Pub Date : 2026-01-27DOI: 10.1016/j.disc.2026.115012
Alice Lacaze-Masmonteil
We confirm most open cases of a conjecture that first appeared in Alspach et al. (1987) which stipulates that the wreath (lexicographic) product of two hamiltonian decomposable directed graphs is also hamiltonian decomposable. Specifically, we show that the wreath product of a hamiltonian decomposable directed graph G, such that is even and , with a hamiltonian decomposable directed graph H, such that , is also hamiltonian decomposable except possibly when G is a directed cycle and H is a directed graph of odd order that admits a decomposition into c directed hamiltonian cycle where c is odd and .
{"title":"Hamiltonian decompositions of the wreath product of hamiltonian decomposable digraphs","authors":"Alice Lacaze-Masmonteil","doi":"10.1016/j.disc.2026.115012","DOIUrl":"10.1016/j.disc.2026.115012","url":null,"abstract":"<div><div>We confirm most open cases of a conjecture that first appeared in Alspach et al. (1987) which stipulates that the wreath (lexicographic) product of two hamiltonian decomposable directed graphs is also hamiltonian decomposable. Specifically, we show that the wreath product of a hamiltonian decomposable directed graph <em>G</em>, such that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span> is even and <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>⩾</mo><mn>2</mn></math></span>, with a hamiltonian decomposable directed graph <em>H</em>, such that <span><math><mo>|</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>|</mo><mo>⩾</mo><mn>4</mn></math></span>, is also hamiltonian decomposable except possibly when <em>G</em> is a directed cycle and <em>H</em> is a directed graph of odd order that admits a decomposition into <em>c</em> directed hamiltonian cycle where <em>c</em> is odd and <span><math><mn>3</mn><mo>⩽</mo><mi>c</mi><mo>⩽</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>|</mo><mo>−</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115012"},"PeriodicalIF":0.7,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146078350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27DOI: 10.1016/j.disc.2026.115016
Lele Liu , Bo Ning
<div><div>Let <em>F</em> be a graph, and let <span><math><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> denote the classes of graphs that attain, respectively, the maximum number of edges, the maximum adjacency spectral radius, and the maximum signless Laplacian spectral radius over all <em>n</em>-vertex graphs that do not contain <em>F</em> as a subgraph. A fundamental problem in spectral extremal graph theory is to characterize all graphs <em>F</em> for which <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> when <em>n</em> is sufficiently large. Establishing the conjecture of Cioabă et al. (2022) <span><span>[10]</span></span>, Wang et al. (2023) <span><span>[54]</span></span> proved that: for any graph <em>F</em> such that the graphs in <span><math><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> are Turán graphs plus <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> edges, <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>. In addition, another interesting problem in spectral extremal graph theory is to characterize all graphs <em>F</em> such that <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>.</div><div>In this paper, we give new contribution to the problems mentioned above. First, we present a substantial collection of examples of graphs <em>F</em> for which <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> holds when <em>n</em> is sufficiently large, focusing on <em>n</em>-vertex graph <em>F</em> with no isolated vertices and maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>/</mo><mn>40</mn></math></span>. Second, under the same conditions on <em>F</em>, we prove that <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi
设F是一个图,设EX(n,F)、SPEXA(n,F)和SPEXQ(n,F)分别表示在所有不包含F作为子图的n顶点图上获得最大边数、最大邻接谱半径和最大无符号拉普拉斯谱半径的图的类别。谱极值图论中的一个基本问题是,当n足够大时,对所有的图F (SPEXA(n,F))进行描述。通过建立cioabu et al. (2022) b[10]的猜想,Wang et al. (2023) b[54]证明:对于任意图F,使得EX(n,F)中的图为Turán图加O(1)条边,对于足够大的n, SPEXA(n,F)的任任任任,对于谱极值图论中的另一个有趣问题是,对所有图F进行描述,使得对于足够大的n, SPEXA(n,F)=SPEXQ(n,F)。本文对上述问题给出了新的贡献。首先,我们给出了大量在n足够大时,SPEXA(n,F)≥≥EX(n,F)成立的图F的例子,重点关注无孤立顶点且最大度数Δ(F)≤n/40的n顶点图F。其次,在F上相同的条件下,我们证明了对于足够大的n, SPEXA(n,F)=SPEXQ(n,F)。这些结果可以看作是Alon和Yuster(2013)[1]定理的谱类比。进一步,作为直接推论,我们得到了几类特殊图存在的紧谱条件,包括团因子、汉密尔顿环的k次幂和图中的k因子。第一类特殊的图给出了Feng的一个问题的正答案,第二类特殊的图扩展了Yan等人之前的结果。
{"title":"Spectral Turán-type problems on sparse spanning graphs","authors":"Lele Liu , Bo Ning","doi":"10.1016/j.disc.2026.115016","DOIUrl":"10.1016/j.disc.2026.115016","url":null,"abstract":"<div><div>Let <em>F</em> be a graph, and let <span><math><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span>, and <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> denote the classes of graphs that attain, respectively, the maximum number of edges, the maximum adjacency spectral radius, and the maximum signless Laplacian spectral radius over all <em>n</em>-vertex graphs that do not contain <em>F</em> as a subgraph. A fundamental problem in spectral extremal graph theory is to characterize all graphs <em>F</em> for which <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> when <em>n</em> is sufficiently large. Establishing the conjecture of Cioabă et al. (2022) <span><span>[10]</span></span>, Wang et al. (2023) <span><span>[54]</span></span> proved that: for any graph <em>F</em> such that the graphs in <span><math><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> are Turán graphs plus <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> edges, <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>. In addition, another interesting problem in spectral extremal graph theory is to characterize all graphs <em>F</em> such that <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>.</div><div>In this paper, we give new contribution to the problems mentioned above. First, we present a substantial collection of examples of graphs <em>F</em> for which <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>⊆</mo><mi>EX</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> holds when <em>n</em> is sufficiently large, focusing on <em>n</em>-vertex graph <em>F</em> with no isolated vertices and maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>≤</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>/</mo><mn>40</mn></math></span>. Second, under the same conditions on <em>F</em>, we prove that <span><math><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SPEX</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 7","pages":"Article 115016"},"PeriodicalIF":0.7,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146049174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-27DOI: 10.1016/j.disc.2026.115011
Yu Zhang, Rong-Xia Hao, Zhen He, Jianbing Liu
<div><div>Let <em>F</em> and <em>H</em> be two graphs. A spanning subgraph <em>G</em> of <em>F</em> is said to be weakly <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>-saturated if there exists an ordering <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of the edges in <span><math><mi>E</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>∖</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that, for each <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, the addition of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> to <span><math><mi>G</mi><mo>+</mo><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> creates a new copy of <em>H</em> containing <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. The weak saturation number of <em>H</em> with respect to <em>F</em> is defined as <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>:</mo><mi>G</mi><mtext> is weakly </mtext><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo><mtext>-saturated</mtext><mo>}</mo></math></span>. Kronenberg et al. (2021) <span><span>[7]</span></span> determined the exact values of <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. In this paper, we generalize previous results by determining the exact values of <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>, and provide both upper and lower bounds for <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span>. Additionally, we determine <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><munderover><mo>⋃</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mr
设F和H是两个图。F的生成子图G是弱(F,H)饱和的,如果存在E(F)∈E(G)中的边的排序e1,…,et,使得对于每一个i∈[t], ei加上G+{e1,…,ei−1}产生一个包含ei的H的新副本。H相对于F的弱饱和数定义为wsat(F,H)=min (|E(G)|:G是弱(F,H)饱和}。Kronenberg et al.(2021)[7]确定了wsat(n,Kt,t)和wsat(n,Kt,t+1)的确切值。本文通过确定r≥1时wsat(n,rKt,t)和wsat(n,rKt,t+1)的精确值,推广了前人的结果,并给出了wsat(n,rKs,t)的上界和下界。此外,我们确定了不相交完全图并集的wsat(n,∈i=1qKti),这改进了Faudree等人关于wsat(n,qKt)的已知结果。
{"title":"Weak saturation numbers for the union of disjoint graphs","authors":"Yu Zhang, Rong-Xia Hao, Zhen He, Jianbing Liu","doi":"10.1016/j.disc.2026.115011","DOIUrl":"10.1016/j.disc.2026.115011","url":null,"abstract":"<div><div>Let <em>F</em> and <em>H</em> be two graphs. A spanning subgraph <em>G</em> of <em>F</em> is said to be weakly <span><math><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>-saturated if there exists an ordering <span><math><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of the edges in <span><math><mi>E</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>∖</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that, for each <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, the addition of <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> to <span><math><mi>G</mi><mo>+</mo><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> creates a new copy of <em>H</em> containing <span><math><msub><mrow><mi>e</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. The weak saturation number of <em>H</em> with respect to <em>F</em> is defined as <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>:</mo><mi>G</mi><mtext> is weakly </mtext><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo><mtext>-saturated</mtext><mo>}</mo></math></span>. Kronenberg et al. (2021) <span><span>[7]</span></span> determined the exact values of <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span>. In this paper, we generalize previous results by determining the exact values of <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span> and <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mn>1</mn></math></span>, and provide both upper and lower bounds for <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span>. Additionally, we determine <span><math><mi>w</mi><mi>s</mi><mi>a</mi><mi>t</mi><mo>(</mo><mi>n</mi><mo>,</mo><munderover><mo>⋃</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mr","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 115011"},"PeriodicalIF":0.7,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146077349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-23DOI: 10.1016/j.disc.2026.114994
S.R. Kingan
<div><div>Let <em>G</em> and <em>H</em> be simple 3-connected graphs such that <em>G</em> has an <em>H</em>-minor. An edge <em>e</em> in <em>G</em> is called <em>H-deletable</em> if <span><math><mi>G</mi><mo>﹨</mo><mi>e</mi></math></span> is 3-connected and has an <em>H</em>-minor. The main result in this paper establishes that, if <em>G</em> has no <em>H</em>-deletable edges, then there exists a sequence of simple 3-connected graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with no <em>H</em>-deletable edges such that <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≅</mo><mi>H</mi></math></span>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>G</mi></math></span>, and for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> one of three possibilities holds: <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><mi>f</mi></math></span>; <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><mi>f</mi><mo>﹨</mo><mi>e</mi></math></span> where <em>e</em> and <em>f</em> are incident to a degree 3 vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>; or <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mi>w</mi></math></span> where <em>w</em> is a degree 3 vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We give several applications including a graph-theoretic proof of the matroid theory result known as the Strong Splitter Theorem, a short new proof of Dirac's characterization of 3-connected graphs with no minor isomorphic to the prism graph, and an extension of a result by Halin that bounds the number of edges in a minimally 3-connected graph. Halin proved that if <em>G</em> is a minimally 3-connected graph on <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> vertices, then <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>9</mn></math></span> and equality holds if and only if <span><math><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span>. We give a different proof of Halin's result and extend it by identifying the minimally 3-connected infinite family of graphs with <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>10</mn></math></span>. Finally, we extend the main theorem to mat
{"title":"Deletable edges in 3-connected graphs and their applications","authors":"S.R. Kingan","doi":"10.1016/j.disc.2026.114994","DOIUrl":"10.1016/j.disc.2026.114994","url":null,"abstract":"<div><div>Let <em>G</em> and <em>H</em> be simple 3-connected graphs such that <em>G</em> has an <em>H</em>-minor. An edge <em>e</em> in <em>G</em> is called <em>H-deletable</em> if <span><math><mi>G</mi><mo>﹨</mo><mi>e</mi></math></span> is 3-connected and has an <em>H</em>-minor. The main result in this paper establishes that, if <em>G</em> has no <em>H</em>-deletable edges, then there exists a sequence of simple 3-connected graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with no <em>H</em>-deletable edges such that <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≅</mo><mi>H</mi></math></span>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>G</mi></math></span>, and for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> one of three possibilities holds: <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><mi>f</mi></math></span>; <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>/</mo><mi>f</mi><mo>﹨</mo><mi>e</mi></math></span> where <em>e</em> and <em>f</em> are incident to a degree 3 vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>; or <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mi>w</mi></math></span> where <em>w</em> is a degree 3 vertex in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We give several applications including a graph-theoretic proof of the matroid theory result known as the Strong Splitter Theorem, a short new proof of Dirac's characterization of 3-connected graphs with no minor isomorphic to the prism graph, and an extension of a result by Halin that bounds the number of edges in a minimally 3-connected graph. Halin proved that if <em>G</em> is a minimally 3-connected graph on <span><math><mi>n</mi><mo>≥</mo><mn>8</mn></math></span> vertices, then <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>9</mn></math></span> and equality holds if and only if <span><math><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span>. We give a different proof of Halin's result and extend it by identifying the minimally 3-connected infinite family of graphs with <span><math><mo>|</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>=</mo><mn>3</mn><mi>n</mi><mo>−</mo><mn>10</mn></math></span>. Finally, we extend the main theorem to mat","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 114994"},"PeriodicalIF":0.7,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146038450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-21DOI: 10.1016/j.disc.2026.115002
George M. Bergman
The definition of the dimension of a poset is recalled. For a subposet P of a direct product of chains, and an integer , a condition is developed which implies that for any family of n chains , one has . Applications are noted.
Open questions, old and new, on dimensions of product posets are stated, and some other numerical invariants of posets that seem useful for studying these questions are developed. Some variants of the concept of the dimension of a poset from the literature are also recalled.
In a final section, independent of the other results, it is noted that by the compactness theorem of first-order logic, an infinite poset P has finite dimension d if and only if d is the supremum of the dimensions of its finite subposets.
{"title":"Some frustrating questions on dimensions of products of posets","authors":"George M. Bergman","doi":"10.1016/j.disc.2026.115002","DOIUrl":"10.1016/j.disc.2026.115002","url":null,"abstract":"<div><div>The definition of the dimension of a poset is recalled. For a subposet <em>P</em> of a direct product of <span><math><mi>d</mi><mo>></mo><mn>0</mn></math></span> chains, and an integer <span><math><mi>n</mi><mo>></mo><mn>0</mn></math></span>, a condition is developed which implies that for any family of <em>n</em> chains <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>n</mi></mrow></msub></math></span>, one has <span><math><mi>dim</mi><mo></mo><mo>(</mo><mi>P</mi><mo>×</mo><msub><mrow><mo>∏</mo></mrow><mrow><mi>j</mi><mo>∈</mo><mi>n</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>d</mi></math></span>. Applications are noted.</div><div>Open questions, old and new, on dimensions of product posets are stated, and some other numerical invariants of posets that seem useful for studying these questions are developed. Some variants of the concept of the dimension of a poset from the literature are also recalled.</div><div>In a final section, independent of the other results, it is noted that by the compactness theorem of first-order logic, an infinite poset <em>P</em> has finite dimension <em>d</em> if and only if <em>d</em> is the supremum of the dimensions of its finite subposets.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115002"},"PeriodicalIF":0.7,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146038447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-20DOI: 10.1016/j.disc.2026.115009
Yusaku Nishimura
R.P. Stanley defined an invariant for graphs called the chromatic symmetric function and conjectured it is a complete invariant for trees. Miezaki et al. generalized the chromatic symmetric function and defined the Kneser chromatic functions denoted by , and rephrase Stanley's conjecture that is a complete invariant for trees. This paper shows is a complete invariant for trees.
{"title":"The Kneser chromatic function distinguishes trees","authors":"Yusaku Nishimura","doi":"10.1016/j.disc.2026.115009","DOIUrl":"10.1016/j.disc.2026.115009","url":null,"abstract":"<div><div>R.P. Stanley defined an invariant for graphs called the chromatic symmetric function and conjectured it is a complete invariant for trees. Miezaki et al. generalized the chromatic symmetric function and defined the Kneser chromatic functions denoted by <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi><mo>,</mo><mi>k</mi></mrow></msub></mrow></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, and rephrase Stanley's conjecture that <span><math><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></math></span> is a complete invariant for trees. This paper shows <span><math><msub><mrow><mi>X</mi></mrow><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi><mo>,</mo><mn>2</mn></mrow></msub></mrow></msub></math></span> is a complete invariant for trees.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115009"},"PeriodicalIF":0.7,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146038446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-20DOI: 10.1016/j.disc.2026.115010
Danila Cherkashin , Pavel Prozorov
Counting the number of spanning trees in specific classes of graphs has attracted growing attention in recent years. In this note, we present unified proofs and generalizations of several results obtained during the 2020s. Our main approach is to study the behavior of the vertex (degree) enumerator polynomial of a distance-hereditary graph under certain graph-theoretical operations. The first result provides a factorization formula applicable to graphs admitting a cut whose edges form a complete bipartite subgraph.
One of the central open problems in this area is Ehrenborg's conjecture, which asserts that a Ferrers–Young graph maximizes the number of spanning trees among all bipartite graphs with the same degree sequence. The second main result of this paper shows the equivalence between Ehrenborg's conjecture and its polynomial version.
{"title":"Around the number of trees in distance-hereditary graphs","authors":"Danila Cherkashin , Pavel Prozorov","doi":"10.1016/j.disc.2026.115010","DOIUrl":"10.1016/j.disc.2026.115010","url":null,"abstract":"<div><div>Counting the number of spanning trees in specific classes of graphs has attracted growing attention in recent years. In this note, we present unified proofs and generalizations of several results obtained during the 2020s. Our main approach is to study the behavior of the vertex (degree) enumerator polynomial of a distance-hereditary graph under certain graph-theoretical operations. The first result provides a factorization formula applicable to graphs admitting a cut whose edges form a complete bipartite subgraph.</div><div>One of the central open problems in this area is Ehrenborg's conjecture, which asserts that a Ferrers–Young graph maximizes the number of spanning trees among all bipartite graphs with the same degree sequence. The second main result of this paper shows the equivalence between Ehrenborg's conjecture and its polynomial version.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115010"},"PeriodicalIF":0.7,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146038448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-19DOI: 10.1016/j.disc.2026.115006
Yusuke Ide , Takashi Komatsu , Norio Konno , Iwao Sato
We present a decomposition formula for the determinant of a Metzler matrix of a group covering H of a digraph D. Furthermore, we introduce an L-function of D with respect to its Metzler matrix , and present a determinant expression of it. As a corollary, we present a decomposition formula for the determinant of a Metzler matrix of a group covering H of D by its L-functions.
{"title":"A Metzler matrix of a group covering of a digraph","authors":"Yusuke Ide , Takashi Komatsu , Norio Konno , Iwao Sato","doi":"10.1016/j.disc.2026.115006","DOIUrl":"10.1016/j.disc.2026.115006","url":null,"abstract":"<div><div>We present a decomposition formula for the determinant of a Metzler matrix <span><math><mi>A</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of a group covering <em>H</em> of a digraph <em>D</em>. Furthermore, we introduce an <em>L</em>-function of <em>D</em> with respect to its Metzler matrix <span><math><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, and present a determinant expression of it. As a corollary, we present a decomposition formula for the determinant of a Metzler matrix <span><math><mi>A</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of a group covering <em>H</em> of <em>D</em> by its <em>L</em>-functions.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115006"},"PeriodicalIF":0.7,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146038451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-19DOI: 10.1016/j.disc.2026.115004
Kanat Abdukhalikov , Askar S. Dzhumadil'daev , San Ling
We study quasi-cyclic codes of index 2 over finite fields. We give a classification of such codes. Their duals with respect to the Euclidean, symplectic and Hermitian inner products are investigated. We describe self-orthogonal and dual-containing codes. Lower bounds for minimum distances of quasi-cyclic codes are given. A quasi-cyclic code of index 2 is generated by at most two elements. We describe conditions when such a code (or its dual) is generated by one element.
{"title":"Quasi-cyclic codes of index 2","authors":"Kanat Abdukhalikov , Askar S. Dzhumadil'daev , San Ling","doi":"10.1016/j.disc.2026.115004","DOIUrl":"10.1016/j.disc.2026.115004","url":null,"abstract":"<div><div>We study quasi-cyclic codes of index 2 over finite fields. We give a classification of such codes. Their duals with respect to the Euclidean, symplectic and Hermitian inner products are investigated. We describe self-orthogonal and dual-containing codes. Lower bounds for minimum distances of quasi-cyclic codes are given. A quasi-cyclic code of index 2 is generated by at most two elements. We describe conditions when such a code (or its dual) is generated by one element.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 115004"},"PeriodicalIF":0.7,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146038449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-16DOI: 10.1016/j.disc.2026.114996
Tianjiao Dai , Jie Hu , Hao Li , Shun-ichi Maezawa
The notion of DP-coloring was introduced by Dvořák and Postle which is a generalization of list coloring. A DP-coloring of a graph G reduces the problem of finding a proper coloring of G from a given list L to the problem of finding a “large” independent set in an auxiliary graph -cover with a vertex set and . Hutchinson (Journal of Graph Theory, 2008) showed that
•
if a 2-connected bipartite outerplanar graph G has a list of colors for each vertex v with , then G is L-colorable; and
•
if a 2-connected maximal outerplanar graph G with at least four vertices has a list of colors for each vertex v with , then G is L-colorable.
In this paper, we study whether bounds of Hutchinson's results hold for DP-coloring. We obtain that the first one is not sufficient for DP-coloring while the second one is sufficient.
dp -着色的概念是由Dvořák和Postle提出的,它是列表着色的推广。图G的dp -着色将从给定列表L中寻找G的适当着色问题简化为在具有顶点集{(v,c):v∈v (G) and c∈L(v)}的辅助图ML-cover中寻找“大”独立集的问题。Hutchinson (Journal of Graph Theory, 2008)证明了•如果一个2连通二部外平面图G对于每个顶点v有一个颜色列表L(v)且|L(v)|≥min (degG) {degG (v),4},则G是L可色的;•如果一个至少有四个顶点的2连通最大外平面图G对每个顶点v都有一个颜色列表L(v),且|L(v)|≥min (degG) (v),5},则G是L可色的。在本文中,我们研究了Hutchinson结果的界对于dp -着色是否成立。我们得到第一个是不充分的,而第二个是充分的。
{"title":"On DP-coloring of outerplanar graphs","authors":"Tianjiao Dai , Jie Hu , Hao Li , Shun-ichi Maezawa","doi":"10.1016/j.disc.2026.114996","DOIUrl":"10.1016/j.disc.2026.114996","url":null,"abstract":"<div><div>The notion of DP-coloring was introduced by Dvořák and Postle which is a generalization of list coloring. A DP-coloring of a graph <em>G</em> reduces the problem of finding a proper coloring of <em>G</em> from a given list <em>L</em> to the problem of finding a “large” independent set in an auxiliary graph <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>-cover with a vertex set <span><math><mo>{</mo><mo>(</mo><mi>v</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>:</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>∈</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>}</mo></math></span>. Hutchinson (Journal of Graph Theory, 2008) showed that<ul><li><span>•</span><span><div>if a 2-connected bipartite outerplanar graph <em>G</em> has a list of colors <span><math><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> for each vertex <em>v</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mn>4</mn><mo>}</mo></math></span>, then <em>G</em> is <em>L</em>-colorable; and</div></span></li><li><span>•</span><span><div>if a 2-connected maximal outerplanar graph <em>G</em> with at least four vertices has a list of colors <span><math><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> for each vertex <em>v</em> with <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>deg</mi></mrow><mrow><mi>G</mi></mrow></msub><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mn>5</mn><mo>}</mo></math></span>, then <em>G</em> is <em>L</em>-colorable.</div></span></li></ul> In this paper, we study whether bounds of Hutchinson's results hold for DP-coloring. We obtain that the first one is not sufficient for DP-coloring while the second one is sufficient.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 6","pages":"Article 114996"},"PeriodicalIF":0.7,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}