首页 > 最新文献

International Journal of Adaptive Control and Signal Processing最新文献

英文 中文
Adaptive Sliding Mode Control for Quadrotor Position Tracking Using a Novel Neural Feedback-Error-Learning Approach and a Flexible Sigmoid Activation Function 基于神经反馈-误差学习和柔性s型激活函数的四旋翼位置跟踪自适应滑模控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-25 DOI: 10.1002/acs.4047
Esfandiar Baghelani, Jafar Roshanian, Mohammad Teshnehlab

This paper presents a novel neural adaptive sliding mode control (ASMC) for robust quadrotor trajectory tracking under severe nonlinearities, measurement noise, and external disturbances. The proposed strategy integrates a neural feedback-error-learning (FEL) framework that adaptively tunes both the sliding surface and reaching law gains online via a dual-cost optimization scheme, thereby simultaneously reducing tracking errors and control effort. Two key contributions form the cornerstone of this work. First, the neural FEL framework enables the online optimization of control gains by employing distinct cost functions that separately address tracking performance and control effort. Second, the integration of a flexible sigmoid activation function in the ANN's output layer guarantees strictly positive control gains, which enhances system stability. Simulation studies demonstrate that, compared with a similar ANN-based ASMC approach, the proposed controller achieves approximately a 26% reduction in maximum overshoot, nearly a 49% decrease in settling time, and roughly a 64% reduction in steady-state error. In addition, significant improvements in tracking performance are observed, as evidenced by reduced root mean square error (RMSE) and mean absolute error (MAE) while maintaining comparable control effort. These quantitative enhancements underscore the potential of combining adaptive neural tuning with sliding mode control for high-performance and reliable quadrotor operation in complex, uncertain environments.

提出了一种新的神经网络自适应滑模控制(ASMC),用于四旋翼飞行器在严重非线性、测量噪声和外界干扰下的鲁棒轨迹跟踪。该策略集成了一个神经反馈-误差学习(FEL)框架,该框架通过双成本优化方案自适应调整滑动面和达到律增益,从而同时减少了跟踪误差和控制工作量。两个关键贡献构成了这项工作的基石。首先,神经FEL框架通过采用不同的成本函数来分别处理跟踪性能和控制努力,从而实现控制增益的在线优化。其次,在人工神经网络的输出层中集成一个灵活的sigmoid激活函数,保证了严格的正控制增益,增强了系统的稳定性。仿真研究表明,与类似的基于人工神经网络的ASMC方法相比,该控制器的最大超调量减少了约26%,稳定时间减少了近49%,稳态误差减少了约64%。此外,跟踪性能的显著改进被观察到,正如在保持可比控制努力的同时减少了均方根误差(RMSE)和平均绝对误差(MAE)所证明的那样。这些量化增强强调了将自适应神经调谐与滑模控制相结合的潜力,可以在复杂、不确定的环境中实现高性能、可靠的四旋翼操作。
{"title":"Adaptive Sliding Mode Control for Quadrotor Position Tracking Using a Novel Neural Feedback-Error-Learning Approach and a Flexible Sigmoid Activation Function","authors":"Esfandiar Baghelani,&nbsp;Jafar Roshanian,&nbsp;Mohammad Teshnehlab","doi":"10.1002/acs.4047","DOIUrl":"https://doi.org/10.1002/acs.4047","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents a novel neural adaptive sliding mode control (ASMC) for robust quadrotor trajectory tracking under severe nonlinearities, measurement noise, and external disturbances. The proposed strategy integrates a neural feedback-error-learning (FEL) framework that adaptively tunes both the sliding surface and reaching law gains online via a dual-cost optimization scheme, thereby simultaneously reducing tracking errors and control effort. Two key contributions form the cornerstone of this work. First, the neural FEL framework enables the online optimization of control gains by employing distinct cost functions that separately address tracking performance and control effort. Second, the integration of a flexible sigmoid activation function in the ANN's output layer guarantees strictly positive control gains, which enhances system stability. Simulation studies demonstrate that, compared with a similar ANN-based ASMC approach, the proposed controller achieves approximately a 26% reduction in maximum overshoot, nearly a 49% decrease in settling time, and roughly a 64% reduction in steady-state error. In addition, significant improvements in tracking performance are observed, as evidenced by reduced root mean square error (RMSE) and mean absolute error (MAE) while maintaining comparable control effort. These quantitative enhancements underscore the potential of combining adaptive neural tuning with sliding mode control for high-performance and reliable quadrotor operation in complex, uncertain environments.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 11","pages":"2287-2304"},"PeriodicalIF":3.8,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145530226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predefined-Time Control for PMSM Systems With Full-State Error Constraints 带全状态误差约束的永磁同步电机系统的预定义时间控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-22 DOI: 10.1002/acs.4049
Weiqi Liu, Shuai Sui, C. L. Philip Chen

This paper investigates the problem of fuzzy adaptive predefined-time full-state error constraints for permanent magnet synchronous motor systems. This study employs fuzzy logic systems (FLSs) to handle unknown nonlinear dynamic functions. A state observer based on fuzzy logic systems is utilized to estimate unmeasurable states. By utilizing a general potential Lyapunov function, predefined-time stability theory, combined with the dynamic surface control (DSC) technique and backstepping recursive technique, a predefined-time full-state error constraints control strategy is proposed. By applying predefined-time Lyapunov stability theory, it is proven that all signals in the closed-loop systems remain bounded and the tracking error converges within a predefined time. Finally, the effectiveness and feasibility of the proposed method are verified through simulation results.

研究了永磁同步电机系统的模糊自适应预定义时间全状态误差约束问题。本研究采用模糊逻辑系统(FLSs)处理未知的非线性动态函数。利用基于模糊逻辑系统的状态观测器对不可测状态进行估计。利用广义势Lyapunov函数、预定义时间稳定性理论,结合动态曲面控制技术和反演递推技术,提出了一种预定义时间全状态误差约束控制策略。应用预定义时间李雅普诺夫稳定性理论,证明了闭环系统中所有信号保持有界,跟踪误差在预定义时间内收敛。最后,通过仿真结果验证了所提方法的有效性和可行性。
{"title":"Predefined-Time Control for PMSM Systems With Full-State Error Constraints","authors":"Weiqi Liu,&nbsp;Shuai Sui,&nbsp;C. L. Philip Chen","doi":"10.1002/acs.4049","DOIUrl":"https://doi.org/10.1002/acs.4049","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper investigates the problem of fuzzy adaptive predefined-time full-state error constraints for permanent magnet synchronous motor systems. This study employs fuzzy logic systems (FLSs) to handle unknown nonlinear dynamic functions. A state observer based on fuzzy logic systems is utilized to estimate unmeasurable states. By utilizing a general potential Lyapunov function, predefined-time stability theory, combined with the dynamic surface control (DSC) technique and backstepping recursive technique, a predefined-time full-state error constraints control strategy is proposed. By applying predefined-time Lyapunov stability theory, it is proven that all signals in the closed-loop systems remain bounded and the tracking error converges within a predefined time. Finally, the effectiveness and feasibility of the proposed method are verified through simulation results.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 11","pages":"2305-2317"},"PeriodicalIF":3.8,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145530201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Network Based Adaptive Control for a Class of Uncertain Stochastic Nonlinear Systems 一类不确定随机非线性系统的神经网络自适应控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-22 DOI: 10.1002/acs.4052
Wenting Zha, Xinyu Li

This paper discusses the adaptive control problem for a class of stochastic nonlinear systems with uncertain nonlinear functions and uncertain measurement functions. First, a series of neural network functions are used to estimate the unknown nonlinear terms. Then reasonable assumptions about the unknown powers qi$$ {q}_i $$'s are raised based on the notion of the homogeneity with monotone degrees. By recursively constructing twice continuous differential Lyapunov functions, the adaptive feedback controller is designed to deal with the unknown coefficients. Based on the stochastic stability theorem, it is proved that all signals in the closed-loop system are bounded in probability. Furthermore, the effectiveness of the proposed control approach is verified by a practical example and a numerical simulation.

讨论了一类具有不确定非线性函数和不确定测量函数的随机非线性系统的自适应控制问题。首先,利用一系列神经网络函数对未知非线性项进行估计。在此基础上,基于单调度均匀性的概念,提出了关于未知幂q i $$ {q}_i $$的合理假设。通过递归构造两次连续Lyapunov微分函数,设计了自适应反馈控制器来处理未知系数。基于随机稳定性定理,证明了闭环系统中所有信号在概率上是有界的。最后,通过实例和数值仿真验证了所提控制方法的有效性。
{"title":"Neural Network Based Adaptive Control for a Class of Uncertain Stochastic Nonlinear Systems","authors":"Wenting Zha,&nbsp;Xinyu Li","doi":"10.1002/acs.4052","DOIUrl":"https://doi.org/10.1002/acs.4052","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper discusses the adaptive control problem for a class of stochastic nonlinear systems with uncertain nonlinear functions and uncertain measurement functions. First, a series of neural network functions are used to estimate the unknown nonlinear terms. Then reasonable assumptions about the unknown powers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>q</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>i</mi>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$$ {q}_i $$</annotation>\u0000 </semantics></math>'s are raised based on the notion of the homogeneity with monotone degrees. By recursively constructing twice continuous differential Lyapunov functions, the adaptive feedback controller is designed to deal with the unknown coefficients. Based on the stochastic stability theorem, it is proved that all signals in the closed-loop system are bounded in probability. Furthermore, the effectiveness of the proposed control approach is verified by a practical example and a numerical simulation.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 11","pages":"2360-2371"},"PeriodicalIF":3.8,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145530200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics and Passivity-Based Adaptive Synchronization of a New Complex Hyperchaotic System 基于动力学和被动的新型复杂超混沌系统自适应同步
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-17 DOI: 10.1002/acs.4051
Yan Zhou, Ruimei Li, Zhuang Cui

A five-dimensional hyperchaotic system is proposed based on a three-dimensional autonomous chaotic system by introducing two new variables. Based on Lyapunov stability theory and passivity theory, the investigation looks into passivity-based adaptive chaotic synchronization. Through theoretical analysis and numerical simulation, the dissipation, phase diagrams, Lyapunov exponents, and bifurcation diagrams of the system were studied in detail to analyze its dynamic characteristics. The analog circuit simulation of the new five-dimensional system is carried out by Multisim. The simulation results are verified by comparing them with the numerical simulation results in MATLAB. The adaptive control method combines passive and adaptive control theories to provide a new perspective and solution for the synchronization control of chaotic systems. The parameter estimation and updating laws not only improve the flexibility of synchronization control but also provide strong support for subsequent experimental studies and practical applications. The effectiveness of the proposed method is verified by numerical simulation, which proves that the method performs well in coping with the synchronization problem of complex hyperchaotic systems with uncertain parameters.

在三维自治混沌系统的基础上,通过引入两个新变量,提出了一个五维超混沌系统。基于李雅普诺夫稳定性理论和无源性理论,研究了基于无源的自适应混沌同步。通过理论分析和数值模拟,详细研究了系统的耗散、相图、李雅普诺夫指数和分岔图,分析了系统的动态特性。利用Multisim软件对新型五维系统进行了模拟电路仿真。将仿真结果与MATLAB中的数值仿真结果进行对比,验证了仿真结果的正确性。自适应控制方法将被动控制理论和自适应控制理论相结合,为混沌系统的同步控制提供了新的视角和解决方案。参数估计和更新规律不仅提高了同步控制的灵活性,而且为后续的实验研究和实际应用提供了有力的支持。数值仿真验证了所提方法的有效性,证明该方法能较好地解决参数不确定的复杂超混沌系统的同步问题。
{"title":"Dynamics and Passivity-Based Adaptive Synchronization of a New Complex Hyperchaotic System","authors":"Yan Zhou,&nbsp;Ruimei Li,&nbsp;Zhuang Cui","doi":"10.1002/acs.4051","DOIUrl":"https://doi.org/10.1002/acs.4051","url":null,"abstract":"<div>\u0000 \u0000 <p>A five-dimensional hyperchaotic system is proposed based on a three-dimensional autonomous chaotic system by introducing two new variables. Based on Lyapunov stability theory and passivity theory, the investigation looks into passivity-based adaptive chaotic synchronization. Through theoretical analysis and numerical simulation, the dissipation, phase diagrams, Lyapunov exponents, and bifurcation diagrams of the system were studied in detail to analyze its dynamic characteristics. The analog circuit simulation of the new five-dimensional system is carried out by Multisim. The simulation results are verified by comparing them with the numerical simulation results in MATLAB. The adaptive control method combines passive and adaptive control theories to provide a new perspective and solution for the synchronization control of chaotic systems. The parameter estimation and updating laws not only improve the flexibility of synchronization control but also provide strong support for subsequent experimental studies and practical applications. The effectiveness of the proposed method is verified by numerical simulation, which proves that the method performs well in coping with the synchronization problem of complex hyperchaotic systems with uncertain parameters.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 11","pages":"2345-2359"},"PeriodicalIF":3.8,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145530084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probability Density Function Control-Based Deep Ensemble Learning for Wind Energy System Power Forecasting 基于概率密度函数控制的深度集成学习风电系统功率预测
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-16 DOI: 10.1002/acs.4050
Jianfang Li, Li Jia, Chengyu Zhou, Bo Zhu

Accurate and reliable wind power forecasting plays a crucial role in the utilization of wind energy. However, the complexity of the nonlinear process of converting wind energy into power alters the statistical distributions of errors (known as concept drift), making the accomplishment of this task greatly challenging. For this purpose, we devise an innovative approach for predicting wind power based on the “decomposition-prediction-ensemble” framework. First, the raw wind power data is broken down into multiple intrinsic mode functions (IMFs) via improved variational mode decomposition, and the dimensionality of these IMFs is reduced by adopting kernel principal component analysis, thus significantly simplifying the intricacies of the multidimensional IMF data. Then, considering the asymmetric characteristic of modeling error, a probability density function control- based temporal convolutional network is developed for each subseries, where the modeling error PDF is controlled to close to an ideal Gaussian distribution, so that the prediction model parameters are adjusted. Finally, the multiple subseries forecasting models are integrated by a PDF-based differential evolution ensemble strategy. And the convergence of ensemble strategy is analyzed from a mathematical point of view. As a result, the proposed method can break through the limitation of symmetric loss capturing merely the second moment information, alleviating distribution shift of error to make an unbiased estimate. Real-world wind farm data are utilized for empirical analysis, and the simulation outcomes verify the high accuracy and generalization ability of the proposed model.

准确可靠的风电功率预测对风能的利用起着至关重要的作用。然而,将风能转化为电能的非线性过程的复杂性改变了误差的统计分布(称为概念漂移),使得这项任务的完成具有很大的挑战性。为此,我们设计了一种基于“分解-预测-集成”框架的预测风电的创新方法。首先,通过改进的变分模态分解将原始风电数据分解为多个内禀模态函数(IMFs),并采用核主成分分析对这些内禀模态函数进行降维,从而大大简化了多维IMF数据的复杂性。然后,考虑到建模误差的非对称特性,针对各子序列构建了基于概率密度函数控制的时间卷积网络,将建模误差PDF控制到接近理想高斯分布,从而对预测模型参数进行调整。最后,采用基于pdf的差分进化集成策略对多个子序列预测模型进行集成。从数学的角度分析了集成策略的收敛性。因此,该方法突破了对称损失仅捕获二阶矩信息的限制,减轻了误差的分布偏移,实现了无偏估计。利用实际风电场数据进行实证分析,仿真结果验证了所提模型具有较高的准确性和泛化能力。
{"title":"Probability Density Function Control-Based Deep Ensemble Learning for Wind Energy System Power Forecasting","authors":"Jianfang Li,&nbsp;Li Jia,&nbsp;Chengyu Zhou,&nbsp;Bo Zhu","doi":"10.1002/acs.4050","DOIUrl":"https://doi.org/10.1002/acs.4050","url":null,"abstract":"<div>\u0000 \u0000 <p>Accurate and reliable wind power forecasting plays a crucial role in the utilization of wind energy. However, the complexity of the nonlinear process of converting wind energy into power alters the statistical distributions of errors (known as concept drift), making the accomplishment of this task greatly challenging. For this purpose, we devise an innovative approach for predicting wind power based on the “decomposition-prediction-ensemble” framework. First, the raw wind power data is broken down into multiple intrinsic mode functions (IMFs) via improved variational mode decomposition, and the dimensionality of these IMFs is reduced by adopting kernel principal component analysis, thus significantly simplifying the intricacies of the multidimensional IMF data. Then, considering the asymmetric characteristic of modeling error, a probability density function control- based temporal convolutional network is developed for each subseries, where the modeling error PDF is controlled to close to an ideal Gaussian distribution, so that the prediction model parameters are adjusted. Finally, the multiple subseries forecasting models are integrated by a PDF-based differential evolution ensemble strategy. And the convergence of ensemble strategy is analyzed from a mathematical point of view. As a result, the proposed method can break through the limitation of symmetric loss capturing merely the second moment information, alleviating distribution shift of error to make an unbiased estimate. Real-world wind farm data are utilized for empirical analysis, and the simulation outcomes verify the high accuracy and generalization ability of the proposed model.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 11","pages":"2318-2344"},"PeriodicalIF":3.8,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145530115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Predictor-Based Event-Triggered Control for Stochastic Systems With Time-Varying Output Delay 基于动态预测器的时变时滞随机系统事件触发控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-14 DOI: 10.1002/acs.4043
Xuetao Yang, Anjie Li, Quanxin Zhu, Yueyue Duan

This paper presents a novel dynamic predictor-based event-triggered control strategy to investigate the mean-square exponential stabilization for a class of stochastic systems with time-varying output delay. First, a dynamic prediction scheme is introduced to deal with the problem of time delay, where the segmentation precision is no longer a constant, but a dynamically changing value. Second, an event-triggering mechanism with time regularization is proposed to avoid the Zeno phenomenon and guarantee the exponential convergence of the segmentation precision in the prediction scheme. Then, a predictor-based event-triggered control is designed to achieve the mean-square exponential stabilization of stochastic systems. Finally, a single-link robot model is given to show the effectiveness of the obtained results.

本文提出了一种基于动态预测器的事件触发控制策略,研究了一类具有时变输出时滞的随机系统的均方指数镇定问题。首先,引入一种动态预测方案来解决时间延迟问题,使得分割精度不再是一个常数,而是一个动态变化的值;其次,提出了一种具有时间正则化的事件触发机制,避免了预测方案中的芝诺现象,保证了分割精度的指数收敛;然后,设计了一种基于预测器的事件触发控制来实现随机系统的均方指数镇定。最后,给出了一个单连杆机器人模型,验证了所得结果的有效性。
{"title":"Dynamic Predictor-Based Event-Triggered Control for Stochastic Systems With Time-Varying Output Delay","authors":"Xuetao Yang,&nbsp;Anjie Li,&nbsp;Quanxin Zhu,&nbsp;Yueyue Duan","doi":"10.1002/acs.4043","DOIUrl":"https://doi.org/10.1002/acs.4043","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents a novel dynamic predictor-based event-triggered control strategy to investigate the mean-square exponential stabilization for a class of stochastic systems with time-varying output delay. First, a dynamic prediction scheme is introduced to deal with the problem of time delay, where the segmentation precision is no longer a constant, but a dynamically changing value. Second, an event-triggering mechanism with time regularization is proposed to avoid the Zeno phenomenon and guarantee the exponential convergence of the segmentation precision in the prediction scheme. Then, a predictor-based event-triggered control is designed to achieve the mean-square exponential stabilization of stochastic systems. Finally, a single-link robot model is given to show the effectiveness of the obtained results.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 11","pages":"2278-2286"},"PeriodicalIF":3.8,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145530009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Force-Velocity Evaluation Based Model-Free Sliding-Mode Control of an Active Cable Driven Shoulder Exoskeleton 基于力-速度评估的有源电缆驱动肩外骨骼无模型滑模控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-10 DOI: 10.1002/acs.4048
Yuxuan Liu, Haoping Wang, Yang Tian, Laurent Peyrodie, Nicolaï Christov

Occupational active cable-driven shoulder exoskeletons have many advantages compared to the traditional ones, but strong nonlinearity and complexity in modeling prevent the accurate torque transmission through Bowden cable, which is not conducive to its wide application. Besides, there is an urgent need to develop a more intelligent strategy for human-robot interaction. In this paper, to overcome the dependency on the Bowden cable model and achieve the assist-as-needed (AAN) function during the application of the shoulder exoskeleton, a force-velocity evaluation-based model-free sliding mode control (FVE-MFSMC) is proposed. The controller contains a force-velocity evaluation-based fuzzy admittance control (FVEFAC) strategy as the outer loop controller to determine the needed joint angle of the exoskeleton and a model-free super-twisting global terminal sliding mode control (MF-STGTC) as the inner loop controller to realize accurate motion control. In the outer FVEFAC, an admittance-based reference angle is generated to achieve the needed assistance level. Both the interaction force and the angular velocity of the arm are considered to be the evaluation elements of the subject's intention, and then fuzzy logic is applied to adjust the stiffness parameter based on the evaluated subject's intention. In the inner MF-STGTC, the ultra-local model is used to approximate the original complex system, which avoids the accurate modeling of the Bowden cable. Time-delay estimation is adopted to compensate for the lumped uncertainties, and a global fast terminal sliding mode control algorithm with super-twisting design is used to stabilize the system while minimizing the chattering problem in traditional terminal sliding mode control. Co-simulation experiments through MATLAB/Simulink and SolidWorks are carried out to demonstrate the performance of the proposed MF-STGTC and FVE-MFSMC, where the motion control can achieve the reduction percentage in root mean square error (RMSE) of tracking errors from 34% to 89% under fixed and time-varying Bowden cable disturbance.

职业有源索驱动肩部外骨骼与传统外骨骼相比具有许多优点,但较强的非线性和建模的复杂性阻碍了通过鲍登索实现准确的扭矩传递,不利于其广泛应用。此外,迫切需要开发一种更智能的人机交互策略。为了克服肩外骨骼在应用过程中对鲍登索模型的依赖,实现按需辅助(AAN)功能,本文提出了一种基于力-速度评估的无模型滑模控制(FVE-MFSMC)。该控制器采用基于力-速度评估的模糊导纳控制(FVEFAC)策略作为外环控制器确定外骨骼所需的关节角度,采用无模型超扭转全局终端滑模控制(MF-STGTC)作为内环控制器实现精确运动控制。在外部FVEFAC中,生成基于导纳的参考角以达到所需的辅助水平。将机械臂的相互作用力和角速度作为主体意图的评价要素,利用模糊逻辑根据被评价主体的意图来调整刚度参数。在内部MF-STGTC中,采用超局部模型逼近原复杂系统,避免了鲍登电缆的精确建模。采用时滞估计补偿集总不确定性,采用超扭转设计的全局快速终端滑模控制算法实现系统稳定,同时最大限度地降低了传统终端滑模控制中的抖振问题。通过MATLAB/Simulink和SolidWorks进行联合仿真实验,验证了所提出的MF-STGTC和FVE-MFSMC的性能,在固定和时变鲍登电缆干扰下,运动控制可以将跟踪误差的均方根误差(RMSE)从34%降低到89%。
{"title":"Force-Velocity Evaluation Based Model-Free Sliding-Mode Control of an Active Cable Driven Shoulder Exoskeleton","authors":"Yuxuan Liu,&nbsp;Haoping Wang,&nbsp;Yang Tian,&nbsp;Laurent Peyrodie,&nbsp;Nicolaï Christov","doi":"10.1002/acs.4048","DOIUrl":"https://doi.org/10.1002/acs.4048","url":null,"abstract":"<div>\u0000 \u0000 <p>Occupational active cable-driven shoulder exoskeletons have many advantages compared to the traditional ones, but strong nonlinearity and complexity in modeling prevent the accurate torque transmission through Bowden cable, which is not conducive to its wide application. Besides, there is an urgent need to develop a more intelligent strategy for human-robot interaction. In this paper, to overcome the dependency on the Bowden cable model and achieve the assist-as-needed (AAN) function during the application of the shoulder exoskeleton, a force-velocity evaluation-based model-free sliding mode control (FVE-MFSMC) is proposed. The controller contains a force-velocity evaluation-based fuzzy admittance control (FVEFAC) strategy as the outer loop controller to determine the needed joint angle of the exoskeleton and a model-free super-twisting global terminal sliding mode control (MF-STGTC) as the inner loop controller to realize accurate motion control. In the outer FVEFAC, an admittance-based reference angle is generated to achieve the needed assistance level. Both the interaction force and the angular velocity of the arm are considered to be the evaluation elements of the subject's intention, and then fuzzy logic is applied to adjust the stiffness parameter based on the evaluated subject's intention. In the inner MF-STGTC, the ultra-local model is used to approximate the original complex system, which avoids the accurate modeling of the Bowden cable. Time-delay estimation is adopted to compensate for the lumped uncertainties, and a global fast terminal sliding mode control algorithm with super-twisting design is used to stabilize the system while minimizing the chattering problem in traditional terminal sliding mode control. Co-simulation experiments through MATLAB/Simulink and SolidWorks are carried out to demonstrate the performance of the proposed MF-STGTC and FVE-MFSMC, where the motion control can achieve the reduction percentage in root mean square error (RMSE) of tracking errors from 34% to 89% under fixed and time-varying Bowden cable disturbance.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 10","pages":"2246-2261"},"PeriodicalIF":3.8,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145297121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Fuzzy-Based Event-Triggered Consensus of Switched Nonlinear Multiagent Systems With Communication Faults and State-Dependent Switchings 具有通信故障和状态依赖切换的切换非线性多智能体系统的自适应模糊事件触发一致性
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-06 DOI: 10.1002/acs.4046
Ronghao Zhang, Shi Li

In this article, the event-triggered adaptive fuzzy fault-tolerant consensus problem for switched nonlinear multiagent systems (SNMASs) with communication faults and state-dependent switchings is considered. To approximate the unknown nonlinear functions in the systems, an adaptive fuzzy control strategy is developed. To reduce the wastage of communication resources, the event-triggered control (ETC) method is used, and a novel ETC strategy independent of the subsystems' mode is designed. Moreover, state-dependent switching laws are designed using the convex combination technology and single Lyapunov function method to ensure the stability of all agents. Finally, to verify the effectiveness of the developed results, the proposed method is applied to a SNMAS with all unstabilizable subsystems.

研究了具有通信故障和状态依赖切换的交换非线性多智能体系统(SNMASs)的事件触发自适应模糊容错一致性问题。为了逼近系统中的未知非线性函数,提出了一种自适应模糊控制策略。为了减少通信资源的浪费,采用事件触发控制(ETC)方法,设计了一种独立于子系统模式的ETC策略。此外,采用凸组合技术和单Lyapunov函数法设计状态相关的切换律,以保证所有智能体的稳定性。最后,为了验证所提方法的有效性,将所提方法应用于具有所有不稳定子系统的SNMAS。
{"title":"Adaptive Fuzzy-Based Event-Triggered Consensus of Switched Nonlinear Multiagent Systems With Communication Faults and State-Dependent Switchings","authors":"Ronghao Zhang,&nbsp;Shi Li","doi":"10.1002/acs.4046","DOIUrl":"https://doi.org/10.1002/acs.4046","url":null,"abstract":"<div>\u0000 \u0000 <p>In this article, the event-triggered adaptive fuzzy fault-tolerant consensus problem for switched nonlinear multiagent systems (SNMASs) with communication faults and state-dependent switchings is considered. To approximate the unknown nonlinear functions in the systems, an adaptive fuzzy control strategy is developed. To reduce the wastage of communication resources, the event-triggered control (ETC) method is used, and a novel ETC strategy independent of the subsystems' mode is designed. Moreover, state-dependent switching laws are designed using the convex combination technology and single Lyapunov function method to ensure the stability of all agents. Finally, to verify the effectiveness of the developed results, the proposed method is applied to a SNMAS with all unstabilizable subsystems.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 10","pages":"2233-2245"},"PeriodicalIF":3.8,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145296982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement Learning Based Adaptive Predefined-Time Optimal Control for Strict-Feedback Nonlinear Systems 基于强化学习的严格反馈非线性系统自适应预定义时间最优控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-06 DOI: 10.1002/acs.4044
Yitong Jin, Fang Wang, Xueyi Zhang

An adaptive predefined-time optimal control method based on fuzzy logic system (FLS) is presented in this paper for strict-feedback nonlinear systems. The settling time of predefined-time control can be set in advance, which is independent of the design parameters and initial conditions. The optimal control relies on solving the Hamilton-Jacobi-Bellman (HJB) equation, which is difficult to calculate directly due to its inherent nonlinearity. To overcome this difficulty, the reinforcement learning (RL) strategy of actor-critic structure is used, where the actor and critic are used to achieve control behavior and evaluate system performance, respectively. In addition, the RL algorithm is simplified, and the two conditions of persistence of excitation and known dynamics required for the most optimal controls are eliminated. The main objective of this article is to ensure that the tracking error converges to a small neighborhood near the origin within a predefined time, while minimizing energy consumption. Finally, the efficiency of the suggested control strategy is demonstrated by using a practical simulation example.

针对严格反馈非线性系统,提出了一种基于模糊逻辑系统的自适应预定义时间最优控制方法。预定义时间控制的沉降时间可以预先设定,与设计参数和初始条件无关。最优控制依赖于求解Hamilton-Jacobi-Bellman (HJB)方程,由于其固有的非线性,难以直接计算。为了克服这一困难,采用了行动者-批评者结构的强化学习(RL)策略,其中行动者和批评者分别用于实现控制行为和评估系统性能。此外,对RL算法进行了简化,消除了最优控制所需的激励持续性和已知动力学两个条件。本文的主要目标是确保跟踪误差在预定义的时间内收敛到原点附近的小邻域,同时最小化能量消耗。最后,通过一个实际的仿真实例验证了所提控制策略的有效性。
{"title":"Reinforcement Learning Based Adaptive Predefined-Time Optimal Control for Strict-Feedback Nonlinear Systems","authors":"Yitong Jin,&nbsp;Fang Wang,&nbsp;Xueyi Zhang","doi":"10.1002/acs.4044","DOIUrl":"https://doi.org/10.1002/acs.4044","url":null,"abstract":"<div>\u0000 \u0000 <p>An adaptive predefined-time optimal control method based on fuzzy logic system (FLS) is presented in this paper for strict-feedback nonlinear systems. The settling time of predefined-time control can be set in advance, which is independent of the design parameters and initial conditions. The optimal control relies on solving the Hamilton-Jacobi-Bellman (HJB) equation, which is difficult to calculate directly due to its inherent nonlinearity. To overcome this difficulty, the reinforcement learning (RL) strategy of actor-critic structure is used, where the actor and critic are used to achieve control behavior and evaluate system performance, respectively. In addition, the RL algorithm is simplified, and the two conditions of persistence of excitation and known dynamics required for the most optimal controls are eliminated. The main objective of this article is to ensure that the tracking error converges to a small neighborhood near the origin within a predefined time, while minimizing energy consumption. Finally, the efficiency of the suggested control strategy is demonstrated by using a practical simulation example.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 10","pages":"2206-2218"},"PeriodicalIF":3.8,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145296981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Leader-Follower Formation Fault-Tolerant Control Using Reinforcement Learning for a Class of Nonlinear Multi-Agent Systems Having Actuator Failure 一类具有执行器故障的非线性多智能体系统的强化学习优化Leader-Follower编队容错控制
IF 3.8 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2025-07-01 DOI: 10.1002/acs.4045
Lingyu Zhang, Guanlong Li, Rongkai Liu, Guoxing Wen

This work aims to address the optimized formation fault-tolerant control issue by utilizing reinforcement learning (RL) for the single integral dynamic multi-agent system (MAS) having actuator faults. Because actuator faults have a direct effect on system performance and stability, it is essential to take the fault-tolerant mechanism as a design principle of nonlinear system control. Especially in the optimal control of MAS, actuator faults frequently occur due to real-time information exchange and high control performance requirements. To address the problem, the distributed RL and adaptive estimation are combined, where the RL algorithm is used to generate the optimized formation control protocol, and the adaptive learning is used to estimate the time-varying efficiency factor and bias signal in the faulty actuator model. Finally, it is demonstrated through theory and simulation that the proposed optimized control has the fault-tolerant capability and ensures system stability.

本研究旨在利用强化学习(RL)解决具有执行器故障的单积分动态多智能体系统(MAS)的优化编队容错控制问题。由于执行器故障直接影响系统的性能和稳定性,因此将容错机构作为非线性系统控制的设计原则是必要的。特别是在MAS的最优控制中,由于信息的实时交换和对控制性能的高要求,执行器故障频繁发生。为了解决这一问题,将分布式强化学习和自适应估计相结合,利用强化学习算法生成优化的编队控制协议,利用自适应学习估计故障执行器模型中的时变效率因子和偏置信号。最后,通过理论和仿真验证了所提出的优化控制具有容错能力,保证了系统的稳定性。
{"title":"Optimized Leader-Follower Formation Fault-Tolerant Control Using Reinforcement Learning for a Class of Nonlinear Multi-Agent Systems Having Actuator Failure","authors":"Lingyu Zhang,&nbsp;Guanlong Li,&nbsp;Rongkai Liu,&nbsp;Guoxing Wen","doi":"10.1002/acs.4045","DOIUrl":"https://doi.org/10.1002/acs.4045","url":null,"abstract":"<div>\u0000 \u0000 <p>This work aims to address the optimized formation fault-tolerant control issue by utilizing reinforcement learning (RL) for the single integral dynamic multi-agent system (MAS) having actuator faults. Because actuator faults have a direct effect on system performance and stability, it is essential to take the fault-tolerant mechanism as a design principle of nonlinear system control. Especially in the optimal control of MAS, actuator faults frequently occur due to real-time information exchange and high control performance requirements. To address the problem, the distributed RL and adaptive estimation are combined, where the RL algorithm is used to generate the optimized formation control protocol, and the adaptive learning is used to estimate the time-varying efficiency factor and bias signal in the faulty actuator model. Finally, it is demonstrated through theory and simulation that the proposed optimized control has the fault-tolerant capability and ensures system stability.</p>\u0000 </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 10","pages":"2219-2232"},"PeriodicalIF":3.8,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145296326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Adaptive Control and Signal Processing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1