首页 > 最新文献

Discrete Mathematics最新文献

英文 中文
Pursuit-evasion in graphs: Zombies, lazy zombies and a survivor 图形中的追逐-逃避:僵尸、懒惰僵尸和幸存者
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-26 DOI: 10.1016/j.disc.2024.114220

We study zombies and survivor, a variant of the game of cops and robber on graphs where the single survivor plays the role of the robber and attempts to escape from the zombies that play the role of the cops. The difference is that zombies must follow an edge of a shortest path towards the survivor on their turn. Let z(G) be the smallest number of zombies required to catch the survivor on a graph G with n vertices. We show that there exist outerplanar graphs and visibility graphs of simple polygons such that z(G)=Θ(n). We also show that there exist maximum-degree-3 outerplanar graphs such that z(G)=Ω(n/log(n)).

A zombie that can remain at its current vertex on its turn is called lazy. Let zL(G) be the smallest number of lazy zombies required to catch the survivor. The ability to remain at its current vertex on its turn makes lazy zombies more powerful than normal zombies but less powerful than cops. We prove that zL(G)2 for connected outerplanar graphs which is tight in the worst case. We also show that in this case, the survivor is caught after O(n) rounds. We then show that zL(G)k for connected graphs with treedepth k and that O(n2k) rounds are sufficient to catch the survivor. The bound on treedepth implies that zL(G) is at most (k+1)logn for connected graphs with treewidth k, O(n) for connected planar graphs, O(gn) for connected graphs with genus g and O(hhn) for connected graphs with any excluded h-vertex minor. Our results on lazy zombies still hold when an adversary chooses

我们研究的是 "僵尸与幸存者",这是警察与强盗游戏在图形上的一种变体,其中单个幸存者扮演强盗,并试图从扮演警察的僵尸手中逃脱。所不同的是,僵尸在轮到自己时必须沿着最短路径的一条边走向幸存者。假设 z(G) 是在一个有 n 个顶点的图 G 上抓住幸存者所需的最少僵尸数量。我们证明存在外平面图和简单多边形的可见性图,使得 z(G)=Θ(n) 。我们还证明,存在最大度数为 3 的外平面图,使得 z(G)=Ω(n/log(n))。让 zL(G) 成为捕捉幸存者所需的最小懒惰僵尸数量。由于懒惰僵尸可以停留在当前顶点,所以它比普通僵尸更强大,但比警察更弱小。我们证明,对于连通的外平面图,zL(G)≤2,这在最坏情况下是紧密的。我们还证明,在这种情况下,幸存者会在 O(n) 轮后被抓获。然后我们证明,对于树深度为 k 的连通图,zL(G)≤k,并且 O(n2k) 轮足以捕捉到幸存者。对树深的约束意味着,对于树宽为 k 的连通图,zL(G)最多为 (k+1)logn;对于连通的平面图,zL(G)最多为 O(n);对于属数为 g 的连通图,zL(G)最多为 O(gn);对于具有任意排除的 h 个顶点的连通图,zL(G)最多为 O(hhn)。当对手选择僵尸的初始位置时,我们关于懒惰僵尸的结果仍然成立。
{"title":"Pursuit-evasion in graphs: Zombies, lazy zombies and a survivor","authors":"","doi":"10.1016/j.disc.2024.114220","DOIUrl":"10.1016/j.disc.2024.114220","url":null,"abstract":"<div><p>We study <em>zombies and survivor</em>, a variant of the game of cops and robber on graphs where the single survivor plays the role of the robber and attempts to escape from the zombies that play the role of the cops. The difference is that zombies must follow an edge of a shortest path towards the survivor on their turn. Let <span><math><mi>z</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the smallest number of zombies required to catch the survivor on a graph <em>G</em> with <em>n</em> vertices. We show that there exist outerplanar graphs and visibility graphs of simple polygons such that <span><math><mi>z</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>. We also show that there exist maximum-degree-3 outerplanar graphs such that <span><math><mi>z</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></math></span>.</p><p>A zombie that can remain at its current vertex on its turn is called <em>lazy</em>. Let <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the smallest number of <em>lazy zombies</em> required to catch the survivor. The ability to remain at its current vertex on its turn makes lazy zombies more powerful than normal zombies but less powerful than cops. We prove that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn></math></span> for connected outerplanar graphs which is tight in the worst case. We also show that in this case, the survivor is caught after <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> rounds. We then show that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>k</mi></math></span> for connected graphs with treedepth <em>k</em> and that <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>)</mo></math></span> rounds are sufficient to catch the survivor. The bound on treedepth implies that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>L</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is at most <span><math><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></math></span> for connected graphs with treewidth <em>k</em>, <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> for connected planar graphs, <span><math><mi>O</mi><mo>(</mo><msqrt><mrow><mi>g</mi><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> for connected graphs with genus <em>g</em> and <span><math><mi>O</mi><mo>(</mo><mi>h</mi><msqrt><mrow><mi>h</mi><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> for connected graphs with any excluded <em>h</em>-vertex minor. Our results on lazy zombies still hold when an adversary chooses ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003510/pdfft?md5=bb277c6c089d1c05a249b293a26a64fe&pid=1-s2.0-S0012365X24003510-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional revival on Cayley graphs over abelian groups 无差别群上 Cayley 图的分数复兴
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-22 DOI: 10.1016/j.disc.2024.114218

In this paper, we investigate the existence of fractional revival on Cayley graphs over finite abelian groups. We give a necessary and sufficient condition for Cayley graphs over finite abelian groups to have fractional revival. As applications, the existence of fractional revival on circulant graphs and cubelike graphs are characterized.

本文研究了有限无边群上的 Cayley 图是否存在分数复兴。我们给出了有限阿贝尔群上的 Cayley 图具有分数复兴的必要条件和充分条件。作为应用,我们描述了圆周图和立方体图上分数复兴的存在性。
{"title":"Fractional revival on Cayley graphs over abelian groups","authors":"","doi":"10.1016/j.disc.2024.114218","DOIUrl":"10.1016/j.disc.2024.114218","url":null,"abstract":"<div><p>In this paper, we investigate the existence of fractional revival on Cayley graphs over finite abelian groups. We give a necessary and sufficient condition for Cayley graphs over finite abelian groups to have fractional revival. As applications, the existence of fractional revival on circulant graphs and cubelike graphs are characterized.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing flag-transitive, point-primitive 2-designs from complete graphs 从完整图中构造旗变换、点原初 2 设计
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-21 DOI: 10.1016/j.disc.2024.114217

In this paper, we study 2-designs D=(P,BSn), where P can be viewed as the edge set of the complete graph Kn, and B can be identified as the edge set of a subgraph of Kn. We give a necessary condition for Sn to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group Sn. As an application, all pairs (D,G) are determined, where D is a 2-(v,k,λ) design with gcd(v1,k1)=3 or 4, and G is flag-transitive with Soc(G)=An for n5. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-(v,k,λ) designs with gcd(v1,k1)(v1)1/2 and alternating socle An with v=(n2).

在本文中,我们将研究 2-设计 D=(P,BSn),其中 P 可视为完整图 Kn 的边集,B 可视为 Kn 子图的边集。我们给出了 Sn 是旗透性的必要条件,然后介绍了构建这种 2 设计的三种方法,它们都承认旗透性的点原初自变群 Sn。作为应用,我们确定了所有成对 (D,G),其中 D 是 gcd(v-1,k-1)=3 或 4 的 2-(v,k,λ)设计,而 G 是 n≥5 时 Soc(G)=An 的旗透性设计。此外,我们还证明了存在无穷的旗递、点原始 2-(v,k,λ)设计,其 gcd(v-1,k-1)≤(v-1)1/2 和交替的 socle An,且 v=(n2) 。
{"title":"Constructing flag-transitive, point-primitive 2-designs from complete graphs","authors":"","doi":"10.1016/j.disc.2024.114217","DOIUrl":"10.1016/j.disc.2024.114217","url":null,"abstract":"<div><p>In this paper, we study 2-designs <span><math><mi>D</mi><mo>=</mo><mo>(</mo><mi>P</mi><mo>,</mo><msup><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>P</mi></math></span> can be viewed as the edge set of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and <em>B</em> can be identified as the edge set of a subgraph of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We give a necessary condition for <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to be flag-transitive, and then present three ways to construct such 2-designs admitting a flag-transitive, point-primitive automorphism group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. As an application, all pairs <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are determined, where <span><math><mi>D</mi></math></span> is a 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mn>3</mn></math></span> or 4, and <em>G</em> is flag-transitive with <span><math><mi>S</mi><mi>o</mi><mi>c</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. Furthermore, we show that there are infinite flag-transitive, point-primitive 2-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs with <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>≤</mo><msup><mrow><mo>(</mo><mi>v</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> and alternating socle <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>v</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003480/pdfft?md5=8dd45f6c8de1e9aaa5ee26ce47fc990b&pid=1-s2.0-S0012365X24003480-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partition theorems and the Chinese Remainder Theorem 分治定理和中文余数定理
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-20 DOI: 10.1016/j.disc.2024.114221

The famous partition theorem of Euler states that partitions of n into distinct parts are equinumerous with partitions of n into odd parts. Another famous partition theorem due to MacMahon states that the number of partitions of n with all parts repeated at least once equals the number of partitions of n where all parts must be even or congruent to 3(mod6). These partition theorems were further extended by Glaisher, Andrews, Subbarao, Nyirenda and Mugwangwavari. In this paper, we utilize the Chinese Remainder Theorem to prove a comprehensive partition theorem that encompasses all existing partition theorems. We also give a natural generalization of Euler's theorem based on a special complete residue system. Furthermore, we establish interesting congruence connections between the partition function p(n) and related partition functions.

欧拉(Euler)的著名分治定理指出,将 n 分割成不同部分的次数与将 n 分割成奇数部分的次数相等。另一个由麦克马洪(MacMahon)提出的著名分治定理指出,所有部分至少重复一次的 n 的分治数等于所有部分必须是偶数或与 3(mod6)全等的 n 的分治数。格莱舍、安德鲁斯、苏巴拉奥、尼仁达和穆格旺瓦里进一步扩展了这些分治定理。在本文中,我们利用中文余数定理证明了一个包含所有现有分治定理的综合分治定理。我们还给出了基于特殊完整残差系统的欧拉定理的自然概括。此外,我们还在分治函数 p(n) 和相关分治函数之间建立了有趣的全等联系。
{"title":"Partition theorems and the Chinese Remainder Theorem","authors":"","doi":"10.1016/j.disc.2024.114221","DOIUrl":"10.1016/j.disc.2024.114221","url":null,"abstract":"<div><p>The famous partition theorem of Euler states that partitions of <em>n</em> into distinct parts are equinumerous with partitions of <em>n</em> into odd parts. Another famous partition theorem due to MacMahon states that the number of partitions of <em>n</em> with all parts repeated at least once equals the number of partitions of <em>n</em> where all parts must be even or congruent to <span><math><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>6</mn><mo>)</mo></math></span>. These partition theorems were further extended by Glaisher, Andrews, Subbarao, Nyirenda and Mugwangwavari. In this paper, we utilize the Chinese Remainder Theorem to prove a comprehensive partition theorem that encompasses all existing partition theorems. We also give a natural generalization of Euler's theorem based on a special complete residue system. Furthermore, we establish interesting congruence connections between the partition function <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and related partition functions.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online size Ramsey numbers: Path vs C4 在线尺寸拉姆齐数字:路径与 C4
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-20 DOI: 10.1016/j.disc.2024.114214

Given two graphs G and H, a size Ramsey game is played on the edge set of KN. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of G or a blue copy of H as soon as possible. The online (size) Ramsey number r˜(G,H) is the number of rounds in the game provided Builder and Painter play optimally. We prove that r˜(C4,Pn)2n2 for every n8. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get r˜(C4,Pn)=2n2 for n8. Our proof for n13 is computer-assisted. The bound r˜(C4,Pn)2n2 solves also the “all cycles vs. Pn” game for n8 – it implies that it takes Builder 2n2 rounds to force Painter to create a blue path on n vertices or any red cycle.

给定两个图 G 和 H,在 KN 的边集上进行大小拉姆齐游戏。在每一轮中,"生成者 "选择一条边,"绘制者 "将其染成红色或蓝色。生成者的目标是迫使绘制者尽快创建 G 的红色副本或 H 的蓝色副本。在线拉姆齐数(大小)r˜(G,H) 是生成者和绘制者以最佳方式进行博弈的回合数。我们证明,在每 n≥8 时,r˜(C4,Pn)≤2n-2。这个上界与 J. Cyman、T. Dzido、J. Lapinskas 和 A. Lo 所得到的下界相吻合,因此我们得到 n≥8 时 r˜(C4,Pn)=2n-2。对于 n≤13 的证明由计算机辅助。当 n≥8 时,r˜(C4,Pn)≤2n-2 也能解决 "所有循环与 Pn "博弈--这意味着需要 Builder 2n-2 轮才能迫使 Painter 在 n 个顶点上创建一条蓝色路径或任何红色循环。
{"title":"Online size Ramsey numbers: Path vs C4","authors":"","doi":"10.1016/j.disc.2024.114214","DOIUrl":"10.1016/j.disc.2024.114214","url":null,"abstract":"<div><p>Given two graphs <em>G</em> and <em>H</em>, a size Ramsey game is played on the edge set of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. In every round, Builder selects an edge and Painter colours it red or blue. Builder's goal is to force Painter to create a red copy of <em>G</em> or a blue copy of <em>H</em> as soon as possible. The online (size) Ramsey number <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the number of rounds in the game provided Builder and Painter play optimally. We prove that <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for every <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. The upper bound matches the lower bound obtained by J. Cyman, T. Dzido, J. Lapinskas, and A. Lo, so we get <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span>. Our proof for <span><math><mi>n</mi><mo>≤</mo><mn>13</mn></math></span> is computer-assisted. The bound <span><math><mover><mrow><mi>r</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> solves also the “all cycles vs. <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>” game for <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> – it implies that it takes Builder <span><math><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> rounds to force Painter to create a blue path on <em>n</em> vertices or any red cycle.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further results on large sets plus of partitioned incomplete Latin squares 分区不完全拉丁正方形大集合加的进一步结果
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-19 DOI: 10.1016/j.disc.2024.114215

In this paper, we continue to study the existence of large sets plus of partitioned incomplete Latin squares of type gn(ug)1, denoted by LSPILS+(gn(ug)1). We almost solve the existence of an LSPILS+(gn(ug)1) for any integer g1 and u=3,4 with some possible exceptions.

在本文中,我们继续研究gn(ug)1 类型的分割不完全拉丁正方形的大集合加的存在性,用 LSPILS+(gn(ug)1) 表示。对于任意整数 g≥1 和 u=3,4,我们几乎求解出了 LSPILS+(gn(ug)1)的存在性,但也有一些可能的例外。
{"title":"Further results on large sets plus of partitioned incomplete Latin squares","authors":"","doi":"10.1016/j.disc.2024.114215","DOIUrl":"10.1016/j.disc.2024.114215","url":null,"abstract":"<div><p>In this paper, we continue to study the existence of large sets plus of partitioned incomplete Latin squares of type <span><math><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>u</mi><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msup></math></span>, denoted by LSPILS<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>u</mi><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>. We almost solve the existence of an LSPILS<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup><mo>(</mo><msup><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mo>(</mo><mi>u</mi><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span> for any integer <span><math><mi>g</mi><mo>≥</mo><mn>1</mn></math></span> and <span><math><mi>u</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn></math></span> with some possible exceptions.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003467/pdfft?md5=a7bdcbba4d2ea5621caf6949ac6fa294&pid=1-s2.0-S0012365X24003467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán numbers of general star forests in hypergraphs 超图中一般星形林的图兰数
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-19 DOI: 10.1016/j.disc.2024.114219

Let F be a family of r-uniform hypergraphs, and let H be an r-uniform hypergraph. Then H is called F-free if it does not contain any member of F as a subhypergraph. The Turán number of F, denoted by exr(n,F), is the maximum number of hyperedges in an F-free n-vertex r-uniform hypergraph. Our current results are motivated by earlier results on Turán numbers of star forests and hypergraph star forests. In particular, Lidický et al. (2013) [17] determined the Turán number ex(n,F) of a star forest F for sufficiently large n. Recently, Khormali and Palmer (2022) [13] generalized the above result to three different well-studied hypergraph settings (the expansions of a graph, linear hypergraphs and Berge hypergraphs), but restricted to the case that all stars in the hypergraph star forests are identical. We further generalize these results to general star forests in hypergraphs.

设 F 是一个 r-Uniform 超图族,设 H 是一个 r-Uniform 超图。如果 H 的子超图不包含 F 的任何成员,则称 H 为无 F 超图。F 的图兰数(用 exr(n,F) 表示)是无 F n 顶点 r-uniform 超图中超图的最大数目。我们目前的结果是受早先关于星形森林和超图星形森林的图兰数结果的启发。最近,Khormali 和 Palmer(2022 年)[13] 将上述结果推广到三种不同的、研究得很透彻的超图环境(图的展开、线性超图和 Berge 超图),但仅限于超图星形林中所有星形都相同的情况。我们将这些结果进一步推广到超图中的一般星形林。
{"title":"Turán numbers of general star forests in hypergraphs","authors":"","doi":"10.1016/j.disc.2024.114219","DOIUrl":"10.1016/j.disc.2024.114219","url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a family of <em>r</em>-uniform hypergraphs, and let <em>H</em> be an <em>r</em>-uniform hypergraph. Then <em>H</em> is called <span><math><mi>F</mi></math></span>-free if it does not contain any member of <span><math><mi>F</mi></math></span> as a subhypergraph. The Turán number of <span><math><mi>F</mi></math></span>, denoted by <span><math><msub><mrow><mi>ex</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, is the maximum number of hyperedges in an <span><math><mi>F</mi></math></span>-free <em>n</em>-vertex <em>r</em>-uniform hypergraph. Our current results are motivated by earlier results on Turán numbers of star forests and hypergraph star forests. In particular, Lidický et al. (2013) <span><span>[17]</span></span> determined the Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> of a star forest <em>F</em> for sufficiently large <em>n</em>. Recently, Khormali and Palmer (2022) <span><span>[13]</span></span> generalized the above result to three different well-studied hypergraph settings (the expansions of a graph, linear hypergraphs and Berge hypergraphs), but restricted to the case that all stars in the hypergraph star forests are identical. We further generalize these results to general star forests in hypergraphs.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003509/pdfft?md5=f55a8417dd66a400951a48477694c9f9&pid=1-s2.0-S0012365X24003509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The VC dimension of quadratic residues in finite fields 有限域中二次残差的 VC 维数
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-16 DOI: 10.1016/j.disc.2024.114192

We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, Fq, when considered as a subset of the additive group. We conjecture that as q, the squares have the maximum possible VC-dimension, viz. (1+o(1))log2q. We prove, using the Weil bound for multiplicative character sums, that the VC-dimension is (12+o(1))log2q. We also provide numerical evidence for our conjectures. The results generalize to multiplicative subgroups ΓFq× of bounded index.

我们研究了有限域 Fq 中二次残差(即正方形)集合作为加法群子集时的 Vapnik-Chervonenkis (VC)维度。我们猜想,当 q→∞ 时,正方形具有最大可能的 VC 维度,即 (1+o(1))log2q。我们利用乘法特征和的韦尔界证明,VC 维度为⩾(12+o(1))log2q。我们还为我们的猜想提供了数字证据。这些结果可以推广到有界指数的乘法子群 Γ⊆Fq×。
{"title":"The VC dimension of quadratic residues in finite fields","authors":"","doi":"10.1016/j.disc.2024.114192","DOIUrl":"10.1016/j.disc.2024.114192","url":null,"abstract":"<div><p>We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, when considered as a subset of the additive group. We conjecture that as <span><math><mi>q</mi><mo>→</mo><mo>∞</mo></math></span>, the squares have the maximum possible VC-dimension, viz. <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>q</mi></math></span>. We prove, using the Weil bound for multiplicative character sums, that the VC-dimension is <span><math><mo>⩾</mo><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⁡</mo><mi>q</mi></math></span>. We also provide numerical evidence for our conjectures. The results generalize to multiplicative subgroups <span><math><mi>Γ</mi><mo>⊆</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math></span> of bounded index.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003236/pdfft?md5=cb2593a83f33c425a70d3257432c949e&pid=1-s2.0-S0012365X24003236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the direct and inverse zero-sum problems over non-split metacyclic group 关于非分裂元环群上的直接和逆零和问题
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-15 DOI: 10.1016/j.disc.2024.114213

Let G=y,x|y2n=1,x2=yn,xyx1=y be the non-split metacyclic group with 21(mod2n) and ±1,n+1(mod2n). In this paper, we obtain the exact values of small Davenport constant d(G), Gao constant E(G), η-constant η(G) and Erdős-Ginzburg-Ziv constant s(G). Additionally, we study the associated inverse problems on d(G), E(G), η(G) and s(G). In 2003, Gao conjectured that s(G)=η(G)+exp(G)1 for any finite group G. In 2005, Gao and Zhuang conjectured that E(G)=d(G)+|G| for any finite group G. As a result, we confirm the two conjectures for non-split metacyclic groups.

设 G=〈y,x|y2n=1,x2=yn,xyx-1=yℓ〉为ℓ2≡1(mod2n)和ℓ≢±1,n+1(mod2n)的非分裂元环群。在本文中,我们得到了小达文波特常数 d(G)、高常数 E(G)、η常数 η(G)和厄尔多斯-金兹堡-齐夫常数 s(G)的精确值。此外,我们还研究了与 d(G)、E(G)、η(G) 和 s(G) 相关的逆问题。2003 年,高晓松猜想对于任意有限群 G,s(G)=η(G)+exp(G)-1;2005 年,高晓松和庄稼汉猜想对于任意有限群 G,E(G)=d(G)+|G|。
{"title":"On the direct and inverse zero-sum problems over non-split metacyclic group","authors":"","doi":"10.1016/j.disc.2024.114213","DOIUrl":"10.1016/j.disc.2024.114213","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>=</mo><mrow><mo>〈</mo><mi>y</mi><mo>,</mo><mi>x</mi><mo>|</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><mi>x</mi><mi>y</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>〉</mo></mrow></math></span> be the non-split metacyclic group with <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><mn>2</mn><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>ℓ</mi><mo>≢</mo><mo>±</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><mn>1</mn><mspace></mspace><mo>(</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mspace></mspace><mn>2</mn><mi>n</mi><mo>)</mo></math></span>. In this paper, we obtain the exact values of small Davenport constant <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, Gao constant <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <em>η</em>-constant <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and Erdős-Ginzburg-Ziv constant <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Additionally, we study the associated inverse problems on <span><math><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In 2003, Gao conjectured that <span><math><mi>s</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mtext>exp</mtext><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span> for any finite group <em>G</em>. In 2005, Gao and Zhuang conjectured that <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>d</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mo>|</mo><mi>G</mi><mo>|</mo></math></span> for any finite group <em>G</em>. As a result, we confirm the two conjectures for non-split metacyclic groups.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cut-down de Bruijn sequences 删减的德布鲁因序列
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-08-14 DOI: 10.1016/j.disc.2024.114204

A cut-down de Bruijn sequence is a cyclic string of length L, where 1Lkn, such that every substring of length n appears at most once. Etzion [Theor. Comp. Sci 44 (1986)] introduced an algorithm to construct binary cut-down de Bruijn sequences requiring o(n) simple n-bit operations per symbol generated. In this paper, we simplify the algorithm and improve the running time to O(n) time per symbol generated using O(n) space. Additionally, we develop the first successor-rule approach for constructing a binary cut-down de Bruijn sequence by leveraging recent ranking/unranking algorithms for fixed-density Lyndon words. Finally, we develop an algorithm to generate cut-down de Bruijn sequences for k>2 that runs in O(n) time per symbol using O(n) space after some initialization.

删减德布鲁因序列是长度为 L(其中 1≤L≤kn )的循环字符串,长度为 n 的每个子串最多出现一次。Etzion [Theor. Comp. Sci 44 (1986)]介绍了一种构建二进制削减德布鲁因序列的算法,每个符号的生成需要 o(n) 个简单的 n 位运算。在本文中,我们简化了该算法,并将运行时间改进为使用 O(n) 空间生成每个符号需要 O(n) 时间。此外,我们利用最近针对固定密度 Lyndon 字的排序/解排序算法,开发了第一种用于构建二进制删减 de Bruijn 序列的后继规则方法。最后,我们开发了一种生成 k>2 cut-down de Bruijn 序列的算法,该算法在初始化后使用 O(n) 空间,每个符号只需运行 O(n) 时间。
{"title":"Cut-down de Bruijn sequences","authors":"","doi":"10.1016/j.disc.2024.114204","DOIUrl":"10.1016/j.disc.2024.114204","url":null,"abstract":"<div><p>A cut-down de Bruijn sequence is a cyclic string of length <em>L</em>, where <span><math><mn>1</mn><mo>≤</mo><mi>L</mi><mo>≤</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, such that every substring of length <em>n</em> appears <em>at most</em> once. Etzion [<em>Theor. Comp. Sci</em> 44 (1986)] introduced an algorithm to construct binary cut-down de Bruijn sequences requiring <span><math><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> simple <em>n</em>-bit operations per symbol generated. In this paper, we simplify the algorithm and improve the running time to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> time per symbol generated using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space. Additionally, we develop the first successor-rule approach for constructing a binary cut-down de Bruijn sequence by leveraging recent ranking/unranking algorithms for fixed-density Lyndon words. Finally, we develop an algorithm to generate cut-down de Bruijn sequences for <span><math><mi>k</mi><mo>&gt;</mo><mn>2</mn></math></span> that runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> time per symbol using <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> space after some initialization.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003352/pdfft?md5=dc65cfb8e32bb465a8c99176a8b278b0&pid=1-s2.0-S0012365X24003352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1