Pub Date : 2026-01-16DOI: 10.1016/j.disc.2026.115000
Wannasiri Wannasit
We show that the generalized Petersen graphs admits a -labeling for every positive integer n. In this way, we obtain the existence of a cyclic -decomposition of for every .
{"title":"On cyclic P(4n,2n − 1)-designs","authors":"Wannasiri Wannasit","doi":"10.1016/j.disc.2026.115000","DOIUrl":"10.1016/j.disc.2026.115000","url":null,"abstract":"<div><div>We show that the generalized Petersen graphs <span><math><mi>P</mi><mo>(</mo><mn>4</mn><mi>n</mi><mo>,</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> admits a <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-labeling for every positive integer <em>n</em>. In this way, we obtain the existence of a cyclic <span><math><mi>P</mi><mo>(</mo><mn>4</mn><mi>n</mi><mo>,</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-decomposition of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> for every <span><math><mi>v</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>24</mn><mi>n</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 115000"},"PeriodicalIF":0.7,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.disc.2026.115007
Naoki Matsumoto
Two vertex colorings of a graph are Kempe equivalent if they can be transformed into each other by a sequence of Kempe changes which interchange the colors used on a component of the subgraph induced by two color classes. Fisk showed that every two vertex 4-colorings of a 3-colorable triangulation on the sphere are Kempe equivalent, and then Mohar extended this result to any 3-colorable planar graph. Fisk also verified that there are 4-chromatic triangulations on the sphere and 3-colorable triangulations on the torus such that some two 4-colorings of them are not Kempe equivalent. In this paper, we show that every two vertex 4-colorings of a 3-colorable triangulation on the projective plane or the Klein bottle are Kempe equivalent. Our result is best possible in terms of all conditions; 3-colorability, the genus of a non-orientable surface, a triangulation (i.e., it cannot be replaced with a graph).
{"title":"Kempe equivalence of 4-colorings of graphs on non-orientable surfaces","authors":"Naoki Matsumoto","doi":"10.1016/j.disc.2026.115007","DOIUrl":"10.1016/j.disc.2026.115007","url":null,"abstract":"<div><div>Two vertex colorings of a graph are Kempe equivalent if they can be transformed into each other by a sequence of Kempe changes which interchange the colors used on a component of the subgraph induced by two color classes. Fisk showed that every two vertex 4-colorings of a 3-colorable triangulation on the sphere are Kempe equivalent, and then Mohar extended this result to any 3-colorable planar graph. Fisk also verified that there are 4-chromatic triangulations on the sphere and 3-colorable triangulations on the torus such that some two 4-colorings of them are not Kempe equivalent. In this paper, we show that every two vertex 4-colorings of a 3-colorable triangulation on the projective plane or the Klein bottle are Kempe equivalent. Our result is best possible in terms of all conditions; 3-colorability, the genus of a non-orientable surface, a triangulation (i.e., it cannot be replaced with a graph).</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115007"},"PeriodicalIF":0.7,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research on cyclic subspace codes aims to design coding schemes with larger cardinality and optimal minimum distance to meet the demands of modern communication systems for efficient and reliable coding. This paper investigates the construction problem of cyclic subspace codes, utilizing combinatorial numbers to select the exponent of the irreducible element γ to construct different Sidon spaces, including k-dimensional and -dimensional spaces. Subsequently, we consider merging the subspace codes generated by these Sidon spaces, resulting in cyclic subspace codes with larger cardinality. Our construction method effectively increases the cardinality of the code while ensuring optimal minimum distance.
{"title":"Construction of large cyclic subspace codes via Sidon spaces with dimensions k and k + 1","authors":"Yongfeng Niu , Chenyu Zhang , Yansheng Wu , Fagang Li","doi":"10.1016/j.disc.2026.115008","DOIUrl":"10.1016/j.disc.2026.115008","url":null,"abstract":"<div><div>The research on cyclic subspace codes aims to design coding schemes with larger cardinality and optimal minimum distance to meet the demands of modern communication systems for efficient and reliable coding. This paper investigates the construction problem of cyclic subspace codes, utilizing combinatorial numbers to select the exponent of the irreducible element <em>γ</em> to construct different Sidon spaces, including <em>k</em>-dimensional and <span><math><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional spaces. Subsequently, we consider merging the subspace codes generated by these Sidon spaces, resulting in cyclic subspace codes with larger cardinality. Our construction method effectively increases the cardinality of the code while ensuring optimal minimum distance.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115008"},"PeriodicalIF":0.7,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-15DOI: 10.1016/j.disc.2026.114999
Teng Fang, Jinbao Li
<div><div>Let <em>A</em> and <em>B</em> be subsets of a finite group <em>G</em> and <em>r</em> a positive integer. If for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>, there are precisely <em>r</em> pairs <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mi>B</mi></math></span> such that <span><math><mi>g</mi><mo>=</mo><mi>a</mi><mi>b</mi></math></span>, then <em>B</em> is called a code in <em>G</em> with respect to <em>A</em> and we write <span><math><mi>r</mi><mi>G</mi><mo>=</mo><mi>A</mi><mo>⋅</mo><mi>B</mi></math></span>. If in addition <em>B</em> is a subgroup of <em>G</em>, then we say that <em>B</em> is a subgroup code in <em>G</em>. In this paper we resolve a conjecture by Green and Liebeck <span><span>[8, Conjecture 2.3]</span></span> on certain subgroup codes in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Let <span><math><mi>n</mi><mo>></mo><mn>2</mn><mi>k</mi></math></span> and let <em>j</em> be such that <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>j</mi></mrow></msup><mo>⩽</mo><mi>k</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. Suppose that <em>X</em> is a conjugacy class in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> containing <em>x</em>, and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the subgroup <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where the factor <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> permutes the subset <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> and the factor <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> permutes the subset <span><math><mo>{</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. We prove that <span><math><mi>r</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>X</mi><mo>⋅</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> for some positive integer <em>r</em> if and only if the cycle type of <em>x</em> has exactly one cycle of length <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>j</mi></math></span> and all other cycles have length at least <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. We also propose several problems concerning the existence of certain subgroup codes in a finite group <em>G</em> with respect to a conjugation-closed subset i
{"title":"Proof of a conjecture of Green and Liebeck on codes in symmetric groups","authors":"Teng Fang, Jinbao Li","doi":"10.1016/j.disc.2026.114999","DOIUrl":"10.1016/j.disc.2026.114999","url":null,"abstract":"<div><div>Let <em>A</em> and <em>B</em> be subsets of a finite group <em>G</em> and <em>r</em> a positive integer. If for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>, there are precisely <em>r</em> pairs <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>∈</mo><mi>A</mi><mo>×</mo><mi>B</mi></math></span> such that <span><math><mi>g</mi><mo>=</mo><mi>a</mi><mi>b</mi></math></span>, then <em>B</em> is called a code in <em>G</em> with respect to <em>A</em> and we write <span><math><mi>r</mi><mi>G</mi><mo>=</mo><mi>A</mi><mo>⋅</mo><mi>B</mi></math></span>. If in addition <em>B</em> is a subgroup of <em>G</em>, then we say that <em>B</em> is a subgroup code in <em>G</em>. In this paper we resolve a conjecture by Green and Liebeck <span><span>[8, Conjecture 2.3]</span></span> on certain subgroup codes in the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Let <span><math><mi>n</mi><mo>></mo><mn>2</mn><mi>k</mi></math></span> and let <em>j</em> be such that <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>j</mi></mrow></msup><mo>⩽</mo><mi>k</mi><mo><</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. Suppose that <em>X</em> is a conjugacy class in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> containing <em>x</em>, and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is the subgroup <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>×</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where the factor <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> permutes the subset <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span> and the factor <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>k</mi></mrow></msub></math></span> permutes the subset <span><math><mo>{</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. We prove that <span><math><mi>r</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>X</mi><mo>⋅</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> for some positive integer <em>r</em> if and only if the cycle type of <em>x</em> has exactly one cycle of length <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup></math></span> for <span><math><mn>0</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>j</mi></math></span> and all other cycles have length at least <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span>. We also propose several problems concerning the existence of certain subgroup codes in a finite group <em>G</em> with respect to a conjugation-closed subset i","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114999"},"PeriodicalIF":0.7,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1016/j.disc.2026.114977
Yuan Cao , Yonglin Cao , Yanyan Gao , Fanghui Ma , Qin Yue
<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of <em>q</em> elements. For any integer <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span> be the generalized quaternion group of 4<em>n</em> elements and let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> be the dihedral group of 2<em>n</em> elements. Then left ideals of the group algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub><mo>]</mo></math></span> (resp. <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>]</mo></math></span>) are called left generalized quaternion group codes (resp. left dihedral codes) over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of length 4<em>n</em> (resp. 2<em>n</em>) and abbreviated as left <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span>-codes (resp. left <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-codes) over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, let <em>q</em> be odd and <span><math><mrow><mi>gcd</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We prove that any left <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span>-code over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is permutation equivalent to a matrix product code by a unique left <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-code and a unique left twisted <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-code over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Then we give a precise representation of left twisted <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and determine all distinct self-dual codes, self-orthogonal codes and linear complementary dual (LCD) codes among these codes. Hence, we obtain a complete enumeration of all distinct self-orthogonal codes and LCD codes among left <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span>-codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. As applications, we correct some mistakes in Gao and Yue (2021) <span><span>[27]</span></spa
{"title":"Matrix product structure of left generalized quaternion group codes","authors":"Yuan Cao , Yonglin Cao , Yanyan Gao , Fanghui Ma , Qin Yue","doi":"10.1016/j.disc.2026.114977","DOIUrl":"10.1016/j.disc.2026.114977","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field of <em>q</em> elements. For any integer <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span> be the generalized quaternion group of 4<em>n</em> elements and let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> be the dihedral group of 2<em>n</em> elements. Then left ideals of the group algebra <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub><mo>]</mo></math></span> (resp. <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>]</mo></math></span>) are called left generalized quaternion group codes (resp. left dihedral codes) over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of length 4<em>n</em> (resp. 2<em>n</em>) and abbreviated as left <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span>-codes (resp. left <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-codes) over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In this paper, let <em>q</em> be odd and <span><math><mrow><mi>gcd</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span>. We prove that any left <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span>-code over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is permutation equivalent to a matrix product code by a unique left <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-code and a unique left twisted <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-code over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Then we give a precise representation of left twisted <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>-codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and determine all distinct self-dual codes, self-orthogonal codes and linear complementary dual (LCD) codes among these codes. Hence, we obtain a complete enumeration of all distinct self-orthogonal codes and LCD codes among left <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mn>4</mn><mi>n</mi></mrow></msub></math></span>-codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. As applications, we correct some mistakes in Gao and Yue (2021) <span><span>[27]</span></spa","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114977"},"PeriodicalIF":0.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1016/j.disc.2026.114998
Reza Naserasr , Weiqiang Yu
A balanced k-coloring of a signed graph which has no negative loop is to partition its vertices into k sets each of which induces a balanced subgraph, that is a subgraph with no negative cycle. The notion, through basic graph operation, captures the classic proper coloring of graphs as special case.
Having observed the importance of balanced 2-coloring, in this work we study structural conditions which permit a signed graph to admit a 2-coloring. More precisely, slightly modifying the notion of color-critical, we say a signed graph is k-critical if it admits no balanced k-coloring but every proper subgraph of it admits such a coloring.
We show that if is a 2-critical signed graph whose underlying graph is not or an odd cycle, then where d is the maximum number of vertex disjoint digons in . As a corollary we conclude that, except for the signed graph , any signed simple graph with maximum average degree at most 4.2 admits a balanced 2-coloring.
{"title":"Density of 2-critical signed graphs","authors":"Reza Naserasr , Weiqiang Yu","doi":"10.1016/j.disc.2026.114998","DOIUrl":"10.1016/j.disc.2026.114998","url":null,"abstract":"<div><div>A balanced <em>k</em>-coloring of a signed graph <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> which has no negative loop is to partition its vertices into <em>k</em> sets each of which induces a balanced subgraph, that is a subgraph with no negative cycle. The notion, through basic graph operation, captures the classic proper coloring of graphs as special case.</div><div>Having observed the importance of balanced 2-coloring, in this work we study structural conditions which permit a signed graph to admit a 2-coloring. More precisely, slightly modifying the notion of color-critical, we say a signed graph is <em>k</em>-critical if it admits no balanced <em>k</em>-coloring but every proper subgraph of it admits such a coloring.</div><div>We show that if <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> is a 2-critical signed graph whose underlying graph is not <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> or an odd cycle, then<span><span><span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mfrac><mrow><mn>21</mn><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>2</mn><mi>d</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>10</mn></mrow></mfrac></math></span></span></span> where <em>d</em> is the maximum number of vertex disjoint digons in <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span>. As a corollary we conclude that, except for the signed graph <span><math><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>,</mo><mo>−</mo><mo>)</mo></math></span>, any signed simple graph with maximum average degree at most 4.2 admits a balanced 2-coloring.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 114998"},"PeriodicalIF":0.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1016/j.disc.2026.114978
Ryutaro Misawa , Akihiro Munemasa , Masanori Sawa
We determine the smallest size of a non-antipodal spherical design with harmonic indices to be , where m is a positive integer. This is achieved by proving an analogous result for interval designs.
{"title":"Antipodality of spherical designs with odd harmonic indices","authors":"Ryutaro Misawa , Akihiro Munemasa , Masanori Sawa","doi":"10.1016/j.disc.2026.114978","DOIUrl":"10.1016/j.disc.2026.114978","url":null,"abstract":"<div><div>We determine the smallest size of a non-antipodal spherical design with harmonic indices <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> to be <span><math><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span>, where <em>m</em> is a positive integer. This is achieved by proving an analogous result for interval designs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 114978"},"PeriodicalIF":0.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1016/j.disc.2026.114982
Dehai Liu , Kaishun Wang , Tian Yao
Two families and of k-subsets of an n-set are called s-almost cross-t-intersecting if each member in (resp. ) is t-disjoint with at most s members in (resp. ). In this paper, we characterize the s-almost cross-t-intersecting families with the maximum product of their sizes. Furthermore, we provide a corresponding stability result after studying the s-almost cross-t-intersecting families which are not cross-t-intersecting.
{"title":"s-almost cross-t-intersecting families for finite sets","authors":"Dehai Liu , Kaishun Wang , Tian Yao","doi":"10.1016/j.disc.2026.114982","DOIUrl":"10.1016/j.disc.2026.114982","url":null,"abstract":"<div><div>Two families <span><math><mi>F</mi></math></span> and <span><math><mi>G</mi></math></span> of <em>k</em>-subsets of an <em>n</em>-set are called <em>s</em>-almost cross-<em>t</em>-intersecting if each member in <span><math><mi>F</mi></math></span> (resp. <span><math><mi>G</mi></math></span>) is <em>t</em>-disjoint with at most <em>s</em> members in <span><math><mi>G</mi></math></span> (resp. <span><math><mi>F</mi></math></span>). In this paper, we characterize the <em>s</em>-almost cross-<em>t</em>-intersecting families with the maximum product of their sizes. Furthermore, we provide a corresponding stability result after studying the <em>s</em>-almost cross-<em>t</em>-intersecting families which are not cross-<em>t</em>-intersecting.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 114982"},"PeriodicalIF":0.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1016/j.disc.2026.114981
H.A. Kierstead , Alexandr Kostochka , Zimu Xiang
A proper vertex coloring of a graph is equitable if the sizes of all color classes differ by at most 1. For a list assignment L of k colors to each vertex of an n-vertex graph G, an equitable L-coloring of G is a proper coloring of vertices of G from their lists such that no color is used more than times. Call a graph equitably k-choosable if it has an equitable L-coloring for every k-list assignment L. A graph G is -sparse if for every , the number of edges in the subgraph of G induced by A is at most .
Our first main result is that every -sparse graph with minimum degree at least 2 is equitably 3-colorable and equitably 3-choosable. This is sharp. Our second main result is that every -sparse graph with minimum degree at least 2 is equitably 4-colorable and equitably 4-choosable. This is also sharp.
One of the tools in the proof is the new notion of strongly equitable (SE) list coloring. This notion is both stronger and more natural than equitable list coloring; and our upper bounds are for SE list coloring.
{"title":"Equitable list coloring of sparse graphs","authors":"H.A. Kierstead , Alexandr Kostochka , Zimu Xiang","doi":"10.1016/j.disc.2026.114981","DOIUrl":"10.1016/j.disc.2026.114981","url":null,"abstract":"<div><div>A proper vertex coloring of a graph is <em>equitable</em> if the sizes of all color classes differ by at most 1. For a list assignment <em>L</em> of <em>k</em> colors to each vertex of an <em>n</em>-vertex graph <em>G</em>, an <em>equitable L</em>-coloring of <em>G</em> is a proper coloring of vertices of <em>G</em> from their lists such that no color is used more than <span><math><mo>⌈</mo><mi>n</mi><mo>/</mo><mi>k</mi><mo>⌉</mo></math></span> times. Call a graph <em>equitably k</em>-<em>choosable</em> if it has an equitable <em>L</em>-coloring for every <em>k</em>-list assignment <em>L</em>. A graph <em>G</em> is <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>-<em>sparse</em> if for every <span><math><mi>A</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, the number of edges in the subgraph <span><math><mi>G</mi><mo>[</mo><mi>A</mi><mo>]</mo></math></span> of <em>G</em> induced by <em>A</em> is at most <span><math><mi>a</mi><mo>|</mo><mi>A</mi><mo>|</mo><mo>+</mo><mi>b</mi></math></span>.</div><div>Our first main result is that every <span><math><mo>(</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></math></span>-sparse graph with minimum degree at least 2 is equitably 3-colorable and equitably 3-choosable. This is sharp. Our second main result is that every <span><math><mo>(</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></math></span>-sparse graph with minimum degree at least 2 is equitably 4-colorable and equitably 4-choosable. This is also sharp.</div><div>One of the tools in the proof is the new notion of strongly equitable (SE) list coloring. This notion is both stronger and more natural than equitable list coloring; and our upper bounds are for SE list coloring.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114981"},"PeriodicalIF":0.7,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1016/j.disc.2026.114997
Kiyoshi Ando , Yoshimi Egawa
In this paper, we give a constructive characterization of 4-connected 4-regular graphs. Two edges of a graph are said to be “independent” if they have no common end vertex. Let G be a 4-connected 4-regular graph. We consider the following three operations on G: choose two independent edges of G, subdivide once, and identify the two new vertices (we call this operation “edge-binding”); delete a vertex x from G, add to , and add a perfect matching between and (we call this operation “-expanding”); delete two independent edges and from G, add to , and add a perfect matching between and (we call this operation “-edge-binding”). In this paper, we prove that every 4-connected 4-regular graph can be obtained from or by repeated applications of edge-bindings, -expandings and -edge-bindings.
{"title":"A constructive characterization of 4-connected 4-regular graphs","authors":"Kiyoshi Ando , Yoshimi Egawa","doi":"10.1016/j.disc.2026.114997","DOIUrl":"10.1016/j.disc.2026.114997","url":null,"abstract":"<div><div>In this paper, we give a constructive characterization of 4-connected 4-regular graphs. Two edges of a graph are said to be “independent” if they have no common end vertex. Let <em>G</em> be a 4-connected 4-regular graph. We consider the following three operations on <em>G</em>: choose two independent edges of <em>G</em>, subdivide once, and identify the two new vertices (we call this operation “edge-binding”); delete a vertex <em>x</em> from <em>G</em>, add <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> to <span><math><mi>G</mi><mo>−</mo><mi>x</mi></math></span>, and add a perfect matching between <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (we call this operation “<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-expanding”); delete two independent edges <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> from <em>G</em>, add <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> to <span><math><mi>G</mi><mo>−</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and add a perfect matching between <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>∪</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> (we call this operation “<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-edge-binding”). In this paper, we prove that every 4-connected 4-regular graph can be obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>4</mn></mrow></msub></math></span> by repeated applications of edge-bindings, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-expandings and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-edge-bindings.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 114997"},"PeriodicalIF":0.7,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}