecting optimal welding conditions, providing a variety of choices. The welding parameters considered in this study included rotation speed at five levels and traverse speed at three levels. The strength of the welded samples was characterized by a tensile test. Additionally, temperature measurements were taken to determine the maximum temperature in the joint area. The results demonstrated the dependence of tensile strength and maximum temperature on the rotation speed. Maximum tensile strength is achieved at an optimal rotation speed. Moreover, analysis of variance (ANOVA) indicates that rotation speed is the parameter most influenced by tensile strength.

本实验研究的目的是利用旋转摩擦焊(FW)组装类似的聚酰胺材料。SVM 方法的应用有助于开发一个预测模型,用于估计 RFW 过程中的机械性能。此外,通过 GA 对 RFW 参数进行优化,在选择最佳焊接条件方面起到了关键作用,提供了多种选择。本研究考虑的焊接参数包括五个级别的旋转速度和三个级别的横移速度。焊接样品的强度通过拉伸试验来确定。此外,还进行了温度测量,以确定接头区域的最高温度。结果表明,拉伸强度和最高温度与旋转速度有关。在最佳旋转速度下可达到最大拉伸强度。此外,方差分析(ANOVA)表明,旋转速度是受拉伸强度影响最大的参数。
{"title":"Development and optimization of a prediction system model for mechanical properties in rotary friction-welded polyamide joints using the SVM approach and GA optimization","authors":"Elhadj Raouache, Aissa Laouissi, Fares Khalfallah, Yazid Chetbani","doi":"10.1007/s00170-024-13450-w","DOIUrl":"https://doi.org/10.1007/s00170-024-13450-w","url":null,"abstract":"<p>The objective of this experimental study is to utilize rotary friction welding (FW) for assembling similar polyamide materials. The application of the SVM approach enables the development of a predictive model for estimating mechanical properties in RFW processes. Furthermore, the optimization of RFW parameters through GA proves pivotal in selecting optimal welding conditions, providing a variety of choices. The welding parameters considered in this study included rotation speed at five levels and traverse speed at three levels. The strength of the welded samples was characterized by a tensile test. Additionally, temperature measurements were taken to determine the maximum temperature in the joint area. The results demonstrated the dependence of tensile strength and maximum temperature on the rotation speed. Maximum tensile strength is achieved at an optimal rotation speed. Moreover, analysis of variance (ANOVA) indicates that rotation speed is the parameter most influenced by tensile strength.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"122 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion characteristics of high-entropy alloys prepared by spark plasma sintering 火花等离子烧结法制备的高熵合金的腐蚀特性
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13452-8
Chika Oliver Ujah, Daramy V. V. Kallon, Victor Sunday Aigbodion

High-entropy alloys (HEAs) are special type of alloy suitably developed for use in petroleum exploration, energy storage devices, medical implants, etc. This is because they possess excellent corrosion, thermal, and mechanical properties. Corrosion characteristic of HEAs prepared via spark plasma sintering is a top notch as the technique generates corrosion resistant phases and homogenous microstructure. This study was aimed at reviewing recent publications on corrosion characteristics of HEAs processed by SPS in order to develop ways of improving their anti-corrosion properties. The resource materials were obtained from Scopus-indexed journals and Google Scholar websites of peer-reviewed articles published within the last 5 years. From the study, it was revealed that incorporation of some elements (Al, Cr, Ti) into HEAs can improve their corrosion resistance, while addition of some others can reduce their brittleness and enhance their stability and formability. It was recommended that optimization of SPS parameters was one of the strategies of generating better corrosion characteristics in HEAs.

高熵合金(HEA)是一种特殊的合金,适合用于石油勘探、储能设备、医疗植入物等。这是因为它们具有优异的腐蚀、热和机械性能。通过火花等离子烧结技术制备的 HEA 具有优异的腐蚀特性,因为这种技术能生成抗腐蚀相和均匀的微观结构。本研究旨在综述最近发表的有关通过火花等离子烧结技术加工的 HEA 的腐蚀特性的文章,以开发出改善其抗腐蚀特性的方法。研究资料来源于 Scopus 索引期刊和谷歌学术网站上过去 5 年内发表的同行评审文章。研究结果表明,在 HEA 中加入某些元素(Al、Cr、Ti)可提高其耐腐蚀性,而加入另一些元素则可降低其脆性并提高其稳定性和可成形性。研究建议,优化 SPS 参数是提高 HEA 腐蚀特性的策略之一。
{"title":"Corrosion characteristics of high-entropy alloys prepared by spark plasma sintering","authors":"Chika Oliver Ujah, Daramy V. V. Kallon, Victor Sunday Aigbodion","doi":"10.1007/s00170-024-13452-8","DOIUrl":"https://doi.org/10.1007/s00170-024-13452-8","url":null,"abstract":"<p>High-entropy alloys (HEAs) are special type of alloy suitably developed for use in petroleum exploration, energy storage devices, medical implants, etc. This is because they possess excellent corrosion, thermal, and mechanical properties. Corrosion characteristic of HEAs prepared via spark plasma sintering is a top notch as the technique generates corrosion resistant phases and homogenous microstructure. This study was aimed at reviewing recent publications on corrosion characteristics of HEAs processed by SPS in order to develop ways of improving their anti-corrosion properties. The resource materials were obtained from Scopus-indexed journals and Google Scholar websites of peer-reviewed articles published within the last 5 years. From the study, it was revealed that incorporation of some elements (Al, Cr, Ti) into HEAs can improve their corrosion resistance, while addition of some others can reduce their brittleness and enhance their stability and formability. It was recommended that optimization of SPS parameters was one of the strategies of generating better corrosion characteristics in HEAs.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental methodology to characterize load-based fracture models of third generation advanced high strength steel resistance spot welds 表征第三代先进高强度钢电阻点焊基于载荷的断裂模型的实验方法
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13438-6
Mohammad Shojaee, Cameron Tolton, Abdelbaset Midawi, Tingting Zhang, Hassan Ghassemi-Armaki, Michael Worswick, Cliff Butcher, Elliot Biro

Failure of resistance spot welds in computer-aided engineering models is based upon criteria that incorporate test data obtained in various loading conditions including different proportions of tensile, shear, and moment loads. The decomposition of the critical load into its respective shear, tensile, and bending moment components is influenced by the rigid body motion during their corresponding mechanical tests. Continuous tracking of the weld orientation and the deformed coupons is required for accurate determination of the load components at the onset of failure. A comprehensive experimental investigation was performed to characterize the critical failure load components in combined loading using various orientations of KS-II tests and a range of coach peel coupon geometries. Mechanical testing was coupled with digital image correlation (DIC) to systematically evaluate empirical force-based failure models for resistance spot welds of two third generation advanced high strength steels with optimal and suboptimal fusion zone diameters. New analysis methodologies using DIC were developed to account for rotation and deformation of the joint in the determination of the shear, normal, and bending moments acting on the spot-welded joints. The coach peel test results for both steels revealed a non-convex experimental fracture locus in bending-tension loading cases. The conventional assumption of a convex failure locus overestimated the critical bending moment strength between 7 and 66%. Results indicated that changes in the operative failure mechanism from pullout/partial-pullout to interfacial can expand the fracture loci within the shear-tensile loading mixities. Improved alternative functional forms for the weld failure models were proposed and contrasted with conventional models that assume convexity.

在计算机辅助工程模型中,电阻点焊失效所依据的标准结合了在各种加载条件下获得的测试数据,包括不同比例的拉伸、剪切和弯矩载荷。临界载荷分解为各自的剪切、拉伸和弯矩分量受到相应机械测试过程中刚体运动的影响。为了准确确定失效开始时的载荷成分,需要对焊接方向和变形试样进行连续跟踪。我们进行了一项全面的实验研究,利用 KS-II 试验的各种方向和一系列教练剥离脆片几何形状来确定组合加载中的临界失效载荷分量。机械测试与数字图像相关性(DIC)相结合,对两种第三代先进高强度钢的电阻点焊(具有最佳和次佳熔合区直径)的基于经验力的失效模型进行了系统评估。使用 DIC 开发了新的分析方法,以在确定作用于点焊接头的剪切力、法向力和弯矩时考虑接头的旋转和变形。两种钢材的教练剥离测试结果表明,在弯曲-拉伸加载情况下,实验断裂位置不呈凸形。传统的凸形断裂位置假设高估了 7% 至 66% 的临界弯矩强度。结果表明,从拉拔/部分拉拔到界面的操作性失效机制的变化可以扩大剪切-拉伸加载混合情况下的断裂位置。提出了焊接破坏模型的改进替代函数形式,并与假定凸性的传统模型进行了对比。
{"title":"An experimental methodology to characterize load-based fracture models of third generation advanced high strength steel resistance spot welds","authors":"Mohammad Shojaee, Cameron Tolton, Abdelbaset Midawi, Tingting Zhang, Hassan Ghassemi-Armaki, Michael Worswick, Cliff Butcher, Elliot Biro","doi":"10.1007/s00170-024-13438-6","DOIUrl":"https://doi.org/10.1007/s00170-024-13438-6","url":null,"abstract":"<p>Failure of resistance spot welds in computer-aided engineering models is based upon criteria that incorporate test data obtained in various loading conditions including different proportions of tensile, shear, and moment loads. The decomposition of the critical load into its respective shear, tensile, and bending moment components is influenced by the rigid body motion during their corresponding mechanical tests. Continuous tracking of the weld orientation and the deformed coupons is required for accurate determination of the load components at the onset of failure. A comprehensive experimental investigation was performed to characterize the critical failure load components in combined loading using various orientations of KS-II tests and a range of coach peel coupon geometries. Mechanical testing was coupled with digital image correlation (DIC) to systematically evaluate empirical force-based failure models for resistance spot welds of two third generation advanced high strength steels with optimal and suboptimal fusion zone diameters. New analysis methodologies using DIC were developed to account for rotation and deformation of the joint in the determination of the shear, normal, and bending moments acting on the spot-welded joints. The coach peel test results for both steels revealed a non-convex experimental fracture locus in bending-tension loading cases. The conventional assumption of a convex failure locus overestimated the critical bending moment strength between 7 and 66%. Results indicated that changes in the operative failure mechanism from pullout/partial-pullout to interfacial can expand the fracture loci within the shear-tensile loading mixities. Improved alternative functional forms for the weld failure models were proposed and contrasted with conventional models that assume convexity.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical modeling of fill-level and residence time in starve-fed single-screw extrusion: a dimensionality reduction study from a 3D CFD model to a 2D convection-diffusion model 饥饿喂料单螺杆挤压过程中填充水平和停留时间的数值建模:从三维 CFD 模型到二维对流扩散模型的降维研究
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13378-1
Erik Holmen Olofsson, Ashley Dan, Michael Roland, Ninna Halberg Jokil, Rohit Ramachandran, Jesper Henri Hattel

This research delves into the numerical predictions of fill-level and residence time distribution (RTD) in starve-fed single-screw extrusion systems. Starve-feeding, predominantly used in ceramic extrusion, introduces challenges which this study seeks to address. Based on a physical industrial system, a comprehensive 3D computational fluid dynamics (CFD) model was developed using a porous media representation of the complex multi-hole plate die. Validations performed using real sensor data, accounting for partial wear on auger screw flights, show an ~11% discrepancy without accounting for screw wear and ~6% when considering it. A 2D convection-diffusion model was introduced as a dimensionality reduced order model (ROM) with the intention of bridging the gap between comprehensive CFD simulations and real-time applications. Central to this model’s prediction ability was both the velocity field transfer from the CFD model and calibration of the ROM diffusion coefficient such that a precise agreement of residence time distribution (RTD) curves could be obtained. Some discrepancies between the CFD and the ROM were observed, attributed to the loss of physical information of the system when transitioning from a higher fidelity CFD model to a semi-mechanistic ROM and the inherent complexities of the starved flow in the compression zone of the extruder. This research offers a comprehensive methodology and insights into reduced order modeling of starve-fed extrusion systems, presenting opportunities for real-time optimization and enhanced process understanding.

这项研究深入探讨了单螺杆挤出系统中饥饿喂料的填充水平和停留时间分布(RTD)的数值预测。饥饿喂料主要用于陶瓷挤出,它带来了挑战,本研究试图解决这一问题。在物理工业系统的基础上,使用多孔介质表示复杂的多孔板模具,开发了一个全面的三维计算流体动力学(CFD)模型。使用真实传感器数据进行的验证显示,在不考虑螺杆磨损的情况下,误差约为 11%,而在考虑螺杆磨损的情况下,误差约为 6%。二维对流扩散模型作为降维阶次模型(ROM)被引入,目的是缩小综合 CFD 模拟与实时应用之间的差距。该模型预测能力的核心是 CFD 模型的速度场传输和 ROM 扩散系数的校准,从而获得精确一致的停留时间分布曲线(RTD)。我们观察到 CFD 和 ROM 之间存在一些差异,这是因为从保真度较高的 CFD 模型过渡到半机械 ROM 时,系统的物理信息会丢失,而且挤压机压缩区的饥饿流本身就很复杂。这项研究为饥饿喂料挤出系统的减阶建模提供了全面的方法和见解,为实时优化和增强工艺理解提供了机会。
{"title":"Numerical modeling of fill-level and residence time in starve-fed single-screw extrusion: a dimensionality reduction study from a 3D CFD model to a 2D convection-diffusion model","authors":"Erik Holmen Olofsson, Ashley Dan, Michael Roland, Ninna Halberg Jokil, Rohit Ramachandran, Jesper Henri Hattel","doi":"10.1007/s00170-024-13378-1","DOIUrl":"https://doi.org/10.1007/s00170-024-13378-1","url":null,"abstract":"<p>This research delves into the numerical predictions of fill-level and residence time distribution (RTD) in starve-fed single-screw extrusion systems. Starve-feeding, predominantly used in ceramic extrusion, introduces challenges which this study seeks to address. Based on a physical industrial system, a comprehensive 3D computational fluid dynamics (CFD) model was developed using a porous media representation of the complex multi-hole plate die. Validations performed using real sensor data, accounting for partial wear on auger screw flights, show an ~11% discrepancy without accounting for screw wear and ~6% when considering it. A 2D convection-diffusion model was introduced as a dimensionality reduced order model (ROM) with the intention of bridging the gap between comprehensive CFD simulations and real-time applications. Central to this model’s prediction ability was both the velocity field transfer from the CFD model and calibration of the ROM diffusion coefficient such that a precise agreement of residence time distribution (RTD) curves could be obtained. Some discrepancies between the CFD and the ROM were observed, attributed to the loss of physical information of the system when transitioning from a higher fidelity CFD model to a semi-mechanistic ROM and the inherent complexities of the starved flow in the compression zone of the extruder. This research offers a comprehensive methodology and insights into reduced order modeling of starve-fed extrusion systems, presenting opportunities for real-time optimization and enhanced process understanding.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"24 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of critical process control parameters in MEX additive manufacturing of high-performance polyethylenimine: energy expenditure, mechanical expectations, and productivity aspects 高性能聚乙烯亚胺 MEX 增材制造关键工艺控制参数的优化:能量消耗、机械预期和生产率方面的问题
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-19 DOI: 10.1007/s00170-024-13418-w
Nectarios Vidakis, Markos Petousis, Mariza Spiridaki, Nikolaos Mountakis, Amalia Moutsopoulou, Emmanuel Kymakis

The demand for 3D-printed high-performance polymers (HPPs) is on the rise across sectors such as the defense, aerospace, and automotive industries. Polyethyleneimine (PEI) exhibits exceptional mechanical performance, thermal stability, and wear resistance. Herein, six generic and device-independent control parameters, that is, the infill percentage, deposition angle, layer height, travel speed, nozzle temperature, and bed temperature, were quantitatively evaluated for their impact on multiple response metrics related to energy consumption and mechanical strength. The balance between energy consumption and mechanical strength was investigated for the first time, contributing to the sustainability of the PEI material in 3D printing. This is critical considering that HPPs require high temperatures to be built using the 3D printing method. PEI filaments were fabricated and utilized in material extrusion 3D printing of 125 specimens for 25 different experimental runs (five replicates per run). The divergent impacts of the control parameters on the response metrics throughout the experimental course have been reported. The real weight of the samples varies from 1.06 to 1.82 g (71%), the real printing time from 214 to 2841 s (~ 1300%), the ultimate tensile strength from 15.17 up to 80.73 MPa (530%), and the consumed energy from 0.094 to 1.44 MJ (1500%). The regression and reduced quadratic equations were validated through confirmation runs (10 additional specimens). These outcomes have excessive engineering and industrial merit in determining the optimum control parameters, ensuring the sustainability of the process, and the desired functionality of the products.

Graphical Abstract

国防、航空航天和汽车等行业对 3D 打印高性能聚合物 (HPP) 的需求不断增加。聚乙烯亚胺(PEI)具有优异的机械性能、热稳定性和耐磨性。在此,我们定量评估了六个与设备无关的通用控制参数,即填充百分比、沉积角度、层高、移动速度、喷嘴温度和床层温度,以确定它们对能耗和机械强度相关的多个响应指标的影响。这是首次研究能耗和机械强度之间的平衡,有助于提高 PEI 材料在三维打印中的可持续性。考虑到使用三维打印方法制造 HPP 需要高温,这一点至关重要。在 25 次不同的实验运行(每次运行 5 个重复)中,制作了 PEI 长丝,并将其用于 125 个试样的材料挤压三维打印。报告显示,在整个实验过程中,控制参数对响应指标的影响各不相同。样品的实际重量从 1.06 克到 1.82 克(71%)不等,实际打印时间从 214 秒到 2841 秒(约 1300%)不等,极限拉伸强度从 15.17 到 80.73 兆帕(530%)不等,消耗能量从 0.094 到 1.44 兆焦(1500%)不等。通过确认运行(另外 10 个试样)验证了回归方程和简化二次方程。这些成果在确定最佳控制参数、确保工艺的可持续性和产品的预期功能方面具有很高的工程和工业价值。
{"title":"Optimization of critical process control parameters in MEX additive manufacturing of high-performance polyethylenimine: energy expenditure, mechanical expectations, and productivity aspects","authors":"Nectarios Vidakis, Markos Petousis, Mariza Spiridaki, Nikolaos Mountakis, Amalia Moutsopoulou, Emmanuel Kymakis","doi":"10.1007/s00170-024-13418-w","DOIUrl":"https://doi.org/10.1007/s00170-024-13418-w","url":null,"abstract":"<p>The demand for 3D-printed high-performance polymers (HPPs) is on the rise across sectors such as the defense, aerospace, and automotive industries. Polyethyleneimine (PEI) exhibits exceptional mechanical performance, thermal stability, and wear resistance. Herein, six generic and device-independent control parameters, that is, the infill percentage, deposition angle, layer height, travel speed, nozzle temperature, and bed temperature, were quantitatively evaluated for their impact on multiple response metrics related to energy consumption and mechanical strength. The balance between energy consumption and mechanical strength was investigated for the first time, contributing to the sustainability of the PEI material in 3D printing. This is critical considering that HPPs require high temperatures to be built using the 3D printing method. PEI filaments were fabricated and utilized in material extrusion 3D printing of 125 specimens for 25 different experimental runs (five replicates per run). The divergent impacts of the control parameters on the response metrics throughout the experimental course have been reported. The real weight of the samples varies from 1.06 to 1.82 g (71%), the real printing time from 214 to 2841 s (~ 1300%), the ultimate tensile strength from 15.17 up to 80.73 MPa (530%), and the consumed energy from 0.094 to 1.44 MJ (1500%). The regression and reduced quadratic equations were validated through confirmation runs (10 additional specimens). These outcomes have excessive engineering and industrial merit in determining the optimum control parameters, ensuring the sustainability of the process, and the desired functionality of the products.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"2014 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140172460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ repairing of continuous fiber-reinforced thermoplastic composite via multi-axial additive manufacturing 通过多轴向增材制造对连续纤维增强热塑性复合材料进行原位修复
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-18 DOI: 10.1007/s00170-024-13381-6

Abstract

The conventional repairing of CFRP (continuous fiber-reinforced polymer composites) includes complicated steps of patching, splicing, repairing, and post-curing. Intensive labor work needs to be conducted, and poor surface quality and weak interfacial adhesion are usually observed. This work mainly introduces an in situ online repairing method using AM (additive manufacturing) facilitated composite fabrication. With the advances of the robotic-assisted AM process, the surface roughness and accuracy during the repairing process can be evaluated online upon layer-by-layer process. In order to fulfill the efficient and on-site requirements for repairing damage in structural components, this study explores the method including in situ repairing, laser point clouds online collection, and repairing path planning based on multi-axial additive manufacturing of composites. A repair algorithm is proposed incorporating point clouds collection, measurement evaluation, and path planning. Furthermore, relevant mechanical measurements have been conducted, so as to assess the interface degree of recovery. A rapid online evaluation and surface conformal repairing method have been proposed to overcome the technical bottleneck of in situ automatic repairing of damaged composites. It expands the application of multi-axial robot-assisted CFRP AM.

摘要 CFRP(连续纤维增强聚合物复合材料)的传统修补包括修补、拼接、修补和后期固化等复杂步骤。需要进行密集的劳动作业,而且通常会出现表面质量差、界面附着力弱等问题。这项工作主要介绍一种利用 AM(快速成型制造)促进复合材料制造的原位在线修复方法。随着机器人辅助 AM 工艺的发展,修复过程中的表面粗糙度和精度可通过逐层工艺进行在线评估。为了满足结构部件损伤修复的高效性和现场要求,本研究探索了基于复合材料多轴增材制造的原位修复、激光点云在线采集和修复路径规划等方法。研究提出了一种集点云采集、测量评估和路径规划于一体的修复算法。此外,还进行了相关的机械测量,以评估界面的恢复程度。提出了一种快速在线评估和表面保形修复方法,克服了受损复合材料原位自动修复的技术瓶颈。它拓展了多轴机器人辅助 CFRP AM 的应用领域。
{"title":"In situ repairing of continuous fiber-reinforced thermoplastic composite via multi-axial additive manufacturing","authors":"","doi":"10.1007/s00170-024-13381-6","DOIUrl":"https://doi.org/10.1007/s00170-024-13381-6","url":null,"abstract":"<h3>Abstract</h3> <p>The conventional repairing of CFRP (continuous fiber-reinforced polymer composites) includes complicated steps of patching, splicing, repairing, and post-curing. Intensive labor work needs to be conducted, and poor surface quality and weak interfacial adhesion are usually observed. This work mainly introduces an in situ online repairing method using AM (additive manufacturing) facilitated composite fabrication. With the advances of the robotic-assisted AM process, the surface roughness and accuracy during the repairing process can be evaluated online upon layer-by-layer process. In order to fulfill the efficient and on-site requirements for repairing damage in structural components, this study explores the method including in situ repairing, laser point clouds online collection, and repairing path planning based on multi-axial additive manufacturing of composites. A repair algorithm is proposed incorporating point clouds collection, measurement evaluation, and path planning. Furthermore, relevant mechanical measurements have been conducted, so as to assess the interface degree of recovery. A rapid online evaluation and surface conformal repairing method have been proposed to overcome the technical bottleneck of in situ automatic repairing of damaged composites. It expands the application of multi-axial robot-assisted CFRP AM.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"57 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of submillimeter morphological variations on the wettability of WEDM-fabricated dual-scale roughness aluminum alloy 6082 surfaces 亚毫米形态变化对线切割制造的双尺度粗糙度铝合金 6082 表面润湿性的影响
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-18 DOI: 10.1007/s00170-024-13414-0
Dimitrios Skondras-Giousios, Panagiotis Karmiris-Obratański, Magdalena Jarosz, Beata Leszczyńska-Madej, Angelos P. Markopoulos

Deriving inspiration from natural hierarchical superhydrophobic surfaces, multi-scale structures were manufactured on AA6082 surfaces via wire electrical discharge machining (WEDM), featuring microscale texture due to spark erosion, superimposed upon a wide-range simple and more complicated geometries of submillimeter profiles. The effect that the higher-order scale morphologies had on wettability was investigated. The dual-scale morphology elevated the hydrophobicity of the surfaces compared to single-scale or unmodified surfaces, reaching superhydrophobicity (151°) in the case of a certain triangular profile. Rectangular and triangular profiles facilitated the higher contact angles, while re-entrant geometries were able to totally prevent cavity wetting. A correlation of static contact angle with roughness parameters of the larger scale such as Ra, Rz, Rp, Rsk, and Rku for certain geometry configurations was identified. Peak hydrophobicity resulted at Ra = 70 μm, Rz = 240 μm, and Rp = 160 μm concerning simple geometries. Negative Rsk and Rku > 1.5 affected negatively contact angle of samples. All investigated tested types were found to reach higher hydrophobicity at moderate drop volumes (5 μl). The fabricated samples were anisotropic in at least two directions, showing decreased hydrophobicity in the front, parallel to the groove direction. When tested in multi-directional dynamic tilting up to 90°, the more complicated geometries were able to retain resistance to spreading. All samples demonstrated superliquiphilicity with lower surface tension liquids, making them strong candidate in applications such as oil/water separation. Finally, all samples tested sustained their hydrophobic character subsequent to a 3-month atmospheric exposure period.

受天然分层超疏水表面的启发,通过线切割加工(WEDM)在 AA6082 表面制造了多阶结构,其特点是火花侵蚀产生的微观纹理叠加在亚毫米轮廓的各种简单和复杂几何形状上。研究了高阶尺度形态对润湿性的影响。与单尺度或未经改性的表面相比,双尺度形态提高了表面的疏水性,在某种三角形轮廓的情况下达到了超疏水性(151°)。矩形和三角形轮廓有利于获得更高的接触角,而重心几何形状则能完全防止空腔润湿。在某些几何结构中,静态接触角与更大规模的粗糙度参数(如 Ra、Rz、Rp、Rsk 和 Rku)之间存在相关性。就简单几何结构而言,Ra = 70 μm、Rz = 240 μm、Rp = 160 μm时疏水度达到峰值。负 Rsk 和 Rku > 1.5 对样品的接触角有负面影响。在中等滴量(5 μl)条件下,所有被测样品都具有较高的疏水性。制备的样品至少在两个方向上具有各向异性,在与沟槽方向平行的前端疏水性降低。在进行高达 90° 的多向动态倾斜测试时,较复杂的几何形状能够保持抗扩散性。所有样品对表面张力较低的液体都表现出超亲和性,使它们成为油/水分离等应用的有力候选材料。最后,所有测试样品在大气中暴露 3 个月后仍能保持其疏水特性。
{"title":"The influence of submillimeter morphological variations on the wettability of WEDM-fabricated dual-scale roughness aluminum alloy 6082 surfaces","authors":"Dimitrios Skondras-Giousios, Panagiotis Karmiris-Obratański, Magdalena Jarosz, Beata Leszczyńska-Madej, Angelos P. Markopoulos","doi":"10.1007/s00170-024-13414-0","DOIUrl":"https://doi.org/10.1007/s00170-024-13414-0","url":null,"abstract":"<p>Deriving inspiration from natural hierarchical superhydrophobic surfaces, multi-scale structures were manufactured on AA6082 surfaces via wire electrical discharge machining (WEDM), featuring microscale texture due to spark erosion, superimposed upon a wide-range simple and more complicated geometries of submillimeter profiles. The effect that the higher-order scale morphologies had on wettability was investigated. The dual-scale morphology elevated the hydrophobicity of the surfaces compared to single-scale or unmodified surfaces, reaching superhydrophobicity (151°) in the case of a certain triangular profile. Rectangular and triangular profiles facilitated the higher contact angles, while re-entrant geometries were able to totally prevent cavity wetting. A correlation of static contact angle with roughness parameters of the larger scale such as Ra, Rz, Rp, Rsk, and Rku for certain geometry configurations was identified. Peak hydrophobicity resulted at Ra = 70 μm, Rz = 240 μm, and Rp = 160 μm concerning simple geometries. Negative Rsk and Rku &gt; 1.5 affected negatively contact angle of samples. All investigated tested types were found to reach higher hydrophobicity at moderate drop volumes (5 μl). The fabricated samples were anisotropic in at least two directions, showing decreased hydrophobicity in the front, parallel to the groove direction. When tested in multi-directional dynamic tilting up to 90°, the more complicated geometries were able to retain resistance to spreading. All samples demonstrated superliquiphilicity with lower surface tension liquids, making them strong candidate in applications such as oil/water separation. Finally, all samples tested sustained their hydrophobic character subsequent to a 3-month atmospheric exposure period.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"48 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machining accuracy reliability optimization of three-axis CNC machine tools using doubly-weighted vector projection response surface method 使用双加权矢量投影响应面法优化三轴数控机床的加工精度可靠性
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-16 DOI: 10.1007/s00170-024-13426-w
Zhiming Wang, Wenbin Lu

The reasonable allocation of geometric errors of machine tools can improve their machining accuracy reliability (MAR). However, due to the complexity and high nonlinearity of limit state function (LSF) of MAR, the fitting accuracy is usually low when the traditional method is used to approximate LSF. To solve this problem, a doubly-weighted vector projection response surface (DWVPRS) method, which considers not only the approximation results of test sample points (TSPs) to LSF but the distances between TSPs and the most probable failure point (MPFP), is proposed. Using the reliability sensitivity analysis method, the key geometric errors were identified and optimized. Finally, taking a large gantry guideway grinding machine as an example to verifies the effectiveness and correctness of the DWVPRS method proposed in this paper, the results show that compared with the traditional methods, the DWVPRS method has the highest fitting accuracy to approximate LSF at the MPFP, and after the optimization of geometric accuracy, both the minimum and average reliability values of the grinding machine meet the design requirements.

合理分配机床的几何误差可以提高机床的加工精度可靠性(MAR)。然而,由于 MAR 的极限状态函数(LSF)的复杂性和高度非线性,使用传统方法逼近 LSF 时,拟合精度通常较低。为解决这一问题,本文提出了一种双加权向量投影响应曲面(DWVPRS)方法,该方法不仅考虑了测试样本点(TSP)与 LSF 的近似结果,还考虑了测试样本点与最可能故障点(MPFP)之间的距离。利用可靠性灵敏度分析方法,确定并优化了关键几何误差。最后,以大型龙门导轨磨床为例,验证了本文提出的 DWVPRS 方法的有效性和正确性,结果表明,与传统方法相比,DWVPRS 方法在 MPFP 处近似 LSF 的拟合精度最高,在几何精度优化后,磨床的最小可靠性值和平均可靠性值均满足设计要求。
{"title":"Machining accuracy reliability optimization of three-axis CNC machine tools using doubly-weighted vector projection response surface method","authors":"Zhiming Wang, Wenbin Lu","doi":"10.1007/s00170-024-13426-w","DOIUrl":"https://doi.org/10.1007/s00170-024-13426-w","url":null,"abstract":"<p>The reasonable allocation of geometric errors of machine tools can improve their machining accuracy reliability (MAR). However, due to the complexity and high nonlinearity of limit state function (LSF) of MAR, the fitting accuracy is usually low when the traditional method is used to approximate LSF. To solve this problem, a doubly-weighted vector projection response surface (DWVPRS) method, which considers not only the approximation results of test sample points (TSPs) to LSF but the distances between TSPs and the most probable failure point (MPFP), is proposed. Using the reliability sensitivity analysis method, the key geometric errors were identified and optimized. Finally, taking a large gantry guideway grinding machine as an example to verifies the effectiveness and correctness of the DWVPRS method proposed in this paper, the results show that compared with the traditional methods, the DWVPRS method has the highest fitting accuracy to approximate LSF at the MPFP, and after the optimization of geometric accuracy, both the minimum and average reliability values of the grinding machine meet the design requirements.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"27 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140150732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Advanced Manufacturing Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1