Pub Date : 2024-02-26DOI: 10.3390/aerospace11030186
Wencong Xu, Hongyi Lu, Lei Zhao, Borui He
In recent years, with the rapid development of computer technology and artificial intelligence design technology, multiple possible design solutions can be quickly generated by transforming the experience and knowledge of structural design into computer executable rules and algorithms. To achieve intelligent design of aircraft engines, this paper proposes an encoding model for the turbine rotor structure of aircraft engines using geometric encoding technology. The turbine rotor structure of aircraft engines is divided into several units according to geometric similarity types, these units continue to be divided into attribute sets according to their functional types, connection relationships, and material properties. These attribute sets can be encoded using geometric encoding technology. The experiment simulated that these codes, for the point cloud modeling of turbine rotor structure, can be quickly achieved and they combine various algorithms to display the point cloud model of the turbine rotor in the Microsoft Visual studio MFC class library. The results show that by creating geometric codes for the turbine rotor of aircraft engines, it is possible to quickly create and display point cloud models of the turbine rotor structure, laying the foundation for subsequent application of machine learning to solve and find the optimal design solution.
近年来,随着计算机技术和人工智能设计技术的飞速发展,通过将结构设计的经验和知识转化为计算机可执行的规则和算法,可以快速生成多种可能的设计方案。为了实现航空发动机的智能设计,本文利用几何编码技术提出了航空发动机涡轮转子结构的编码模型。飞机发动机涡轮转子结构按几何相似类型分为若干单元,这些单元再按其功能类型、连接关系和材料属性继续分为属性集。这些属性集可以使用几何编码技术进行编码。实验模拟了这些编码,用于涡轮转子结构的点云建模,可以快速实现,并结合各种算法,在 Microsoft Visual studio MFC 类库中显示涡轮转子的点云模型。结果表明,通过创建航空发动机涡轮转子的几何代码,可以快速创建并显示涡轮转子结构的点云模型,为后续应用机器学习求解并找到最优设计方案奠定了基础。
{"title":"Research on Intelligent Design of Geometric Factor Encoding for Aircraft Engine Turbine Structures","authors":"Wencong Xu, Hongyi Lu, Lei Zhao, Borui He","doi":"10.3390/aerospace11030186","DOIUrl":"https://doi.org/10.3390/aerospace11030186","url":null,"abstract":"In recent years, with the rapid development of computer technology and artificial intelligence design technology, multiple possible design solutions can be quickly generated by transforming the experience and knowledge of structural design into computer executable rules and algorithms. To achieve intelligent design of aircraft engines, this paper proposes an encoding model for the turbine rotor structure of aircraft engines using geometric encoding technology. The turbine rotor structure of aircraft engines is divided into several units according to geometric similarity types, these units continue to be divided into attribute sets according to their functional types, connection relationships, and material properties. These attribute sets can be encoded using geometric encoding technology. The experiment simulated that these codes, for the point cloud modeling of turbine rotor structure, can be quickly achieved and they combine various algorithms to display the point cloud model of the turbine rotor in the Microsoft Visual studio MFC class library. The results show that by creating geometric codes for the turbine rotor of aircraft engines, it is possible to quickly create and display point cloud models of the turbine rotor structure, laying the foundation for subsequent application of machine learning to solve and find the optimal design solution.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"35 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140429735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.3390/aerospace11030185
Yixiao Li, Fang Zhang, Jinhui Jiang
Dynamic load localization and identification technology is very important in the structural design and optimization of aircraft. This paper proposes a non-global traversal method (NTM) for the fast positioning and recognition of dynamic loads on continuous beams. This method separates the load’s position and amplitude information in the modal space. Then, it constructs an interpolation function about position information, and converts load positioning to solving the zero point of the interpolation function. After determining the position of the dynamic load, the amplitude of the dynamic load is recognized. This method does not need to traverse all the position points globally, thereby greatly improving the efficiency of load positioning. Numerical simulations and experiments show that compared with the original variable separation fast positioning method (VSRPM), this method improves the calculation efficiency by more than 80% while maintaining the same recognition accuracy. NTM is a new method of great application value.
{"title":"A Non-Global Traversal Method for Dynamic Load Rapid Localization and Identification","authors":"Yixiao Li, Fang Zhang, Jinhui Jiang","doi":"10.3390/aerospace11030185","DOIUrl":"https://doi.org/10.3390/aerospace11030185","url":null,"abstract":"Dynamic load localization and identification technology is very important in the structural design and optimization of aircraft. This paper proposes a non-global traversal method (NTM) for the fast positioning and recognition of dynamic loads on continuous beams. This method separates the load’s position and amplitude information in the modal space. Then, it constructs an interpolation function about position information, and converts load positioning to solving the zero point of the interpolation function. After determining the position of the dynamic load, the amplitude of the dynamic load is recognized. This method does not need to traverse all the position points globally, thereby greatly improving the efficiency of load positioning. Numerical simulations and experiments show that compared with the original variable separation fast positioning method (VSRPM), this method improves the calculation efficiency by more than 80% while maintaining the same recognition accuracy. NTM is a new method of great application value.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"53 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140431002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-25DOI: 10.3390/aerospace11030181
Saleh B. Alsaidi, J. Huh, Mohamed Y. E. Selim
The performance of two solid biomass wastes, date stone and jojoba solid waste, was experimentally examined for their potential application in combustion and propulsion systems. The fuels were tested in a hybrid rocket-like combustion environment, and the test result was analyzed with combustion and propulsion parameters. The performance of both fuels was comparatively evaluated and compared with a conventional hydrocarbon fuel in a hybrid rocket, with paraffin wax serving as a baseline. A compression device was introduced to compress the solid biomass wastes into a circular-shaped fuel grain compatible with a hybrid rocket combustion chamber with a hot surface ignitor. Thermogravimetric analysis (TGA) and chemical equilibrium analysis (CEA) results revealed that the performance of the biomass fuel can be comparable to conventionally used hydrocarbon paraffin-wax-based propellant within a certain range of oxidizer-to-fuel ratio, in terms of theoretical specific impulse performance. Through experimental performance tests, it was found that the compressed biomass fuel grains were successfully ignited and produced thrust. Both biomass fuels tested in a hybrid rocket combustion chamber are expected to pave the way for further developments in biomass fuels in the waste-to-energy field for their application in combustion and propulsion systems, potentially replacing fossil fuels with renewable resources.
{"title":"Combustion of Date Stone and Jojoba Solid Waste in a Hybrid Rocket-like Combustion Chamber","authors":"Saleh B. Alsaidi, J. Huh, Mohamed Y. E. Selim","doi":"10.3390/aerospace11030181","DOIUrl":"https://doi.org/10.3390/aerospace11030181","url":null,"abstract":"The performance of two solid biomass wastes, date stone and jojoba solid waste, was experimentally examined for their potential application in combustion and propulsion systems. The fuels were tested in a hybrid rocket-like combustion environment, and the test result was analyzed with combustion and propulsion parameters. The performance of both fuels was comparatively evaluated and compared with a conventional hydrocarbon fuel in a hybrid rocket, with paraffin wax serving as a baseline. A compression device was introduced to compress the solid biomass wastes into a circular-shaped fuel grain compatible with a hybrid rocket combustion chamber with a hot surface ignitor. Thermogravimetric analysis (TGA) and chemical equilibrium analysis (CEA) results revealed that the performance of the biomass fuel can be comparable to conventionally used hydrocarbon paraffin-wax-based propellant within a certain range of oxidizer-to-fuel ratio, in terms of theoretical specific impulse performance. Through experimental performance tests, it was found that the compressed biomass fuel grains were successfully ignited and produced thrust. Both biomass fuels tested in a hybrid rocket combustion chamber are expected to pave the way for further developments in biomass fuels in the waste-to-energy field for their application in combustion and propulsion systems, potentially replacing fossil fuels with renewable resources.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"44 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140433104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-25DOI: 10.3390/aerospace11030182
Ben Campbell, Lawrence Dale Thomas
This article describes a new alternative approach to satellite constellation deployment by incorporating momentum exchange tethers (METs). Traditional methods of deploying satellite constellations have limitations, typically involving costly propulsion systems and extended dispersion times. METs offer a novel solution by efficiently transferring momentum between tethered objects, reducing the need for onboard propellants and streamlining the deployment process. This article discusses orbit design and maneuvers for different mission architectures using asymmetrical and symmetrical tether release techniques to deploy satellites into designated orbits. In addition, a short walkthrough of designing one possible constellation is given, showing how quickly a MET-deployed constellation can be established in low Earth orbit (LEO). This work contributes to ongoing research investigating the applicability of METs in satellite constellation deployments, which could potentially be a new opportunity for MET technology to start seeing routine usage in the space environment, and also enable new constellation architectures that have not yet been realized.
本文介绍了一种新的卫星星座部署替代方法,即采用动量交换系绳(MET)。传统的卫星星座部署方法有其局限性,通常涉及昂贵的推进系统和较长的分散时间。动量交换系留装置提供了一种新颖的解决方案,它能在系留物体之间有效地转移动量,减少对机载推进剂的需求,并简化部署过程。本文讨论了使用非对称和对称系留释放技术将卫星部署到指定轨道的不同任务架构的轨道设计和操纵。此外,文章还简要介绍了一个可能的星座设计,展示了在低地球轨道(LEO)建立 MET 部署星座的速度有多快。这项工作有助于正在进行的研究,调查 MET 在卫星星座部署中的适用性,这有可能成为 MET 技术在空间环境中开始常规使用的一个新机会,还能实现尚未实现的新星座架构。
{"title":"Basic Orbit Design and Maneuvers for Satellite Constellations Deployed Using Momentum Exchange Tethers","authors":"Ben Campbell, Lawrence Dale Thomas","doi":"10.3390/aerospace11030182","DOIUrl":"https://doi.org/10.3390/aerospace11030182","url":null,"abstract":"This article describes a new alternative approach to satellite constellation deployment by incorporating momentum exchange tethers (METs). Traditional methods of deploying satellite constellations have limitations, typically involving costly propulsion systems and extended dispersion times. METs offer a novel solution by efficiently transferring momentum between tethered objects, reducing the need for onboard propellants and streamlining the deployment process. This article discusses orbit design and maneuvers for different mission architectures using asymmetrical and symmetrical tether release techniques to deploy satellites into designated orbits. In addition, a short walkthrough of designing one possible constellation is given, showing how quickly a MET-deployed constellation can be established in low Earth orbit (LEO). This work contributes to ongoing research investigating the applicability of METs in satellite constellation deployments, which could potentially be a new opportunity for MET technology to start seeing routine usage in the space environment, and also enable new constellation architectures that have not yet been realized.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"33 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140433299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.3390/aerospace11030180
Evangelos Filippou, S. Kilimtzidis, A. Kotzakolios, Vassilis Kostopoulos
The pursuit of more efficient transport has led engineers to develop a wide variety of aircraft configurations with the aim of reducing fuel consumption and emissions. However, these innovative designs introduce significant aeroelastic couplings that can potentially lead to structural failure. Consequently, aeroelastic analysis and optimization have become an integral part of modern aircraft design. In addition, aeroelastic testing of scaled models is a critical phase in aircraft development, requiring the accurate prediction of aeroelastic behavior during scaled model construction to reduce costs and mitigate the risks associated with full-scale flight testing. Achieving a high degree of similarity between the stiffness, mass distribution and flow field characteristics of scaled models and their full-scale counterparts is of paramount importance. However, achieving similarity is not always straightforward due to the variety of configurations of modern lightweight aircraft, as identical geometry cannot always be directly scaled down. This configuration diversity has a direct impact on the aeroelastic response, necessitating the use of computational aeroelasticity tools and optimization algorithms. This paper presents the development of an aeroelastic scaling framework using multidisciplinary optimization. Specifically, a parametric Finite Element Model (FEM) of the wing is created, incorporating the parameterization of both thickness and geometry, primarily using shell elements. Aerodynamic loads are calculated using the Doublet Lattice Method (DLM) employing twist and camber correction factors, and aeroelastic coupling is established using infinite plate splines. The aeroelastic model is then integrated within an Ant Colony Optimization (ACO) algorithm to achieve static and dynamic similarity between the scaled model and the reference wing. A notable contribution of this work is the incorporation of internal geometry parameterization into the framework, increasing its versatility and effectiveness.
{"title":"Towards Structural and Aeroelastic Similarity in Scaled Wing Models: Development of an Aeroelastic Optimization Framework","authors":"Evangelos Filippou, S. Kilimtzidis, A. Kotzakolios, Vassilis Kostopoulos","doi":"10.3390/aerospace11030180","DOIUrl":"https://doi.org/10.3390/aerospace11030180","url":null,"abstract":"The pursuit of more efficient transport has led engineers to develop a wide variety of aircraft configurations with the aim of reducing fuel consumption and emissions. However, these innovative designs introduce significant aeroelastic couplings that can potentially lead to structural failure. Consequently, aeroelastic analysis and optimization have become an integral part of modern aircraft design. In addition, aeroelastic testing of scaled models is a critical phase in aircraft development, requiring the accurate prediction of aeroelastic behavior during scaled model construction to reduce costs and mitigate the risks associated with full-scale flight testing. Achieving a high degree of similarity between the stiffness, mass distribution and flow field characteristics of scaled models and their full-scale counterparts is of paramount importance. However, achieving similarity is not always straightforward due to the variety of configurations of modern lightweight aircraft, as identical geometry cannot always be directly scaled down. This configuration diversity has a direct impact on the aeroelastic response, necessitating the use of computational aeroelasticity tools and optimization algorithms. This paper presents the development of an aeroelastic scaling framework using multidisciplinary optimization. Specifically, a parametric Finite Element Model (FEM) of the wing is created, incorporating the parameterization of both thickness and geometry, primarily using shell elements. Aerodynamic loads are calculated using the Doublet Lattice Method (DLM) employing twist and camber correction factors, and aeroelastic coupling is established using infinite plate splines. The aeroelastic model is then integrated within an Ant Colony Optimization (ACO) algorithm to achieve static and dynamic similarity between the scaled model and the reference wing. A notable contribution of this work is the incorporation of internal geometry parameterization into the framework, increasing its versatility and effectiveness.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140434809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.3390/aerospace11030179
Nan Lao Ywet, A. A. Maw, T. Nguyen, Jae-Woo Lee
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial role in real-time management of air traffic, enhancing safety and efficiency. This study introduces a YOLOTransfer-DT framework specifically designed for Artificial Intelligence (AI) training in simulated environments, focusing on its utility for experiential learning in realistic scenarios. The framework’s objective is to augment AI training, particularly in developing an object detection system that employs visual tasks for proactive conflict identification and mission support, leveraging deep and transfer learning techniques. The proposed methodology combines real-time detection, transfer learning, and a novel mix-up process for environmental data extraction, tested rigorously in realistic simulations. Findings validate the use of existing deep learning models for real-time object recognition in similar conditions. This research underscores the value of the ODT framework in bridging the gap between virtual and actual environments, highlighting the safety and cost-effectiveness of virtual testing. This adaptable framework facilitates extensive experimentation and training, demonstrating its potential as a foundation for advanced detection techniques in UAM.
{"title":"YOLOTransfer-DT: An Operational Digital Twin Framework with Deep and Transfer Learning for Collision Detection and Situation Awareness in Urban Aerial Mobility","authors":"Nan Lao Ywet, A. A. Maw, T. Nguyen, Jae-Woo Lee","doi":"10.3390/aerospace11030179","DOIUrl":"https://doi.org/10.3390/aerospace11030179","url":null,"abstract":"Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial role in real-time management of air traffic, enhancing safety and efficiency. This study introduces a YOLOTransfer-DT framework specifically designed for Artificial Intelligence (AI) training in simulated environments, focusing on its utility for experiential learning in realistic scenarios. The framework’s objective is to augment AI training, particularly in developing an object detection system that employs visual tasks for proactive conflict identification and mission support, leveraging deep and transfer learning techniques. The proposed methodology combines real-time detection, transfer learning, and a novel mix-up process for environmental data extraction, tested rigorously in realistic simulations. Findings validate the use of existing deep learning models for real-time object recognition in similar conditions. This research underscores the value of the ODT framework in bridging the gap between virtual and actual environments, highlighting the safety and cost-effectiveness of virtual testing. This adaptable framework facilitates extensive experimentation and training, demonstrating its potential as a foundation for advanced detection techniques in UAM.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"15 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140437161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.3390/aerospace11030178
M. Fas-Millán, Andreas Pick, Daniel González del Río, Alejandro Paniagua Tineo, Rubén García García
Within the framework of the European Union’s Horizon 2020 research and innovation program, one of the main goals of the Labyrinth project was to develop and test the Conflict Management services of a U-space-based Unmanned Traffic Management (UTM) system. The U-space concept of operations (ConOps) provides a high-level description of the architecture, requirements and functionalities of these systems, but the implementer has a certain degree of freedom in aspects like the techniques used or some policies and procedures. The current document describes some of those implementation decisions. The prototype included part of the services defined by the ConOps, namely e-identification, Tracking, Geo-awareness, Drone Aeronautical Information Management, Geo-fence Provision, Operation Plan Preparation/Optimization, Operation Plan Processing, Strategic Conflict Resolution, Tactical Conflict Resolution, Emergency Management, Monitoring, Traffic Information and Legal Recording. Moreover, a Web app interface was developed for the operator/pilot. The system was tested in simulations and real visual line of sight (VLOS) and beyond VLOS (BVLOS) flights, with both vertical take-off and landing (VTOL) and fixed-wing platforms, while assisting final users interested in incorporating drones to support their tasks. The development and testing of the environment provided lessons at different levels: functionalities, compatibility, procedures, information, usability, ground control station (GCS) integration and aircrew roles.
在欧盟 "地平线 2020 "研究与创新计划框架内,"迷宫 "项目的主要目标之一是开发和测试基于 U 空间的无人交通管理(UTM)系统的冲突管理服务。U-space 行动概念(ConOps)对这些系统的结构、要求和功能进行了高层次的描述,但实施者在使用技术或某些政策和程序等方面有一定的自由度。本文件介绍了其中的一些实施决策。原型包括 ConOps 定义的部分服务,即电子身份识别、跟踪、地理感知、无人机航空信息管理、地理围栏提供、运行计划准备/优化、运行计划处理、战略冲突解决、战术冲突解决、应急管理、监控、交通信息和法律记录。此外,还为操作员/飞行员开发了一个网络应用程序界面。该系统通过垂直起降(VTOL)和固定翼平台进行了模拟和实际视距(VLOS)和超视距(BVLOS)飞行测试,同时为有兴趣使用无人机支持其任务的最终用户提供帮助。该环境的开发和测试提供了不同层面的经验教训:功能、兼容性、程序、信息、可用性、地面控制站(GCS)集成和机组人员角色。
{"title":"Implementing and Testing a U-Space System: Lessons Learnt","authors":"M. Fas-Millán, Andreas Pick, Daniel González del Río, Alejandro Paniagua Tineo, Rubén García García","doi":"10.3390/aerospace11030178","DOIUrl":"https://doi.org/10.3390/aerospace11030178","url":null,"abstract":"Within the framework of the European Union’s Horizon 2020 research and innovation program, one of the main goals of the Labyrinth project was to develop and test the Conflict Management services of a U-space-based Unmanned Traffic Management (UTM) system. The U-space concept of operations (ConOps) provides a high-level description of the architecture, requirements and functionalities of these systems, but the implementer has a certain degree of freedom in aspects like the techniques used or some policies and procedures. The current document describes some of those implementation decisions. The prototype included part of the services defined by the ConOps, namely e-identification, Tracking, Geo-awareness, Drone Aeronautical Information Management, Geo-fence Provision, Operation Plan Preparation/Optimization, Operation Plan Processing, Strategic Conflict Resolution, Tactical Conflict Resolution, Emergency Management, Monitoring, Traffic Information and Legal Recording. Moreover, a Web app interface was developed for the operator/pilot. The system was tested in simulations and real visual line of sight (VLOS) and beyond VLOS (BVLOS) flights, with both vertical take-off and landing (VTOL) and fixed-wing platforms, while assisting final users interested in incorporating drones to support their tasks. The development and testing of the environment provided lessons at different levels: functionalities, compatibility, procedures, information, usability, ground control station (GCS) integration and aircrew roles.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"42 03‐04","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140437476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.3390/aerospace11030176
Tobias Graf, Robin Fonk, Christian Bauer, J. Kallo, C. Willich
The climate impact of aviation can be reduced using powertrains based on hydrogen fuel cells and batteries. Combining both technologies in a direct-hybrid without a DC/DC converter is a promising approach for light-weight systems. Depending on the power demand, both the fuel cell and battery are used to provide power or only the fuel cell is connected to the powertrain. The system voltage in a direct-hybrid is determined by the fuel cell and battery, but the performance of fuel cells is affected by low-ambient pressure at high altitudes and the battery voltage is affected by state of charge and discharge rate. Taking this into account, the presented work demonstrates how a direct-hybrid system must be designed based on a scaled mission profile of a 40-seater aircraft. The fuel cell and battery are configured and sized according to the power demand in different flight phases while considering voltage limits given by the powertrain. The energy requirement from the fuel cell and the battery is calculated for a flight based on a realistic mission profile and different battery and fuel cell configurations are evaluated. By optimizing the battery and fuel cell size, the energy required from the battery was reduced by 57% and the total weight of the fuel cell and battery was reduced by 11%.
{"title":"Optimal Sizing of Fuel Cell and Battery in a Direct-Hybrid for Electric Aircraft","authors":"Tobias Graf, Robin Fonk, Christian Bauer, J. Kallo, C. Willich","doi":"10.3390/aerospace11030176","DOIUrl":"https://doi.org/10.3390/aerospace11030176","url":null,"abstract":"The climate impact of aviation can be reduced using powertrains based on hydrogen fuel cells and batteries. Combining both technologies in a direct-hybrid without a DC/DC converter is a promising approach for light-weight systems. Depending on the power demand, both the fuel cell and battery are used to provide power or only the fuel cell is connected to the powertrain. The system voltage in a direct-hybrid is determined by the fuel cell and battery, but the performance of fuel cells is affected by low-ambient pressure at high altitudes and the battery voltage is affected by state of charge and discharge rate. Taking this into account, the presented work demonstrates how a direct-hybrid system must be designed based on a scaled mission profile of a 40-seater aircraft. The fuel cell and battery are configured and sized according to the power demand in different flight phases while considering voltage limits given by the powertrain. The energy requirement from the fuel cell and the battery is calculated for a flight based on a realistic mission profile and different battery and fuel cell configurations are evaluated. By optimizing the battery and fuel cell size, the energy required from the battery was reduced by 57% and the total weight of the fuel cell and battery was reduced by 11%.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"22 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.3390/aerospace11030177
Andreas Neumann, M. Brchnelova
Electric space propulsion is a technology that is used in a continuously increasing number of spacecrafts. The qualification of these propulsion systems has to run in ground-based test facilities which requires long testing times and powerful pumping systems. In these usually large test facilities, high pumping speeds are achieved with cryopumps. Cryopump operation is very expensive with respect to electrical energy and cooling water consumption. Therefore, being able to optimize pump shape, cold plate material, and pump placement in a chamber is beneficial. Pump design and tuned operating strategies can reduce costs and increase intervals between regeneration. Testing different pump configuration setups in a large facility is mostly prohibitive due to high costs and long testing times. Optimization via modelling is a better choice for design and also, later, for operation. Therefore, having a numerical model and proven guidelines at hand for optimization is very helpful. This paper describes a new model developed at DLR for the optimization of cryopump layout and operation. Model results are compared with cryopump operational and warm-up data. This validation is the basis for further optimization actions like multi-layer insulation layouts and pump cold plate upgrades, and helps in understanding and mitigating the detrimental effect of water condensates on the cryopump cold plates.
{"title":"Modelling of Cryopumps for Space Electric Propulsion Usage","authors":"Andreas Neumann, M. Brchnelova","doi":"10.3390/aerospace11030177","DOIUrl":"https://doi.org/10.3390/aerospace11030177","url":null,"abstract":"Electric space propulsion is a technology that is used in a continuously increasing number of spacecrafts. The qualification of these propulsion systems has to run in ground-based test facilities which requires long testing times and powerful pumping systems. In these usually large test facilities, high pumping speeds are achieved with cryopumps. Cryopump operation is very expensive with respect to electrical energy and cooling water consumption. Therefore, being able to optimize pump shape, cold plate material, and pump placement in a chamber is beneficial. Pump design and tuned operating strategies can reduce costs and increase intervals between regeneration. Testing different pump configuration setups in a large facility is mostly prohibitive due to high costs and long testing times. Optimization via modelling is a better choice for design and also, later, for operation. Therefore, having a numerical model and proven guidelines at hand for optimization is very helpful. This paper describes a new model developed at DLR for the optimization of cryopump layout and operation. Model results are compared with cryopump operational and warm-up data. This validation is the basis for further optimization actions like multi-layer insulation layouts and pump cold plate upgrades, and helps in understanding and mitigating the detrimental effect of water condensates on the cryopump cold plates.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"8 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140436472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.3390/aerospace11030175
Panagiotis D. Kordas, G. Lampeas, K. Fotopoulos
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design concepts were evaluated through a numerical modeling strategy, which will be validated at the next stage using a targeted series of mechanical tests. A baseline experimental setup was developed after a number of candidate configurations were numerically investigated. The supporting elements along with the load introduction systems were defined in such a way as to represent the stiffness of a fuselage barrel section and its representative loading scenarios. The test rig and the investigated thermoplastic panel were numerically simulated to acquire valuable data pertaining to deformations and stresses when subjected to different loading combinations. Two distinct load cases were numerically examined: the first case was the in-plane compression of the thermoplastic panel, while the second case consisted of an internally applied pressure load introduced via an inflatable airbag, installed under the panel. Both loading scenarios were recreated inside the numerical virtual environment in order to examine two distinct stiffening configurations as well as to determine the maximum/limit loads to be used in the planned future experimental campaign. It was concluded that the designed test rig could successfully be used for the structural evaluation of fuselage panels under representative loading conditions.
{"title":"Numerical Investigation of an Experimental Setup for Thermoplastic Fuselage Panel Testing in Combined Loading","authors":"Panagiotis D. Kordas, G. Lampeas, K. Fotopoulos","doi":"10.3390/aerospace11030175","DOIUrl":"https://doi.org/10.3390/aerospace11030175","url":null,"abstract":"The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design concepts were evaluated through a numerical modeling strategy, which will be validated at the next stage using a targeted series of mechanical tests. A baseline experimental setup was developed after a number of candidate configurations were numerically investigated. The supporting elements along with the load introduction systems were defined in such a way as to represent the stiffness of a fuselage barrel section and its representative loading scenarios. The test rig and the investigated thermoplastic panel were numerically simulated to acquire valuable data pertaining to deformations and stresses when subjected to different loading combinations. Two distinct load cases were numerically examined: the first case was the in-plane compression of the thermoplastic panel, while the second case consisted of an internally applied pressure load introduced via an inflatable airbag, installed under the panel. Both loading scenarios were recreated inside the numerical virtual environment in order to examine two distinct stiffening configurations as well as to determine the maximum/limit loads to be used in the planned future experimental campaign. It was concluded that the designed test rig could successfully be used for the structural evaluation of fuselage panels under representative loading conditions.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"16 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140439852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}