首页 > 最新文献

Discrete Mathematics最新文献

英文 中文
On 2-distance 16-coloring of planar graphs with maximum degree at most five
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-30 DOI: 10.1016/j.disc.2024.114379
Zakir Deniz
A vertex coloring of a graph G is called a 2-distance coloring if any two vertices at a distance at most 2 from each other receive different colors. Suppose that G is a planar graph with a maximum degree at most 5. We prove that G admits a 2-distance 16-coloring, which improves the result given by Zou et al. (2024) [13].
{"title":"On 2-distance 16-coloring of planar graphs with maximum degree at most five","authors":"Zakir Deniz","doi":"10.1016/j.disc.2024.114379","DOIUrl":"10.1016/j.disc.2024.114379","url":null,"abstract":"<div><div>A vertex coloring of a graph <em>G</em> is called a 2-distance coloring if any two vertices at a distance at most 2 from each other receive different colors. Suppose that <em>G</em> is a planar graph with a maximum degree at most 5. We prove that <em>G</em> admits a 2-distance 16-coloring, which improves the result given by Zou et al. (2024) <span><span>[13]</span></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114379"},"PeriodicalIF":0.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determinantal decomposition of graphs with a unique perfect matching
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-27 DOI: 10.1016/j.disc.2024.114370
Daniel A. Jaume , Diego G. Martinez , Cristian Panelo
In this work, a structural decomposition of graphs with a unique perfect matching is introduced. The decomposition is given by the barbell subgraphs: even subdivisions of two K3 graphs joined by an edge such that the unique perfect matching of G induces a perfect matching in the subgraphs. The decomposition breaks a graph G, with a unique perfect matching, into two subgraphs, one of which is a Kőnig-Egerváry graph. Furthermore, the decomposition is shown to be multiplicative with respect to determinantal-type (Schur) functions of the adjacency matrix of graphs with a unique perfect matching. Additionally, in this work, Godsil's formula for the determinant of trees with perfect matching is extended to all graphs with a unique perfect matching.
{"title":"Determinantal decomposition of graphs with a unique perfect matching","authors":"Daniel A. Jaume ,&nbsp;Diego G. Martinez ,&nbsp;Cristian Panelo","doi":"10.1016/j.disc.2024.114370","DOIUrl":"10.1016/j.disc.2024.114370","url":null,"abstract":"<div><div>In this work, a structural decomposition of graphs with a unique perfect matching is introduced. The decomposition is given by the barbell subgraphs: even subdivisions of two <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> graphs joined by an edge such that the unique perfect matching of <em>G</em> induces a perfect matching in the subgraphs. The decomposition breaks a graph <em>G</em>, with a unique perfect matching, into two subgraphs, one of which is a Kőnig-Egerváry graph. Furthermore, the decomposition is shown to be multiplicative with respect to determinantal-type (Schur) functions of the adjacency matrix of graphs with a unique perfect matching. Additionally, in this work, Godsil's formula for the determinant of trees with perfect matching is extended to all graphs with a unique perfect matching.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114370"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Further results and questions on S-packing coloring of subcubic graphs
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-27 DOI: 10.1016/j.disc.2024.114376
Maidoun Mortada , Olivier Togni
For a non-decreasing sequence of integers S=(a1,a2,,ak), an S-packing coloring of G is a partition of V(G) into k subsets V1,V2,,Vk such that the distance between any two distinct vertices x,yVi is at least ai+1, 1ik. We consider the S-packing coloring problem on subclasses of subcubic graphs: For 0i3, a subcubic graph G is said to be i-saturated if every vertex of degree 3 is adjacent to at most i vertices of degree 3. Furthermore, a vertex of degree 3 in a subcubic graph is called heavy if all its three neighbors are of degree 3, and G is said to be (3,i)-saturated if every heavy vertex is adjacent to at most i heavy vertices. We prove that every 1-saturated subcubic graph is (1,1,3,3)-packing colorable and (1,2,2,2,2)-packing colorable. We also prove that every (3,0)-saturated subcubic graph is (1,2,2,2,2,2)-packing colorable.
{"title":"Further results and questions on S-packing coloring of subcubic graphs","authors":"Maidoun Mortada ,&nbsp;Olivier Togni","doi":"10.1016/j.disc.2024.114376","DOIUrl":"10.1016/j.disc.2024.114376","url":null,"abstract":"<div><div>For a non-decreasing sequence of integers <span><math><mi>S</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span>, an <em>S</em>-packing coloring of <em>G</em> is a partition of <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <em>k</em> subsets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the distance between any two distinct vertices <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is at least <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><mn>1</mn></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span>. We consider the <em>S</em>-packing coloring problem on subclasses of subcubic graphs: For <span><math><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>3</mn></math></span>, a subcubic graph <em>G</em> is said to be <em>i</em>-saturated if every vertex of degree 3 is adjacent to at most <em>i</em> vertices of degree 3. Furthermore, a vertex of degree 3 in a subcubic graph is called heavy if all its three neighbors are of degree 3, and <em>G</em> is said to be <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mi>i</mi><mo>)</mo></math></span>-saturated if every heavy vertex is adjacent to at most <em>i</em> heavy vertices. We prove that every 1-saturated subcubic graph is <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span>-packing colorable and <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-packing colorable. We also prove that every <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>0</mn><mo>)</mo></math></span>-saturated subcubic graph is <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-packing colorable.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114376"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the two-distance embedding in real Euclidean space of coherent configuration of type (2,2;3)
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-27 DOI: 10.1016/j.disc.2024.114378
Eiichi Bannai , Etsuko Bannai , Chin-Yen Lee , Ziqing Xiang , Wei-Hsuan Yu
Finding the maximum cardinality of a 2-distance set in Euclidean space is a classical problem in geometry. Lisoněk in 1997 constructed a maximum 2-distance set in R8 with 45 points. That 2-distance set constructed by Lisoněk has a distinguished structure of a coherent configuration of type (2,2;3) and is embedded in two concentric spheres in R8. In this paper we study whether there exists any other similar embedding of a coherent configuration of type (2,2;3) as a 2-distance set in Rn, without assuming any restriction on the size of the set. We prove that there exists no such example other than that of Lisoněk. The key ideas of our proof are as follows: (i) study the geometry of the embedding of the coherent configuration in Euclidean spaces and to derive diophantine equations coming from this embedding. (ii) solve diophantine equations with certain additional conditions of integrality of some parameters of the combinatorial structure by using the method of auxiliary equations.
{"title":"On the two-distance embedding in real Euclidean space of coherent configuration of type (2,2;3)","authors":"Eiichi Bannai ,&nbsp;Etsuko Bannai ,&nbsp;Chin-Yen Lee ,&nbsp;Ziqing Xiang ,&nbsp;Wei-Hsuan Yu","doi":"10.1016/j.disc.2024.114378","DOIUrl":"10.1016/j.disc.2024.114378","url":null,"abstract":"<div><div>Finding the maximum cardinality of a 2-distance set in Euclidean space is a classical problem in geometry. Lisoněk in 1997 constructed a maximum 2-distance set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> with 45 points. That 2-distance set constructed by Lisoněk has a distinguished structure of a coherent configuration of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></span> and is embedded in two concentric spheres in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span>. In this paper we study whether there exists any other similar embedding of a coherent configuration of type <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>;</mo><mn>3</mn><mo>)</mo></math></span> as a 2-distance set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, without assuming any restriction on the size of the set. We prove that there exists no such example other than that of Lisoněk. The key ideas of our proof are as follows: (i) study the geometry of the embedding of the coherent configuration in Euclidean spaces and to derive diophantine equations coming from this embedding. (ii) solve diophantine equations with certain additional conditions of integrality of some parameters of the combinatorial structure by using the method of auxiliary equations.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114378"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A short note on Chen-Qian theorem
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-27 DOI: 10.1016/j.disc.2024.114371
Jiyou Li, Yanghongbo Zhou
We give a shorter proof of Chen-Qian Theorem from a perspective of abstract tube.
{"title":"A short note on Chen-Qian theorem","authors":"Jiyou Li,&nbsp;Yanghongbo Zhou","doi":"10.1016/j.disc.2024.114371","DOIUrl":"10.1016/j.disc.2024.114371","url":null,"abstract":"<div><div>We give a shorter proof of Chen-Qian Theorem from a perspective of abstract tube.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114371"},"PeriodicalIF":0.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existential closure in uniform hypergraphs
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-23 DOI: 10.1016/j.disc.2024.114372
Andrea C. Burgess , Robert D. Luther , David A. Pike
For a positive integer n, a graph with at least n vertices is n-existentially closed or simply n-e.c. if for any set of vertices S of size n and any set TS, there is a vertex xS adjacent to each vertex of T and no vertex of ST. We extend this concept to uniform hypergraphs, find necessary conditions for n-e.c. hypergraphs to exist, and prove that random uniform hypergraphs are asymptotically n-existentially closed. We then provide constructions to generate infinitely many examples of n-e.c. hypergraphs. In particular, these constructions use certain combinatorial designs as ingredients, adding to the ever-growing list of applications of designs.
{"title":"Existential closure in uniform hypergraphs","authors":"Andrea C. Burgess ,&nbsp;Robert D. Luther ,&nbsp;David A. Pike","doi":"10.1016/j.disc.2024.114372","DOIUrl":"10.1016/j.disc.2024.114372","url":null,"abstract":"<div><div>For a positive integer <em>n</em>, a graph with at least <em>n</em> vertices is <em>n</em>-existentially closed or simply <em>n</em>-e.c. if for any set of vertices <em>S</em> of size <em>n</em> and any set <span><math><mi>T</mi><mo>⊆</mo><mi>S</mi></math></span>, there is a vertex <span><math><mi>x</mi><mo>∉</mo><mi>S</mi></math></span> adjacent to each vertex of <em>T</em> and no vertex of <span><math><mi>S</mi><mo>∖</mo><mi>T</mi></math></span>. We extend this concept to uniform hypergraphs, find necessary conditions for <em>n</em>-e.c. hypergraphs to exist, and prove that random uniform hypergraphs are asymptotically <em>n</em>-existentially closed. We then provide constructions to generate infinitely many examples of <em>n</em>-e.c. hypergraphs. In particular, these constructions use certain combinatorial designs as ingredients, adding to the ever-growing list of applications of designs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114372"},"PeriodicalIF":0.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the random triadic process
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-20 DOI: 10.1016/j.disc.2024.114374
Fang Tian , Yiting Yang
<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the
{"title":"A note on the random triadic process","authors":"Fang Tian ,&nbsp;Yiting Yang","doi":"10.1016/j.disc.2024.114374","DOIUrl":"10.1016/j.disc.2024.114374","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a fixed integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;⩾&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be a random &lt;em&gt;r&lt;/em&gt;-uniform hypergraph on the vertex set &lt;span&gt;&lt;math&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, where each &lt;em&gt;r&lt;/em&gt;-set is an edge randomly and independently with probability &lt;em&gt;p&lt;/em&gt;. The random &lt;em&gt;r&lt;/em&gt;-generalized triadic process starts with a complete bipartite graph &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; on the same vertex set, chooses two distinct vertices &lt;em&gt;x&lt;/em&gt; and &lt;em&gt;y&lt;/em&gt; uniformly at random and iteratively adds &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; as an edge if there is a subset &lt;em&gt;Z&lt;/em&gt; with size &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;, denoted as &lt;span&gt;&lt;math&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, such that &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;⩽&lt;/mo&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;⩽&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt; are already edges in the graph and &lt;span&gt;&lt;math&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is an edge in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if &lt;span&gt;&lt;math&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; for some positive constant &lt;em&gt;c&lt;/em&gt;, with high probability, the triadic process reaches the complete graph when &lt;span&gt;&lt;math&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt; and stops at &lt;span&gt;&lt;math&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; edges when &lt;span&gt;&lt;math&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;. In this note, we consider the ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114374"},"PeriodicalIF":0.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Larger nearly orthogonal sets over finite fields
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-19 DOI: 10.1016/j.disc.2024.114373
Ishay Haviv , Sam Mattheus , Aleksa Milojević , Yuval Wigderson
For a field F and integers d and k, a set AFd is called k-nearly orthogonal if its members are non-self-orthogonal and every k+1 vectors of A include an orthogonal pair. We prove that for every prime p there exists some δ=δ(p)>0, such that for every field F of characteristic p and for all integers k2 and dk, there exists a k-nearly orthogonal set of at least dδk/logk vectors of Fd. The size of the set is optimal up to the logk term in the exponent. We further prove two extensions of this result. In the first, we provide a large set A of non-self-orthogonal vectors of Fd such that for every two subsets of A of size k+1 each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every k+1 vectors of the produced set A include +1 pairwise orthogonal vectors for an arbitrary fixed integer 1k. The proofs involve probabilistic and spectral arguments and the hypergraph container method.
{"title":"Larger nearly orthogonal sets over finite fields","authors":"Ishay Haviv ,&nbsp;Sam Mattheus ,&nbsp;Aleksa Milojević ,&nbsp;Yuval Wigderson","doi":"10.1016/j.disc.2024.114373","DOIUrl":"10.1016/j.disc.2024.114373","url":null,"abstract":"<div><div>For a field <span><math><mi>F</mi></math></span> and integers <em>d</em> and <em>k</em>, a set <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is called <em>k</em>-nearly orthogonal if its members are non-self-orthogonal and every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of <span><math><mi>A</mi></math></span> include an orthogonal pair. We prove that for every prime <em>p</em> there exists some <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>, such that for every field <span><math><mi>F</mi></math></span> of characteristic <em>p</em> and for all integers <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>≥</mo><mi>k</mi></math></span>, there exists a <em>k</em>-nearly orthogonal set of at least <span><math><msup><mrow><mi>d</mi></mrow><mrow><mi>δ</mi><mo>⋅</mo><mi>k</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>k</mi></mrow></msup></math></span> vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. The size of the set is optimal up to the <span><math><mi>log</mi><mo>⁡</mo><mi>k</mi></math></span> term in the exponent. We further prove two extensions of this result. In the first, we provide a large set <span><math><mi>A</mi></math></span> of non-self-orthogonal vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that for every two subsets of <span><math><mi>A</mi></math></span> of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of the produced set <span><math><mi>A</mi></math></span> include <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> pairwise orthogonal vectors for an arbitrary fixed integer <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi></math></span>. The proofs involve probabilistic and spectral arguments and the hypergraph container method.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114373"},"PeriodicalIF":0.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The number of perfect matchings in a brick
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-18 DOI: 10.1016/j.disc.2024.114365
Fuliang Lu, Huali Pan
A 3-connected graph is a brick if the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer.
Lucchesi and Murty conjectured that there exists a positive integer N such that for every nN, every brick on n vertices has at least n1 perfect matchings. We present an infinite family of bricks such that for each even integer n (n>17), there exists a brick with n vertices in this family that contains at most 0.625n perfect matchings, showing that this conjecture fails.
{"title":"The number of perfect matchings in a brick","authors":"Fuliang Lu,&nbsp;Huali Pan","doi":"10.1016/j.disc.2024.114365","DOIUrl":"10.1016/j.disc.2024.114365","url":null,"abstract":"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer.</div><div>Lucchesi and Murty conjectured that there exists a positive integer <em>N</em> such that for every <span><math><mi>n</mi><mo>≥</mo><mi>N</mi></math></span>, every brick on <em>n</em> vertices has at least <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> perfect matchings. We present an infinite family of bricks such that for each even integer <em>n</em> (<span><math><mi>n</mi><mo>&gt;</mo><mn>17</mn></math></span>), there exists a brick with <em>n</em> vertices in this family that contains at most <span><math><mo>⌈</mo><mn>0.625</mn><mi>n</mi><mo>⌉</mo></math></span> perfect matchings, showing that this conjecture fails.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114365"},"PeriodicalIF":0.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Binary [n,(n ± 1)/2] cyclic codes with good minimum distances from sequences
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2024-12-18 DOI: 10.1016/j.disc.2024.114369
Xianhong Xie , Yaxin Zhao , Zhonghua Sun , Xiaobo Zhou
Recently, binary cyclic codes with parameters [n,(n±1)/2,n] have been a hot topic since their minimum distances have a square-root bound. In this paper, we construct four classes of binary cyclic codes CS,0, CS,1 and CD,0, CD,1 by using two families of sequences, and obtain some codes with parameters [n,(n±1)/2,n]. For m2(mod4), the code CS,0 has parameters [2m1,2m1,2m2+2], and the code CD,0 has parameters [2m1,2m1,2m2+2] if h=1 and [2m1,2m1,2m2] if h=2.
{"title":"Binary [n,(n ± 1)/2] cyclic codes with good minimum distances from sequences","authors":"Xianhong Xie ,&nbsp;Yaxin Zhao ,&nbsp;Zhonghua Sun ,&nbsp;Xiaobo Zhou","doi":"10.1016/j.disc.2024.114369","DOIUrl":"10.1016/j.disc.2024.114369","url":null,"abstract":"<div><div>Recently, binary cyclic codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>n</mi><mo>±</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mo>≥</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>]</mo></math></span> have been a hot topic since their minimum distances have a square-root bound. In this paper, we construct four classes of binary cyclic codes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> by using two families of sequences, and obtain some codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>n</mi><mo>±</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mo>≥</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>]</mo></math></span>. For <span><math><mi>m</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, the code <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> has parameters <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, and the code <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> has parameters <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mo>]</mo></math></span> if <span><math><mi>h</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>]</mo></math></span> if <span><math><mi>h</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114369"},"PeriodicalIF":0.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1