Conventional biomedical analysers are replaced by digital microfluidic biochips and they are adequate to integrate different biomedical functions, essential for diverse bioassay operations. From the last decade, microfluidic biochips are getting plenty of acceptances in the field of miscellaneous healthcare sectors like DNA analysis, drug discovery and clinical diagnosis. These devices are also bearing a vital role in the area of safety critical applications such as food safety testing, air quality monitoring etc. As these devices are used in safety critical applications, clinical diagnosis and real-time biomolecular assay operations, these must have properties like precision, reliability and robustness. To accept it for discriminating purposes, the microfluidic device must endorse its preciseness and strength by following sublime testing strategy. Here, an optimized droplet traversal technique is proposed to investigate the multiple defective electrodes of a digital microfluidic biochip by embedding boundary cum row traversal and KNIGHT traversal procedure (based on the famous Knight Tour Problem). The proposed approach also enumerates the traversal time for a fault-free biochip. In addition to identifying the faulty electrodes, a Module Sequencing Graph based reconfiguration technique is proposed here to reinstate the device for normal bioassay operation.
{"title":"An optimized knight traversal technique to detect multiple faults and Module Sequence Graph based reconfiguration of microfluidic biochip","authors":"Basudev Saha, Mukta Majumder","doi":"10.1049/cdt2.12004","DOIUrl":"10.1049/cdt2.12004","url":null,"abstract":"<p>Conventional biomedical analysers are replaced by digital microfluidic biochips and they are adequate to integrate different biomedical functions, essential for diverse bioassay operations. From the last decade, microfluidic biochips are getting plenty of acceptances in the field of miscellaneous healthcare sectors like DNA analysis, drug discovery and clinical diagnosis. These devices are also bearing a vital role in the area of safety critical applications such as food safety testing, air quality monitoring etc. As these devices are used in safety critical applications, clinical diagnosis and real-time biomolecular assay operations, these must have properties like precision, reliability and robustness. To accept it for discriminating purposes, the microfluidic device must endorse its preciseness and strength by following sublime testing strategy. Here, an optimized droplet traversal technique is proposed to investigate the multiple defective electrodes of a digital microfluidic biochip by embedding boundary cum row traversal and KNIGHT traversal procedure (based on the famous Knight Tour Problem). The proposed approach also enumerates the traversal time for a fault-free biochip. In addition to identifying the faulty electrodes, a Module Sequencing Graph based reconfiguration technique is proposed here to reinstate the device for normal bioassay operation.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 1","pages":"1-11"},"PeriodicalIF":1.2,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72622469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The moduli 2n multiplier plays a vital role in the design of a residue number system processor. When the radix-8 booth-encoded technique is adopted to design this kind of multipliers, the hard multiple generator is crucial in terms of area, power, and delay. This paper presents an area and power optimization technique for this kind of generators and its implementation in modulo 2n multiplier to improve the performance. The proposed hard multiplier generator (HMG) uses only ⌈log2n⌉-2 prefix levels and total prefix operators. The synthesis of the proposed architectures is done using the Cadence tool at Generic Process design Kit-45 nm technology. The post-synthesis result of HMG shows 20.27%–36.57%, 2.43%–18.41% saving in area and power, respectively, while the post-layout result of HMG shows 20.01%–35.26% and 1.33%–29.44% saving in area and power, respectively. The post-layout result of modulo 2nmultiplier using optimized HMG shows 7.88%–10.04%, 7.87%–12.50%, 3.09%–11.29%, and 3.11%–8.79% saving in area, power, switching energy and Area delay product, respectively.
{"title":"A radix-8 modulo 2n multiplier using area and power-optimized hard multiple generator","authors":"Naveen Kr. Kabra, Zuber M. Patel","doi":"10.1049/cdt2.12001","DOIUrl":"10.1049/cdt2.12001","url":null,"abstract":"<p>The moduli 2<sup><i>n</i></sup> multiplier plays a vital role in the design of a residue number system processor. When the radix-8 booth-encoded technique is adopted to design this kind of multipliers, the hard multiple generator is crucial in terms of area, power, and delay. This paper presents an area and power optimization technique for this kind of generators and its implementation in modulo 2<sup><i>n</i></sup> multiplier to improve the performance. The proposed hard multiplier generator (HMG) uses only ⌈<i>log</i><sub>2</sub><i>n</i>⌉-2 prefix levels and total prefix operators. The synthesis of the proposed architectures is done using the Cadence tool at Generic Process design Kit-45 nm technology. The post-synthesis result of HMG shows 20.27%–36.57%, 2.43%–18.41% saving in area and power, respectively, while the post-layout result of HMG shows 20.01%–35.26% and 1.33%–29.44% saving in area and power, respectively. The post-layout result of modulo 2<sup><i>n</i></sup>multiplier using optimized HMG shows 7.88%–10.04%, 7.87%–12.50%, 3.09%–11.29%, and 3.11%–8.79% saving in area, power, switching energy and Area delay product, respectively.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 1","pages":"36-55"},"PeriodicalIF":1.2,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78496049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Software-based self-test (SBST) method is one of the widely used test techniques in processors. SBST scheme provides high fault coverage but incurs long detection latencies in case of intermittent faults (IFs) in online testing mode, due to large size and longer execution time of the test codes. A study of fragmented SBST testing approaches is conducted to select the most efficient fragmented testing strategy. For the selected fragmented SBST method, a reliable set of SBST code fragments with minimal fault detection latency is determined. However, it incurs inconsiderable overall fault coverage drop, compared to the coverage of the complete SBST test code. From experimental results on MIPS Processor, a set of 20 fragments of test tasks with 80% individual fault coverage was observed to have the highest reliability of all sets of fragments. A larger test task (i.e. complete SBST test code) with 96.3% coverage and a test period of 8 ms was replaced by these 20 fragments, which provided an overall coverage of 96% with an individual test period of 0.4 ms, to detect the same set of IFs.
{"title":"Fragmented software-based self-test technique for online intermittent fault detection in processors","authors":"Vasudevan Matampu Suryasarman, Santosh Biswas, Aryabartta Sahu","doi":"10.1049/cdt2.12003","DOIUrl":"10.1049/cdt2.12003","url":null,"abstract":"<p>Software-based self-test (SBST) method is one of the widely used test techniques in processors. SBST scheme provides high fault coverage but incurs long detection latencies in case of intermittent faults (IFs) in online testing mode, due to large size and longer execution time of the test codes. A study of fragmented SBST testing approaches is conducted to select the most efficient fragmented testing strategy. For the selected fragmented SBST method, a reliable set of SBST code fragments with minimal fault detection latency is determined. However, it incurs inconsiderable overall fault coverage drop, compared to the coverage of the complete SBST test code. From experimental results on MIPS Processor, a set of 20 fragments of test tasks with 80% individual fault coverage was observed to have the highest reliability of all sets of fragments. A larger test task (i.e. complete SBST test code) with 96.3% coverage and a test period of 8 ms was replaced by these 20 fragments, which provided an overall coverage of 96% with an individual test period of 0.4 ms, to detect the same set of IFs.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 1","pages":"56-76"},"PeriodicalIF":1.2,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89737149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hemanth Krishna L., Neeharika M., Vishvanath Janjirala, Sreehari Veeramachaneni, Noor Mahammad S
This paper proposes an efficient approach to design high-speed, accurate multipliers. The proposed multiplier design uses the proposed efficient 15:4 counter for the partial product reduction stage. This proposed 15:4 counter is designed using a novel 5:3 counter. The proposed 5:3 counter uses input re-ordering circuitry at the input side. As a result, the number of output combinations can be reduced to 18 from 32. As a result, the circuit complexity reduces. The proposed 5:3 counter and 15:4 counter are on an average 28% and 19% improvement in the power delay product compared with the existing designs. The 16-bit multiplier designed using 5:3 and 15:4 counters is an average 22.5% improvement in power delay product compared with the existing designs.
{"title":"Efficient design of 15:4 counter using a novel 5:3 counter for high-speed multiplication","authors":"Hemanth Krishna L., Neeharika M., Vishvanath Janjirala, Sreehari Veeramachaneni, Noor Mahammad S","doi":"10.1049/cdt2.12002","DOIUrl":"10.1049/cdt2.12002","url":null,"abstract":"<p>This paper proposes an efficient approach to design high-speed, accurate multipliers. The proposed multiplier design uses the proposed efficient 15:4 counter for the partial product reduction stage. This proposed 15:4 counter is designed using a novel 5:3 counter. The proposed 5:3 counter uses input re-ordering circuitry at the input side. As a result, the number of output combinations can be reduced to 18 from 32. As a result, the circuit complexity reduces. The proposed 5:3 counter and 15:4 counter are on an average 28% and 19% improvement in the power delay product compared with the existing designs. The 16-bit multiplier designed using 5:3 and 15:4 counters is an average 22.5% improvement in power delay product compared with the existing designs.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 1","pages":"12-19"},"PeriodicalIF":1.2,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42216498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}