Low-grade inflammation is a key mediator of the pathogenesis of Osteoarthritis (OA). Pulsed electromagnetic field (PEMF) can improve the symptoms of OA and potentially acts as an anti-inflammatory. The aim of this study was to investigate the effect of the PEMF on OA and its relationship with the NLRP3/Caspase-1/GSDMD signaling pathway.18 Three-month-old Sprague-Dawley (SD) rats were randomly divided into three groups (n = 6 per group): 1) OA group, 2) OA+PEMF group (OA with PEMF exposure), 3) Control group (sham operation with placebo PEMF). Rats in the OA and OA+PEMF groups were subjected to bilateral anterior cruciate ligament transection and ovariectomy. PEMF scheme: Pulse waveform, 3.82 mT, 8 Hz, 40 min/day, 5 days a week, for 12 weeks. The expression levels of NLRP3, Caspase-1, GSDMD, IL-1β, and MMP-13 were detected by qRT-PCR and Western blot. The pathological structures of OA were monitored with Safranin O/fast green staining and hematoxylin eosin staining. Our results showed that PEMF alleviated the degree of inflammation and degeneration of cartilage in rats with OA, based on the histopathological changes and decline of the expression of IL-1β and MMP-13. Moreover, the over-expression of NLRP3, Caspase-1, and GSDMD in the cartilage of the OA rats decreased after PEMF treatment. These results suggested that PEMF could be a highly promising noninvasive strategy to slow down the progression of OA and inhibition of the NLRP3/Caspase-1/GSDMD signaling pathway might be involved in the beneficial effect of PEMF.
Idiopathic environmental intolerance attributed to electromagnetic field (IEI-EMF) called electromagnetic hypersensitivity or electrosensitivity appeared in Polish society awareness due to a considerable change made at the end of 2019 in Polish telecommunication laws. The aims of the project were to access the prevalence of IEI-EMF in Poland and to define a reliable methodology to study this phenomenon. The first step was the internet survey performed at the end of 2018. The IEI-EMF prevalence estimated at the level of 39.7% suggested considerable bias affecting the results. The faults of the first approach were analysed and then a second study stage was performed as a telephone survey at the end of 2020. The latter survey allowed estimating the prevalence of IEI-EMF as less than 1.8%. These discrepancies in the results of both surveys were connected to the medium used in the first survey (Internet) indirectly causing that the group pooled was not representative. The second pitfall was the definition of the criteria used for an electrosensitive person classification. This is why the IEI-EMF prevalence was investigated in the second stage with the use of numerous criteria. The application of different criteria allowed for essential conclusions concerning the appropriate methodology for such kinds of studies. Corrections of the methodology before the second survey allowed reliable results consistent with the results obtained in similar studies performed in other countries. Our findings also show that the IEI-EMF frequency reports presented in the literature have to be treated carefully and with some dose of scepticism.
Anxiety about potential health hazards of electromagnetic exposure has been growing in the past decades, with their widely application in many fields. The immune system plays pivotal role in maintaining body's homeostasis. Importantly, immune system is also a sensitive target for electromagnetic fields. In recent years, the biological effects of electromagnetic fields on immune cells have been attracting more and more attentions. Accumulated data suggested that electromagnetic exposure could affect the number and function of immune cells to some extent, including cell proportion, cell cycle, apoptosis, killing activity, cytokines contents and so on. The research objects basically covered all types of immune cells, mainly on PBMC, T lymphocytes, B lymphocytes, NK cells and macrophages. Meanwhile, there also are negative reports of electromagnetic fields on immune cells. This article reviews the results of epidemiological investigation, the progresses in animal studies and in vitro experiments, and the current attempts to explore potential mechanisms. Knowledge of the biological effects on immune cells associated with electromagnetic fields is critical for proper health hazard evaluation, development of safety standards, and safe exploitation of new electromagnetic devices and applications.
The extremely low frequency electromagnetic field (ELF-EMF) is emerging as a novel approach in cancer treatment. This study evaluated the impact of daily exposure to 50 Hz EMF on breast cancer cells in vitro. The MDA-MB-231 and MCF-7 cells were exposed to EMF (50 Hz 20 mT, for 3 hours per day for up to four days) and examined for cell vaibility. The effect of daily ELF-EMF exposure on cell cycle progression and cell death was further investigated. The result revealed that the consecutive exposure to 50 Hz EMF at 20 mT remarkably decreased the viability of MDA-MB-231 compared to the non-exposed group, while it had no significant effect on MCF-7 cells. The ELF-EMF exposure induced G1 phase arrest along with the increase in sub-G1 cell population in MDA-MB-231. Moreover, repeated exposure to 50 Hz EMF promoted cell cycle progression in MCF-7 by increasing the percentage of cells in the S phase. The fluorescent staining revealed that daily exposure of ELF-EMF induced apoptotic cell death in MDA-MB-231, but no morphological change was observed in MCF-7 cells. The results showed that repeated daily exposure to 50 Hz EMF exhibited anti-proliferative activity against invasive breast cancer cells by impairing cell cycle progression and inducing cell death.
The use of mobile phones is becoming widespread with the development of technology, and as a result, its effects on human health are becoming more and more important every day. Studies have reported that the electromagnetic field (EMF) emitted by mobile phones may have adverse effects on the biological systems. In order to evaluate the effect of zinc (Zn) on C3H cancer fibroblast cells exposed to 2100 MHz EMF, we analyzed cell viability%, nuclear factor kappa b (NF-κB) and DNA methyltransferase (DNMT) activities. Cells were divided to following groups: Control, sham control, 2100 MHz EMF, 50 µM Zn + 2100 MHz EMF, 100 µM Zn + 2100 MHz EMF, and 200 µM Zn + 2100 MHz EMF for 2 h. We measurement cell viability, NF-κB and DNMT activities. There was increased cell viability % in the 2100 MHz EMF group compared to the control group, while the cell viability % was decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to 2100 MHz EMF. NF-κB and DNMT activities were a significant increase in the 2100 MHz EMF group compared to the control group, although were statistically decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to the 2100 MHz EMF group. Our results demonstrate that 2100 MHz EMF exposure in cancer fibroblast cells induce NF-κB and DNMT activities, whereas zinc supplementation reduce NF-κB and DNMT activities-induced 2100 MHz EMF.
The study aimed to evaluate the possibility to perform electrochemotherapy using nanosecond pulsed electric field (nsPEF) and low electric field (LEF) monopolar electrical impulses to alleviate the problems of conventional electroporation. Two types of pulses have been used to treat MCF-7 human breast carcinoma cell line: very low voltage (electric field strength) long trains of short unipolar electric pulses, and low frequencies of extremely intense (40kV/cm), ultra-short (10ns) electric pulses. The electropermeabilization efficiency of the formed endocytotic vesicles was measured using the cloning efficacy test. The cell viability was decreased significantly at a repetition frequency begins from 0.01 Hz by ~35% and reached complete cell loss at 1 Hz of nanosecond pulses for cells treated before with monopolar pulses at 20 V/cm in the presence of BLM with 4 µM concentration. The uptake of non-permeant drugs has been done without plasma membrane permeabilization (classical electroporation), but by endocytosis. Nanosecond electric pulses can disrupt the membrane of endocytotic vesicles and release the cytotoxic drug bleomycin.