Pub Date : 2025-01-03DOI: 10.1016/j.disc.2024.114384
Lei Zhang , Liming Xiong
Let be a class of given graphs. We say that a graph is - if it contains no induced subgraph isomorphic to H for every . In 2017, the second author characterized all connected graphs H with order at least three such that every H-free graph G has an even factor if and only if and every odd branch-bond of G has an edge branch. In this paper, we consider the case H is disconnected and characterize all the pairs of connected graphs such that every -free graph G has an even factor if and only if and every odd branch-bond of G has an edge branch.
{"title":"Characterizing forbidden pairs for the existence of even factors","authors":"Lei Zhang , Liming Xiong","doi":"10.1016/j.disc.2024.114384","DOIUrl":"10.1016/j.disc.2024.114384","url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be a class of given graphs. We say that a graph is <span><math><mi>H</mi></math></span>-<span><math><mi>f</mi><mi>r</mi><mi>e</mi><mi>e</mi></math></span> if it contains no induced subgraph isomorphic to <em>H</em> for every <span><math><mi>H</mi><mo>∈</mo><mi>H</mi></math></span>. In 2017, the second author characterized all connected graphs <em>H</em> with order at least three such that every <em>H</em>-free graph <em>G</em> has an even factor if and only if <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span> and every odd branch-bond of <em>G</em> has an edge branch. In this paper, we consider the case <em>H</em> is disconnected and characterize all the pairs <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span> of connected graphs such that every <span><math><mo>{</mo><mi>R</mi><mo>,</mo><mi>S</mi><mo>}</mo></math></span>-free graph <em>G</em> has an even factor if and only if <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn></math></span> and every odd branch-bond of <em>G</em> has an edge branch.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114384"},"PeriodicalIF":0.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1016/j.disc.2024.114382
C. Dalfó , M.A. Fiol , A. Messegué
The k-token graph of a graph G on n vertices is the graph whose vertices are the k-subsets of vertices from G, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G.
It is known that the algebraic connectivity (or second Laplacian eigenvalue) of equals the algebraic connectivity of G.
In this paper, we give some bounds on the (Laplacian) eigenvalues of the k-token graph (including the algebraic connectivity) in terms of the h-token graph, with . For instance, we prove that if λ is an eigenvalue of , but not of G, then As a consequence, we conclude that if , then for every .
{"title":"Some bounds on the Laplacian eigenvalues of token graphs","authors":"C. Dalfó , M.A. Fiol , A. Messegué","doi":"10.1016/j.disc.2024.114382","DOIUrl":"10.1016/j.disc.2024.114382","url":null,"abstract":"<div><div>The <em>k</em>-token graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> on <em>n</em> vertices is the graph whose vertices are the <span><math><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></math></span> <em>k</em>-subsets of vertices from <em>G</em>, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in <em>G</em>.</div><div>It is known that the algebraic connectivity (or second Laplacian eigenvalue) of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> equals the algebraic connectivity <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em>.</div><div>In this paper, we give some bounds on the (Laplacian) eigenvalues of the <em>k</em>-token graph (including the algebraic connectivity) in terms of the <em>h</em>-token graph, with <span><math><mi>h</mi><mo>≤</mo><mi>k</mi></math></span>. For instance, we prove that if <em>λ</em> is an eigenvalue of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, but not of <em>G</em>, then<span><span><span><math><mi>λ</mi><mo>≥</mo><mi>k</mi><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span> As a consequence, we conclude that if <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>k</mi></math></span>, then <span><math><mi>α</mi><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>h</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>=</mo><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for every <span><math><mi>h</mi><mo>≤</mo><mi>k</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114382"},"PeriodicalIF":0.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31DOI: 10.1016/j.disc.2024.114380
Nancy S.S. Gu, Kuo Yu
Linked partition ideals which were first introduced by Andrews have recently appeared in a series of works to study generating functions for partitions. Recently, Andrews found some relations between a certain kind of overpartitions and 4-regular partitions into distinct parts. Then with the aid of linked partition ideals for overpartitions, Andrews and Chern established a general relation between these two sets of partitions. Motivated by their work, we consider the overpatitions denoted by satisfying the following conditions: (1) Only odd parts may be overlined; (2) The difference between any two parts is where the inequality is strict if the larger one is overlined. Let S be a set of given parts. Then denotes the subset of overpartitions in where parts from S are forbidden. Combining linked partition ideals and a recurrence relation for a family of multiple series given by Chern, we study the generating functions for for some given S. Furthermore, by establishing a q-series identity, we find a relation between and distinct partitions. Meanwhile, some statistics on partitions are discussed.
{"title":"Linked partition ideals and overpartitions","authors":"Nancy S.S. Gu, Kuo Yu","doi":"10.1016/j.disc.2024.114380","DOIUrl":"10.1016/j.disc.2024.114380","url":null,"abstract":"<div><div>Linked partition ideals which were first introduced by Andrews have recently appeared in a series of works to study generating functions for partitions. Recently, Andrews found some relations between a certain kind of overpartitions and 4-regular partitions into distinct parts. Then with the aid of linked partition ideals for overpartitions, Andrews and Chern established a general relation between these two sets of partitions. Motivated by their work, we consider the overpatitions denoted by <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> satisfying the following conditions: (1) Only odd parts may be overlined; (2) The difference between any two parts is <span><math><mo>⩾</mo><mn>2</mn><mi>k</mi></math></span> where the inequality is strict if the larger one is overlined. Let <em>S</em> be a set of given parts. Then <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> denotes the subset of overpartitions in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> where parts from <em>S</em> are forbidden. Combining linked partition ideals and a recurrence relation for a family of multiple series given by Chern, we study the generating functions for <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> for some given <em>S</em>. Furthermore, by establishing a <em>q</em>-series identity, we find a relation between <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mo>{</mo><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mo>}</mo></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> and distinct partitions. Meanwhile, some statistics on partitions are discussed.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114380"},"PeriodicalIF":0.7,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-30DOI: 10.1016/j.disc.2024.114379
Zakir Deniz
A vertex coloring of a graph G is called a 2-distance coloring if any two vertices at a distance at most 2 from each other receive different colors. Suppose that G is a planar graph with a maximum degree at most 5. We prove that G admits a 2-distance 16-coloring, which improves the result given by Zou et al. (2024) [13].
{"title":"On 2-distance 16-coloring of planar graphs with maximum degree at most five","authors":"Zakir Deniz","doi":"10.1016/j.disc.2024.114379","DOIUrl":"10.1016/j.disc.2024.114379","url":null,"abstract":"<div><div>A vertex coloring of a graph <em>G</em> is called a 2-distance coloring if any two vertices at a distance at most 2 from each other receive different colors. Suppose that <em>G</em> is a planar graph with a maximum degree at most 5. We prove that <em>G</em> admits a 2-distance 16-coloring, which improves the result given by Zou et al. (2024) <span><span>[13]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114379"},"PeriodicalIF":0.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.disc.2024.114370
Daniel A. Jaume , Diego G. Martinez , Cristian Panelo
In this work, a structural decomposition of graphs with a unique perfect matching is introduced. The decomposition is given by the barbell subgraphs: even subdivisions of two graphs joined by an edge such that the unique perfect matching of G induces a perfect matching in the subgraphs. The decomposition breaks a graph G, with a unique perfect matching, into two subgraphs, one of which is a Kőnig-Egerváry graph. Furthermore, the decomposition is shown to be multiplicative with respect to determinantal-type (Schur) functions of the adjacency matrix of graphs with a unique perfect matching. Additionally, in this work, Godsil's formula for the determinant of trees with perfect matching is extended to all graphs with a unique perfect matching.
{"title":"Determinantal decomposition of graphs with a unique perfect matching","authors":"Daniel A. Jaume , Diego G. Martinez , Cristian Panelo","doi":"10.1016/j.disc.2024.114370","DOIUrl":"10.1016/j.disc.2024.114370","url":null,"abstract":"<div><div>In this work, a structural decomposition of graphs with a unique perfect matching is introduced. The decomposition is given by the barbell subgraphs: even subdivisions of two <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> graphs joined by an edge such that the unique perfect matching of <em>G</em> induces a perfect matching in the subgraphs. The decomposition breaks a graph <em>G</em>, with a unique perfect matching, into two subgraphs, one of which is a Kőnig-Egerváry graph. Furthermore, the decomposition is shown to be multiplicative with respect to determinantal-type (Schur) functions of the adjacency matrix of graphs with a unique perfect matching. Additionally, in this work, Godsil's formula for the determinant of trees with perfect matching is extended to all graphs with a unique perfect matching.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114370"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.disc.2024.114376
Maidoun Mortada , Olivier Togni
For a non-decreasing sequence of integers , an S-packing coloring of G is a partition of into k subsets such that the distance between any two distinct vertices is at least , . We consider the S-packing coloring problem on subclasses of subcubic graphs: For , a subcubic graph G is said to be i-saturated if every vertex of degree 3 is adjacent to at most i vertices of degree 3. Furthermore, a vertex of degree 3 in a subcubic graph is called heavy if all its three neighbors are of degree 3, and G is said to be -saturated if every heavy vertex is adjacent to at most i heavy vertices. We prove that every 1-saturated subcubic graph is -packing colorable and -packing colorable. We also prove that every -saturated subcubic graph is -packing colorable.
{"title":"Further results and questions on S-packing coloring of subcubic graphs","authors":"Maidoun Mortada , Olivier Togni","doi":"10.1016/j.disc.2024.114376","DOIUrl":"10.1016/j.disc.2024.114376","url":null,"abstract":"<div><div>For a non-decreasing sequence of integers <span><math><mi>S</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, an <em>S</em>-packing coloring of <em>G</em> is a partition of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <em>k</em> subsets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the distance between any two distinct vertices <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is at least <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>. We consider the <em>S</em>-packing coloring problem on subclasses of subcubic graphs: For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>3</mn></math></span>, a subcubic graph <em>G</em> is said to be <em>i</em>-saturated if every vertex of degree 3 is adjacent to at most <em>i</em> vertices of degree 3. Furthermore, a vertex of degree 3 in a subcubic graph is called heavy if all its three neighbors are of degree 3, and <em>G</em> is said to be <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mi>i</mi><mo>)</mo></math></span>-saturated if every heavy vertex is adjacent to at most <em>i</em> heavy vertices. We prove that every 1-saturated subcubic graph is <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>-packing colorable and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-packing colorable. We also prove that every <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>-saturated subcubic graph is <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-packing colorable.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114376"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Finding the maximum cardinality of a 2-distance set in Euclidean space is a classical problem in geometry. Lisoněk in 1997 constructed a maximum 2-distance set in with 45 points. That 2-distance set constructed by Lisoněk has a distinguished structure of a coherent configuration of type and is embedded in two concentric spheres in . In this paper we study whether there exists any other similar embedding of a coherent configuration of type as a 2-distance set in , without assuming any restriction on the size of the set. We prove that there exists no such example other than that of Lisoněk. The key ideas of our proof are as follows: (i) study the geometry of the embedding of the coherent configuration in Euclidean spaces and to derive diophantine equations coming from this embedding. (ii) solve diophantine equations with certain additional conditions of integrality of some parameters of the combinatorial structure by using the method of auxiliary equations.
{"title":"On the two-distance embedding in real Euclidean space of coherent configuration of type (2,2;3)","authors":"Eiichi Bannai , Etsuko Bannai , Chin-Yen Lee , Ziqing Xiang , Wei-Hsuan Yu","doi":"10.1016/j.disc.2024.114378","DOIUrl":"10.1016/j.disc.2024.114378","url":null,"abstract":"<div><div>Finding the maximum cardinality of a 2-distance set in Euclidean space is a classical problem in geometry. Lisoněk in 1997 constructed a maximum 2-distance set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> with 45 points. That 2-distance set constructed by Lisoněk has a distinguished structure of a coherent configuration of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></span> and is embedded in two concentric spheres in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span>. In this paper we study whether there exists any other similar embedding of a coherent configuration of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></span> as a 2-distance set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, without assuming any restriction on the size of the set. We prove that there exists no such example other than that of Lisoněk. The key ideas of our proof are as follows: (i) study the geometry of the embedding of the coherent configuration in Euclidean spaces and to derive diophantine equations coming from this embedding. (ii) solve diophantine equations with certain additional conditions of integrality of some parameters of the combinatorial structure by using the method of auxiliary equations.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114378"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.disc.2024.114371
Jiyou Li, Yanghongbo Zhou
We give a shorter proof of Chen-Qian Theorem from a perspective of abstract tube.
{"title":"A short note on Chen-Qian theorem","authors":"Jiyou Li, Yanghongbo Zhou","doi":"10.1016/j.disc.2024.114371","DOIUrl":"10.1016/j.disc.2024.114371","url":null,"abstract":"<div><div>We give a shorter proof of Chen-Qian Theorem from a perspective of abstract tube.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114371"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1016/j.disc.2024.114372
Andrea C. Burgess , Robert D. Luther , David A. Pike
For a positive integer n, a graph with at least n vertices is n-existentially closed or simply n-e.c. if for any set of vertices S of size n and any set , there is a vertex adjacent to each vertex of T and no vertex of . We extend this concept to uniform hypergraphs, find necessary conditions for n-e.c. hypergraphs to exist, and prove that random uniform hypergraphs are asymptotically n-existentially closed. We then provide constructions to generate infinitely many examples of n-e.c. hypergraphs. In particular, these constructions use certain combinatorial designs as ingredients, adding to the ever-growing list of applications of designs.
{"title":"Existential closure in uniform hypergraphs","authors":"Andrea C. Burgess , Robert D. Luther , David A. Pike","doi":"10.1016/j.disc.2024.114372","DOIUrl":"10.1016/j.disc.2024.114372","url":null,"abstract":"<div><div>For a positive integer <em>n</em>, a graph with at least <em>n</em> vertices is <em>n</em>-existentially closed or simply <em>n</em>-e.c. if for any set of vertices <em>S</em> of size <em>n</em> and any set <span><math><mi>T</mi><mo>⊆</mo><mi>S</mi></math></span>, there is a vertex <span><math><mi>x</mi><mo>∉</mo><mi>S</mi></math></span> adjacent to each vertex of <em>T</em> and no vertex of <span><math><mi>S</mi><mo>∖</mo><mi>T</mi></math></span>. We extend this concept to uniform hypergraphs, find necessary conditions for <em>n</em>-e.c. hypergraphs to exist, and prove that random uniform hypergraphs are asymptotically <em>n</em>-existentially closed. We then provide constructions to generate infinitely many examples of <em>n</em>-e.c. hypergraphs. In particular, these constructions use certain combinatorial designs as ingredients, adding to the ever-growing list of applications of designs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114372"},"PeriodicalIF":0.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-20DOI: 10.1016/j.disc.2024.114374
Fang Tian , Yiting Yang
<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the
{"title":"A note on the random triadic process","authors":"Fang Tian , Yiting Yang","doi":"10.1016/j.disc.2024.114374","DOIUrl":"10.1016/j.disc.2024.114374","url":null,"abstract":"<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114374"},"PeriodicalIF":0.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}