Pub Date : 2024-10-21DOI: 10.1016/j.disc.2024.114295
Christian Táfula
Let be a finite set with minimum element 0, maximum element m, and ℓ elements strictly in between. Write for the set of integers that can be written in at least t ways as a sum of h elements of A. We prove that is “structured” for (as , ), and prove a similar theorem on the size and structure of for h sufficiently large. Moreover, we construct a family of sets for which is not structured for .
{"title":"On the size and structure of t-representable sumsets","authors":"Christian Táfula","doi":"10.1016/j.disc.2024.114295","DOIUrl":"10.1016/j.disc.2024.114295","url":null,"abstract":"<div><div>Let <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> be a finite set with minimum element 0, maximum element <em>m</em>, and <em>ℓ</em> elements strictly in between. Write <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> for the set of integers that can be written in at least <em>t</em> ways as a sum of <em>h</em> elements of <em>A</em>. We prove that <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> is “structured” for<span><span><span><math><mi>h</mi><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mi>m</mi><mi>ℓ</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup></math></span></span></span> (as <span><math><mi>ℓ</mi><mo>→</mo><mo>∞</mo></math></span>, <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup><mo>→</mo><mo>∞</mo></math></span>), and prove a similar theorem on the size and structure of <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for <em>h</em> sufficiently large. Moreover, we construct a family of sets <span><math><mi>A</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>ℓ</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>0</mn></mrow></msub></math></span> for which <span><math><msup><mrow><mo>(</mo><mi>h</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> is not structured for <span><math><mi>h</mi><mo>≪</mo><mi>m</mi><mi>ℓ</mi><msup><mrow><mi>t</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>ℓ</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114295"},"PeriodicalIF":0.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.disc.2024.114294
Giuseppe Filippone , Mario Galici
The concept of Schreier extensions of loops was introduced in the general case in [11] and, more recently, it has been explored in the context of Steiner loops in [6]. In the latter case, it gives a powerful method for constructing Steiner triple systems containing Veblen points. Counting all Steiner triple systems of order v is an open problem for . In this paper, we investigate the number of Steiner triple systems of order 19, 27 and 31 containing Veblen points and we present some examples.
{"title":"On the number of small Steiner triple systems with Veblen points","authors":"Giuseppe Filippone , Mario Galici","doi":"10.1016/j.disc.2024.114294","DOIUrl":"10.1016/j.disc.2024.114294","url":null,"abstract":"<div><div>The concept of <em>Schreier extensions</em> of loops was introduced in the general case in <span><span>[11]</span></span> and, more recently, it has been explored in the context of Steiner loops in <span><span>[6]</span></span>. In the latter case, it gives a powerful method for constructing Steiner triple systems containing Veblen points. Counting all Steiner triple systems of order <em>v</em> is an open problem for <span><math><mi>v</mi><mo>></mo><mn>21</mn></math></span>. In this paper, we investigate the number of Steiner triple systems of order 19, 27 and 31 containing Veblen points and we present some examples.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114294"},"PeriodicalIF":0.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.disc.2024.114290
Linh Nguyen , Suil O
<div><div>For a graph <em>G</em> and for two distinct vertices <em>u</em> and <em>v</em>, let <span><math><mi>κ</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> be the maximum number of vertex-disjoint paths joining <em>u</em> and <em>v</em> in <em>G</em>. The average connectivity matrix of an <em>n</em>-vertex connected graph <em>G</em>, written <span><math><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix whose <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>-entry is <span><math><mi>κ</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and let <span><math><mi>ρ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be the spectral radius of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we investigate some spectral properties of the matrix. In particular, we prove that for any <em>n</em>-vertex connected graph <em>G</em>, we have <span><math><mi>ρ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, which implies a result of Kim and O <span><span>[8]</span></span> stating that for any connected graph <em>G</em>, we have <span><math><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mfrac><mrow><mi>κ</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></mfrac></math></span> and <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum size of a matching in <em>G</em>; equality holds only when <em>G</em> is a complete graph with an odd number of vertices. Also, for bipartite graphs, we improve the bound, namely <span><math><mi>ρ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mro
对于图 G 和两个不同的顶点 u 和 v,设 κ(u,v) 是连接 G 中 u 和 v 的顶点不相交路径的最大数目。n 个顶点连通图 G 的平均连通性矩阵,记为 Aκ‾(G),是一个 n×n 矩阵,其 (u,v) 项为 κ(u,v)/(n2),设 ρ(Aκ‾(G)) 为 Aκ‾(G) 的谱半径。本文将研究矩阵的一些谱性质。特别是,我们证明了对于任意 n 个顶点的连通图 G,ρ(Aκ‾(G))≤4α′(G)n,这意味着 Kim 和 O [8] 的一个结果,即对于任意连通图 G、κ‾(G)≤2α′(G),其中κ‾(G)=∑u,v∈V(G)κ(u,v)(n2),α′(G)是 G 中匹配的最大大小;只有当 G 是具有奇数个顶点的完整图时,相等关系才成立。此外,对于二叉图,我们改进了边界,即 ρ(Aκ‾(G))≤(n-α′(G))(4α′(G)-2)n(n-1) ,只有当 G 是完整的平衡二叉图时,边界相等才成立。
{"title":"The average connectivity matrix of a graph","authors":"Linh Nguyen , Suil O","doi":"10.1016/j.disc.2024.114290","DOIUrl":"10.1016/j.disc.2024.114290","url":null,"abstract":"<div><div>For a graph <em>G</em> and for two distinct vertices <em>u</em> and <em>v</em>, let <span><math><mi>κ</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> be the maximum number of vertex-disjoint paths joining <em>u</em> and <em>v</em> in <em>G</em>. The average connectivity matrix of an <em>n</em>-vertex connected graph <em>G</em>, written <span><math><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrix whose <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span>-entry is <span><math><mi>κ</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>/</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span> and let <span><math><mi>ρ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> be the spectral radius of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In this paper, we investigate some spectral properties of the matrix. In particular, we prove that for any <em>n</em>-vertex connected graph <em>G</em>, we have <span><math><mi>ρ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>4</mn><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, which implies a result of Kim and O <span><span>[8]</span></span> stating that for any connected graph <em>G</em>, we have <span><math><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, where <span><math><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></msub><mfrac><mrow><mi>κ</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></mfrac></math></span> and <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximum size of a matching in <em>G</em>; equality holds only when <em>G</em> is a complete graph with an odd number of vertices. Also, for bipartite graphs, we improve the bound, namely <span><math><mi>ρ</mi><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mover><mrow><mi>κ</mi></mrow><mo>‾</mo></mover></mro","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114290"},"PeriodicalIF":0.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.disc.2024.114286
Daniel W. Cranston, Reem Mahmoud
For every , we show every 1-planar graph G with has an equitable r-coloring.
对于每一个 r≥13,我们都能证明Δ(G)≤r 的每一个 1 平面图形 G 都有一个公平的 r 着色。
{"title":"Equitable coloring in 1-planar graphs","authors":"Daniel W. Cranston, Reem Mahmoud","doi":"10.1016/j.disc.2024.114286","DOIUrl":"10.1016/j.disc.2024.114286","url":null,"abstract":"<div><div>For every <span><math><mi>r</mi><mo>≥</mo><mn>13</mn></math></span>, we show every 1-planar graph <em>G</em> with <span><math><mi>Δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>r</mi></math></span> has an equitable <em>r</em>-coloring.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114286"},"PeriodicalIF":0.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.disc.2024.114287
Majun Shi , Qingyong Zhu , Bei Liu , Yuchao Li
Local search algorithms are commonly employed to address a variety of problems in the domain of operations research and combinatorial optimization. Most of the literature on the maximization of constrained monotone non-submodular functions is based on a greedy strategy, and few designs of local search approach are involved. In this paper, we explore the problem of maximizing a monotone non-submodular function under a p-matroid () constraint with local search algorithms. And we indicate that weak submodularity implies localizability of set function optimization which can be used to offer provable approximation guarantees of local search algorithms.
{"title":"Weak submodularity implies localizability: Local search for constrained non-submodular function maximization","authors":"Majun Shi , Qingyong Zhu , Bei Liu , Yuchao Li","doi":"10.1016/j.disc.2024.114287","DOIUrl":"10.1016/j.disc.2024.114287","url":null,"abstract":"<div><div>Local search algorithms are commonly employed to address a variety of problems in the domain of operations research and combinatorial optimization. Most of the literature on the maximization of constrained monotone non-submodular functions is based on a greedy strategy, and few designs of local search approach are involved. In this paper, we explore the problem of maximizing a monotone non-submodular function under a <em>p</em>-matroid (<span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>) constraint with local search algorithms. And we indicate that weak submodularity implies localizability of set function optimization which can be used to offer provable approximation guarantees of local search algorithms.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114287"},"PeriodicalIF":0.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.disc.2024.114293
Kai Zhao, Xiao-Dong Zhang
The weight function of an edge in an n-vertex uniform hypergraph is defined with respect to the number of edges in the longest Berge path containing the edge. We prove that the summation of the weight function values for all edges in is at most n, and characterize all extremal hypergraphs that attain this bound. This result strengthens and extends the hypergraph version of the classic Erdős-Gallai Theorem, providing a local version of this theorem.
在 n 个顶点的均匀超图 H 中,边的权函数是根据包含该边的最长 Berge 路径中的边数定义的。我们证明了 H 中所有边的权函数值之和最多为 n,并描述了达到这一界限的所有极值超图的特征。这一结果加强并扩展了经典厄尔多斯-加莱定理的超图版本,提供了该定理的局部版本。
{"title":"Localized version of hypergraph Erdős-Gallai Theorem","authors":"Kai Zhao, Xiao-Dong Zhang","doi":"10.1016/j.disc.2024.114293","DOIUrl":"10.1016/j.disc.2024.114293","url":null,"abstract":"<div><div>The weight function of an edge in an <em>n</em>-vertex uniform hypergraph <span><math><mi>H</mi></math></span> is defined with respect to the number of edges in the longest Berge path containing the edge. We prove that the summation of the weight function values for all edges in <span><math><mi>H</mi></math></span> is at most <em>n</em>, and characterize all extremal hypergraphs that attain this bound. This result strengthens and extends the hypergraph version of the classic Erdős-Gallai Theorem, providing a local version of this theorem.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114293"},"PeriodicalIF":0.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1016/j.disc.2024.114289
Michael Cary
Block graphs are important baseline structures for a vast array of community detection and other network partitioning models. Singular graphs have many important uses in the physical sciences. A recent conjecture was posited that the nullity of a -free block graph cannot be larger than one. In this paper we prove that the conjecture is false by constructing a family of counterexamples using the Cauchy interlacing theorem for real symmetric matrices. In doing so, we prove the stronger statement that the nullity of -free block graphs is unbounded. Finally, the implications of this result for the computational network theory literature are discussed.
{"title":"A note proving the nullity of block graphs is unbounded","authors":"Michael Cary","doi":"10.1016/j.disc.2024.114289","DOIUrl":"10.1016/j.disc.2024.114289","url":null,"abstract":"<div><div>Block graphs are important baseline structures for a vast array of community detection and other network partitioning models. Singular graphs have many important uses in the physical sciences. A recent conjecture was posited that the nullity of a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free block graph cannot be larger than one. In this paper we prove that the conjecture is false by constructing a family of counterexamples using the Cauchy interlacing theorem for real symmetric matrices. In doing so, we prove the stronger statement that the nullity of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-free block graphs is unbounded. Finally, the implications of this result for the computational network theory literature are discussed.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114289"},"PeriodicalIF":0.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1016/j.disc.2024.114283
Ernst J. Joubert
<div><div>For bipartite graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, the bipartite Ramsey number <span><math><mi>b</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the least positive integer <em>b</em>, so that any coloring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> with <em>k</em> colors, will result in a copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in the <em>i</em>th color, for some <em>i</em>. For bipartite graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the bipartite Ramsey number pair <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, denoted by <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, is an ordered pair of integers such that for any blue-red coloring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>, with <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, either a blue copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> exists or a red copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> exists if and only if <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><mi>a</mi></math></span> and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><mi>b</mi></math></span>. In <span><span>[4]</span></span>, Faudree and Schelp considered bipartite Ramsey number pairs involving paths. Recently, Joubert, Hattingh and Henning showed, in <span><span>[7]</span></span> and <span><span>[8]</span></span>, that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>
对于双胞图 G1,G2,...,Gk,双胞拉姆齐数 b(G1,G2,...,Gk)是最小的正整数 b,使得 Kb,b 的边的任何着色都有 k 种颜色,在第 i 种颜色下将得到 Gi 的副本。对于双分部图 G1 和 G2,双分部拉姆齐数对(a,b)(用 bp(G1,G2)=(a,b) 表示)是一对有序整数,对于 Ka′、b′,当且仅当 a′≥a,b′≥b 时,要么存在 G1 的蓝色副本,要么存在 G2 的红色副本。在 [4] 中,Faudree 和 Schelp 考虑了涉及路径的双方位拉姆齐数对。最近,Joubert、Hattingh 和 Henning 在 [7] 和 [8] 中证明,对于足够大的正整数 s,bp(C2s,C2s)=(2s,2s-1) 和 b(P2s,C2s)=2s-1。具体来说,假设 s 和 r 是足够大的正整数。我们将证明,如果 r≥s+1 时,bp(C2s,P2r+1)=(s+r,s+r-1);如果 r=s+1 时,bp(P2s+1,C2r)=(s+r,s+r);如果 r≥s+2 时,bp(P2s+1,C2r)=(s+r-1,s+r-1)。
{"title":"Bipartite Ramsey number pairs that involve combinations of cycles and odd paths","authors":"Ernst J. Joubert","doi":"10.1016/j.disc.2024.114283","DOIUrl":"10.1016/j.disc.2024.114283","url":null,"abstract":"<div><div>For bipartite graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, the bipartite Ramsey number <span><math><mi>b</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><mo>…</mo><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> is the least positive integer <em>b</em>, so that any coloring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>b</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span> with <em>k</em> colors, will result in a copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in the <em>i</em>th color, for some <em>i</em>. For bipartite graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the bipartite Ramsey number pair <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, denoted by <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span>, is an ordered pair of integers such that for any blue-red coloring of the edges of <span><math><msub><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub></math></span>, with <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, either a blue copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> exists or a red copy of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> exists if and only if <span><math><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><mi>a</mi></math></span> and <span><math><msup><mrow><mi>b</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>≥</mo><mi>b</mi></math></span>. In <span><span>[4]</span></span>, Faudree and Schelp considered bipartite Ramsey number pairs involving paths. Recently, Joubert, Hattingh and Henning showed, in <span><span>[7]</span></span> and <span><span>[8]</span></span>, that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>(</mo><mn>2</mn><mi>s</mi><mo>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114283"},"PeriodicalIF":0.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.disc.2024.114284
Si-Ao Xu, Huan Zhou, Xiang-Feng Pan
Let G be a simple graph with vertex set and edge set . The resistance distance between two vertices of G, is defined to be the effective resistance between the two vertices in the corresponding electrical network in which each edge of G is replaced by a unit resistor. The resistance spectrum of a graph G is the multiset of the resistance distances between all pairs of vertices in the graph. This paper presents a novel method for constructing graphs with the same resistance spectrum. It is obtained that for any positive integer k, there exist at least graphs with the same resistance spectrum. Furthermore, it is shown that for , there are at least pairs of graphs of order n with the same resistance spectrum, where and are the numbers of partitions of the integer and simple graphs of order , respectively.
假设 G 是一个简单图,具有顶点集 V(G) 和边集 E(G)。G 的两个顶点 x,y 之间的电阻距离 RG(x,y) 定义为两个顶点之间在相应电网络中的有效电阻,其中 G 的每条边都由一个单位电阻代替。图 G 的电阻谱 RS(G) 是图中所有顶点对之间电阻距离的多集。本文提出了一种构建具有相同电阻谱的图的新方法。结果表明,对于任意正整数 k,至少存在 2k 个具有相同电阻谱的图。此外,对于 n≥10,至少存在 2((n-10)p(n-9)+q(n-9)) 对具有相同阻力谱的 n 阶图形,其中 p(n-9) 和 q(n-9) 分别是整数 n-9 和 n-9 阶简单图形的分区数。
{"title":"A method for constructing graphs with the same resistance spectrum","authors":"Si-Ao Xu, Huan Zhou, Xiang-Feng Pan","doi":"10.1016/j.disc.2024.114284","DOIUrl":"10.1016/j.disc.2024.114284","url":null,"abstract":"<div><div>Let <em>G</em> be a simple graph with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The resistance distance <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> between two vertices <span><math><mi>x</mi><mo>,</mo><mi>y</mi></math></span> of <em>G</em>, is defined to be the effective resistance between the two vertices in the corresponding electrical network in which each edge of <em>G</em> is replaced by a unit resistor. The resistance spectrum <span><math><mi>RS</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the multiset of the resistance distances between all pairs of vertices in the graph. This paper presents a novel method for constructing graphs with the same resistance spectrum. It is obtained that for any positive integer <em>k</em>, there exist at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span> graphs with the same resistance spectrum. Furthermore, it is shown that for <span><math><mi>n</mi><mo>≥</mo><mn>10</mn></math></span>, there are at least <span><math><mn>2</mn><mo>(</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>10</mn><mo>)</mo><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo><mo>+</mo><mi>q</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo><mo>)</mo></math></span> pairs of graphs of order <em>n</em> with the same resistance spectrum, where <span><math><mi>p</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo></math></span> and <span><math><mi>q</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>9</mn><mo>)</mo></math></span> are the numbers of partitions of the integer <span><math><mi>n</mi><mo>−</mo><mn>9</mn></math></span> and simple graphs of order <span><math><mi>n</mi><mo>−</mo><mn>9</mn></math></span>, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114284"},"PeriodicalIF":0.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1016/j.disc.2024.114270
Xun Chen , Qizhong Lin , Lin Niu
<div><div>For graphs <span><math><mi>F</mi><mo>,</mo><mi>G</mi></math></span> and <em>H</em>, let <span><math><mi>F</mi><mo>→</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> signify that any red/blue edge coloring of <em>F</em> contains either a red <em>G</em> or a blue <em>H</em>. The Ramsey number <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is defined to be the smallest integer <em>r</em> such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>→</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup></math></span> be the book graph which consists of <em>n</em> copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> all sharing a common <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, and let <span><math><mi>G</mi><mo>:</mo><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> be the complete <span><math><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-partite graph with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>.</div><div>In this paper, avoiding the use of Szemerédi's regularity lemma, we show that for any fixed <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>(</mo><mi>n</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msub><mo>∖</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>2</mn></mrow></msub><mo>→</mo><mo>(</mo><mi>G</mi><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup><mo>)</mo></math></span>. This implies that the star-critical Ramsey number <span><math><msub><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><m
{"title":"Star-critical Ramsey numbers involving large books","authors":"Xun Chen , Qizhong Lin , Lin Niu","doi":"10.1016/j.disc.2024.114270","DOIUrl":"10.1016/j.disc.2024.114270","url":null,"abstract":"<div><div>For graphs <span><math><mi>F</mi><mo>,</mo><mi>G</mi></math></span> and <em>H</em>, let <span><math><mi>F</mi><mo>→</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> signify that any red/blue edge coloring of <em>F</em> contains either a red <em>G</em> or a blue <em>H</em>. The Ramsey number <span><math><mi>r</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is defined to be the smallest integer <em>r</em> such that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>→</mo><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup></math></span> be the book graph which consists of <em>n</em> copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> all sharing a common <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, and let <span><math><mi>G</mi><mo>:</mo><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> be the complete <span><math><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-partite graph with <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>.</div><div>In this paper, avoiding the use of Szemerédi's regularity lemma, we show that for any fixed <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and sufficiently large <em>n</em>, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>p</mi><mo>(</mo><mi>n</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msub><mo>∖</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>2</mn></mrow></msub><mo>→</mo><mo>(</mo><mi>G</mi><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup><mo>)</mo></math></span>. This implies that the star-critical Ramsey number <span><math><msub><mrow><mi>r</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>,</mo><msubsup><mrow><mi>B</mi></mrow><m","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114270"},"PeriodicalIF":0.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142426770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}