Accurate phenological stage classification is crucial for addressing global challenges to food security posed by climate change, water scarcity, and land degradation. It enables precision agriculture by optimizing key interventions such as irrigation, fertilization, and pest control. While deep learning offers powerful tools, existing methods face four key limitations: reliance on narrow features and models, limited long-term forecasting capability, computational inefficiency, and opaque, unvalidated explanations. To overcome these limitations, this paper presents a deep learning framework for phenology classification, utilizing multi-source time series data from satellite imagery, meteorological stations, and field observations. The approach emphasizes temporal consistency, spatial adaptability, computational efficiency, and explainability. A feature engineering pipeline extracts temporal dynamics via lag features, rolling statistics, Fourier transforms and seasonal encodings. Feature selection combines incremental strategies with classical filter, wrapper, and embedded methods. Deep learning models across multiple paradigms-feedforward, recurrent, convolutional, and attention-based-are benchmarked under multi-horizon forecasting tasks. To reduce model complexity while preserving performance where possible, the framework employs knowledge distillation, transferring predictive knowledge from complex teacher models to compact and deployable student models. For model interpretability, a new Hybrid SHAP-Association Rule Explainability approach is proposed, integrating model-driven and data-driven explanations. Agreement between views is quantified using trust metrics: precision@k, coverage, and Jaccard similarity, with a retraining-based validation mechanism. Experiments on phenology data from Andalusia demonstrate high accuracy, strong generalizability, trustworthy explanations and resource-efficient phenology monitoring in agricultural systems.
扫码关注我们
求助内容:
应助结果提醒方式:
