首页 > 最新文献

Discrete Mathematics最新文献

英文 中文
A combinatorial proof of a family of truncated identities for the partition function
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-14 DOI: 10.1016/j.disc.2025.114434
Yongqiang Chen, Olivia X.M. Yao
In 2012, Andrews and Merca proved a truncated partition identity by studying the truncated series of Euler's pentagonal number theorem. Andrews and Merca's work has opened up a new study on truncated theta series and a number of results on truncated theta series have been proved in the past decade. Recently, Xia, Yee and Zhao proved a new truncated partition identity by taking different truncated series than the one chosen by Andrews and Merca. Very recently, Yao proved a new truncated identity on Euler's pentagonal number theorem. The identity is equivalent to a family of truncated identities for the partition function which involves the results proved by Andrew-Merca, and Xia-Yee-Zhao. In this paper, we provide a purely combinatorial proof of the family of truncated identities for the partition function. In particular, we answer a question on combinatorial proofs of two partition identities, which were posed by Wang and Xiao.
{"title":"A combinatorial proof of a family of truncated identities for the partition function","authors":"Yongqiang Chen,&nbsp;Olivia X.M. Yao","doi":"10.1016/j.disc.2025.114434","DOIUrl":"10.1016/j.disc.2025.114434","url":null,"abstract":"<div><div>In 2012, Andrews and Merca proved a truncated partition identity by studying the truncated series of Euler's pentagonal number theorem. Andrews and Merca's work has opened up a new study on truncated theta series and a number of results on truncated theta series have been proved in the past decade. Recently, Xia, Yee and Zhao proved a new truncated partition identity by taking different truncated series than the one chosen by Andrews and Merca. Very recently, Yao proved a new truncated identity on Euler's pentagonal number theorem. The identity is equivalent to a family of truncated identities for the partition function which involves the results proved by Andrew-Merca, and Xia-Yee-Zhao. In this paper, we provide a purely combinatorial proof of the family of truncated identities for the partition function. In particular, we answer a question on combinatorial proofs of two partition identities, which were posed by Wang and Xiao.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114434"},"PeriodicalIF":0.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New MDS codes of non-GRS type and NMDS codes
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-14 DOI: 10.1016/j.disc.2025.114436
Yujie Zhi, Shixin Zhu
Maximum distance separable (MDS) and near maximum distance separable (NMDS) codes have been widely used in various fields such as communication systems, data storage, and quantum codes due to their algebraic properties and excellent error-correcting capabilities. This paper focuses on a specific class of linear codes and establishes necessary and sufficient conditions for them to be MDS or NMDS. Additionally, we employ the well-known Schur method to demonstrate that they are non-equivalent to generalized Reed-Solomon codes.
最大距离可分码(MDS)和近最大距离可分码(NMDS)因其代数特性和出色的纠错能力,已被广泛应用于通信系统、数据存储和量子编码等多个领域。本文重点研究了一类特定的线性编码,并建立了它们成为 MDS 或 NMDS 的必要条件和充分条件。此外,我们还利用著名的舒尔方法证明它们与广义里德-所罗门码不等同。
{"title":"New MDS codes of non-GRS type and NMDS codes","authors":"Yujie Zhi,&nbsp;Shixin Zhu","doi":"10.1016/j.disc.2025.114436","DOIUrl":"10.1016/j.disc.2025.114436","url":null,"abstract":"<div><div>Maximum distance separable (MDS) and near maximum distance separable (NMDS) codes have been widely used in various fields such as communication systems, data storage, and quantum codes due to their algebraic properties and excellent error-correcting capabilities. This paper focuses on a specific class of linear codes and establishes necessary and sufficient conditions for them to be MDS or NMDS. Additionally, we employ the well-known Schur method to demonstrate that they are non-equivalent to generalized Reed-Solomon codes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 5","pages":"Article 114436"},"PeriodicalIF":0.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wilf classes for weak ascent sequences avoiding a pair or triple of length-3 patterns
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-14 DOI: 10.1016/j.disc.2025.114438
David Callan , Toufik Mansour
A weak ascent sequence is a word π=π1π2πn over the set of nonnegative integers such that π1=0 and πi1+weak_asc(π1π2πi1) for i=2,,n, where weak_asc(π1π2πm) is the number of weak ascents in the word π1π2πm, that is, the number of two-entry factors πjπj+1 such that πjπj+1. Here we obtain some enumerative results for weak ascent sequences avoiding a set of two or three 3-letter patterns, leading to a conjecture for the number of Wilf equivalence classes for weak ascent sequences avoiding a pair (respectively, triple) of 3-letter patterns. The main tool is the use of generating trees. Some cases are treated using bijective methods.
{"title":"Wilf classes for weak ascent sequences avoiding a pair or triple of length-3 patterns","authors":"David Callan ,&nbsp;Toufik Mansour","doi":"10.1016/j.disc.2025.114438","DOIUrl":"10.1016/j.disc.2025.114438","url":null,"abstract":"<div><div>A <em>weak ascent sequence</em> is a word <span><math><mi>π</mi><mo>=</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over the set of nonnegative integers such that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≤</mo><mn>1</mn><mo>+</mo><mrow><mtext>weak</mtext><mi>_</mi><mtext>asc</mtext></mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>, where <span><math><mrow><mtext>weak</mtext><mi>_</mi><mtext>asc</mtext></mrow><mo>(</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> is the number of <em>weak ascents</em> in the word <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, that is, the number of two-entry factors <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> such that <span><math><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>π</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. Here we obtain some enumerative results for weak ascent sequences avoiding a set of two or three 3-letter patterns, leading to a conjecture for the number of Wilf equivalence classes for weak ascent sequences avoiding a pair (respectively, triple) of 3-letter patterns. The main tool is the use of generating trees. Some cases are treated using bijective methods.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114438"},"PeriodicalIF":0.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the multicolour version of the Erdős-Hajnal conjecture
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-13 DOI: 10.1016/j.disc.2025.114437
Maria Axenovich, Lea Weber
Informally, the multicolour version of the Erdős-Hajnal conjecture (shortly EH-conjecture) asserts that if a sufficiently large host clique on n vertices is edge-coloured avoiding a copy of some fixed edge-coloured clique, then there is a large homogeneous set of size nβ for some positive β, where a set of vertices is homogeneous if it does not induce all the colours. This conjecture, if true, claims that imposing local conditions on edge-partitions of cliques results in a global structural consequence such as a large homogeneous set, a set avoiding all edges of some part. While this conjecture attracted a lot of attention, it is still open even for two colours.
In this note, we reduce the multicolour version of the EH-conjecture to the case when the number of colours used in a host clique is either the same as in the forbidden pattern or one more. We exhibit a non-monotonicity behaviour of homogeneous sets in coloured cliques with forbidden patterns by showing that allowing an extra colour in the host graph could actually decrease the size of a largest homogeneous set.
{"title":"A note on the multicolour version of the Erdős-Hajnal conjecture","authors":"Maria Axenovich,&nbsp;Lea Weber","doi":"10.1016/j.disc.2025.114437","DOIUrl":"10.1016/j.disc.2025.114437","url":null,"abstract":"<div><div>Informally, the multicolour version of the Erdős-Hajnal conjecture (shortly EH-conjecture) asserts that if a sufficiently large host clique on <em>n</em> vertices is edge-coloured avoiding a copy of some fixed edge-coloured clique, then there is a large homogeneous set of size <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> for some positive <em>β</em>, where a set of vertices is homogeneous if it does not induce all the colours. This conjecture, if true, claims that imposing local conditions on edge-partitions of cliques results in a global structural consequence such as a large homogeneous set, a set avoiding all edges of some part. While this conjecture attracted a lot of attention, it is still open even for two colours.</div><div>In this note, we reduce the multicolour version of the EH-conjecture to the case when the number of colours used in a host clique is either the same as in the forbidden pattern or one more. We exhibit a non-monotonicity behaviour of homogeneous sets in coloured cliques with forbidden patterns by showing that allowing an extra colour in the host graph could actually decrease the size of a largest homogeneous set.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114437"},"PeriodicalIF":0.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumerating alternating-runs with sign in Type A and Type B Coxeter groups
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-13 DOI: 10.1016/j.disc.2025.114439
Hiranya Kishore Dey , Sivaramakrishnan Sivasubramanian
<div><div>We enumerate alternating runs in the alternating group <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and show that this polynomial depends on the value of <span><math><mi>n</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. If <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> is the polynomial enumerating alternating runs in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, Wilf showed that <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and determined the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. Let <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> be the polynomials enumerating alternating runs in <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> respectively. By finding the exponent of <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></math></span> that divides <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, we refine Wilfs result when <span><math><mi>n</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>. When <span><math><mi>n</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, we show that the exponent is one short of what Wilf obtains.</div><div>As applications of our results, we get moment type identities involving the coefficients of <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo>(</mo><mi>t</mi><mo>)</mo></math></span>, refinements to enumerating alternating and unimodal permutations in <span><math><msub><mrow><mi>A</
{"title":"Enumerating alternating-runs with sign in Type A and Type B Coxeter groups","authors":"Hiranya Kishore Dey ,&nbsp;Sivaramakrishnan Sivasubramanian","doi":"10.1016/j.disc.2025.114439","DOIUrl":"10.1016/j.disc.2025.114439","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We enumerate alternating runs in the alternating group &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. This leads us to enumerate the bivariate peak and valley polynomial with sign taken into account. We prove an exact formula for this signed enumerator in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and show that this polynomial depends on the value of &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. If &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; is the polynomial enumerating alternating runs in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, Wilf showed that &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; divides &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and determined the exponent of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; that divides &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; be the polynomials enumerating alternating runs in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; respectively. By finding the exponent of &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; that divides &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, we refine Wilfs result when &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. When &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≡&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, we show that the exponent is one short of what Wilf obtains.&lt;/div&gt;&lt;div&gt;As applications of our results, we get moment type identities involving the coefficients of &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;±&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;, refinements to enumerating alternating and unimodal permutations in &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114439"},"PeriodicalIF":0.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the complement of a signed graph
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-13 DOI: 10.1016/j.disc.2025.114433
Matteo Cavaleri, Alfredo Donno, Stefano Spessato
Given a signed graph (Γ,σ) and a spanning tree of Γ, we define pseudo-potentials on Γ, which coincide with usual potential functions in the balanced case. Using a pseudo-potential, we are able to define a signature on the complement Γc of Γ, in such a way that the signed complete graph obtained by taking the union of Γ and Γc is stable under switching equivalence, and providing a solution to an open problem in the literature of signed graphs. Then, we introduce three new notions of signed regularity, we characterize them in terms of the adjacency matrix of (Γ,σ), and we show that under such regularity hypotheses the spectrum of the signed complete graph can be described in terms of the spectra of (Γ,σ) and of its signed complement. As an application of our machinery, we define a signed version of a generalization of the classical NEPS of graphs, whose signature is stable under switching equivalence. In particular, this construction allows to give a switching stable definition of the lexicographic product of signed graphs, for which the spectrum is explicitly determined in the regular case.
{"title":"On the complement of a signed graph","authors":"Matteo Cavaleri,&nbsp;Alfredo Donno,&nbsp;Stefano Spessato","doi":"10.1016/j.disc.2025.114433","DOIUrl":"10.1016/j.disc.2025.114433","url":null,"abstract":"<div><div>Given a signed graph <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> and a spanning tree of Γ, we define pseudo-potentials on Γ, which coincide with usual potential functions in the balanced case. Using a pseudo-potential, we are able to define a signature on the complement <span><math><msup><mrow><mi>Γ</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> of Γ, in such a way that the signed complete graph obtained by taking the union of Γ and <span><math><msup><mrow><mi>Γ</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> is stable under switching equivalence, and providing a solution to an open problem in the literature of signed graphs. Then, we introduce three new notions of signed regularity, we characterize them in terms of the adjacency matrix of <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span>, and we show that under such regularity hypotheses the spectrum of the signed complete graph can be described in terms of the spectra of <span><math><mo>(</mo><mi>Γ</mi><mo>,</mo><mi>σ</mi><mo>)</mo></math></span> and of its signed complement. As an application of our machinery, we define a signed version of a generalization of the classical NEPS of graphs, whose signature is stable under switching equivalence. In particular, this construction allows to give a switching stable definition of the lexicographic product of signed graphs, for which the spectrum is explicitly determined in the regular case.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114433"},"PeriodicalIF":0.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral bipartite Turán problems on linear hypergraphs
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-13 DOI: 10.1016/j.disc.2025.114435
Chuan-Ming She , Yi-Zheng Fan , Liying Kang
Let F be a graph, and let Br(F) be the class of r-uniform Berge-F hypergraphs. In this paper, we establish a relationship between the spectral radius of the adjacency tensor of a uniform hypergraph and its local structure through walks. Based on the relationship, we give a spectral asymptotic bound for Br(C3)-free linear r-uniform hypergraphs and upper bounds for the spectral radii of Br(K2,t)-free or {Br(Ks,t),Br(C3)}-free linear r-uniform hypergraphs, where C3 and Ks,t are respectively the triangle and the complete bipartite graph with one part having s vertices and the other part having t vertices. Our work implies an upper bound for the number of edges of {Br(Ks,t),Br(C3)}-free linear r-uniform hypergraphs and extends some of the existing research on (spectral) extremal problems of hypergraphs.
{"title":"Spectral bipartite Turán problems on linear hypergraphs","authors":"Chuan-Ming She ,&nbsp;Yi-Zheng Fan ,&nbsp;Liying Kang","doi":"10.1016/j.disc.2025.114435","DOIUrl":"10.1016/j.disc.2025.114435","url":null,"abstract":"<div><div>Let <em>F</em> be a graph, and let <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> be the class of <em>r</em>-uniform Berge-<em>F</em> hypergraphs. In this paper, we establish a relationship between the spectral radius of the adjacency tensor of a uniform hypergraph and its local structure through walks. Based on the relationship, we give a spectral asymptotic bound for <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>-free linear <em>r</em>-uniform hypergraphs and upper bounds for the spectral radii of <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo></math></span>-free or <span><math><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>}</mo></math></span>-free linear <em>r</em>-uniform hypergraphs, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> are respectively the triangle and the complete bipartite graph with one part having <em>s</em> vertices and the other part having <em>t</em> vertices. Our work implies an upper bound for the number of edges of <span><math><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>t</mi></mrow></msub><mo>)</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>}</mo></math></span>-free linear <em>r</em>-uniform hypergraphs and extends some of the existing research on (spectral) extremal problems of hypergraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114435"},"PeriodicalIF":0.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143395267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properly colored cycles in edge-colored complete graphs
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-12 DOI: 10.1016/j.disc.2025.114403
Tianjiao Dai , Hao Li , Yannis Manoussakis , Qiancheng Ouyang
As an analogy of the well-known anti-Ramsey problem, we study the existence of properly colored cycles of given length in an edge-colored complete graph. Let pr(Kn,G) be the maximum number of colors in an edge-coloring of Kn with no properly colored copy of G. In this paper, we determine the exact threshold for cycles pr(Kn,C), which proves a conjecture proposed by Fang, Győri, and Xiao, that the maximum number of colors in an edge-coloring of Kn with no properly colored copy of C is max{(12)+n+1,13n(13+12)+1+r1}, where C is a cycle on vertices, 1r1mod3, and 0r12. It is a slight modification of a previous conjecture posed by Manoussakis, Spyratos, Tuza and Voigt. Also, we consider the maximal coloring of Kn whether a properly colored cycle can be extended by exact one more vertex.
{"title":"Properly colored cycles in edge-colored complete graphs","authors":"Tianjiao Dai ,&nbsp;Hao Li ,&nbsp;Yannis Manoussakis ,&nbsp;Qiancheng Ouyang","doi":"10.1016/j.disc.2025.114403","DOIUrl":"10.1016/j.disc.2025.114403","url":null,"abstract":"<div><div>As an analogy of the well-known anti-Ramsey problem, we study the existence of properly colored cycles of given length in an edge-colored complete graph. Let <span><math><mrow><mi>pr</mi></mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></math></span> be the maximum number of colors in an edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with no properly colored copy of <em>G</em>. In this paper, we determine the exact threshold for cycles <span><math><mrow><mi>pr</mi></mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></math></span>, which proves a conjecture proposed by Fang, Győri, and Xiao, that the maximum number of colors in an edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with no properly colored copy of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> is <span><math><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mi>n</mi><mo>−</mo><mi>ℓ</mi><mo>+</mo><mn>1</mn><mo>,</mo><mrow><mo>⌊</mo><mfrac><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌋</mo></mrow><mi>n</mi><mo>−</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow></math></span>, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> is a cycle on <em>ℓ</em> vertices, <span><math><mi>ℓ</mi><mo>−</mo><mn>1</mn><mo>≡</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msub><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mn>3</mn></math></span>, and <span><math><mn>0</mn><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>≤</mo><mn>2</mn></math></span>. It is a slight modification of a previous conjecture posed by Manoussakis, Spyratos, Tuza and Voigt. Also, we consider the maximal coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> whether a properly colored cycle can be extended by exact one more vertex.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114403"},"PeriodicalIF":0.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the domination number of graphs with minimum degree at least seven
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-12 DOI: 10.1016/j.disc.2025.114424
Csilla Bujtás , Michael A. Henning
A dominating set in a graph G is a set SV(G) such that every vertex that is not in S is adjacent to a vertex from it. The domination number γ(G) is the minimum cardinality of a dominating set in G. For k1, let Gk denote the class of all connected graphs with minimum degree at least k. The problem to determine or estimate the best possible constants cdom,k (which depend only on k) such that γ(G)cdom,kn(G) for all GGk is well studied, where n(G) denotes the order of G. In this paper we establish best known lower and upper bounds to date on the constant cdom,7, namely 314cdom,7414.
{"title":"On the domination number of graphs with minimum degree at least seven","authors":"Csilla Bujtás ,&nbsp;Michael A. Henning","doi":"10.1016/j.disc.2025.114424","DOIUrl":"10.1016/j.disc.2025.114424","url":null,"abstract":"<div><div>A dominating set in a graph <em>G</em> is a set <span><math><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that every vertex that is not in <em>S</em> is adjacent to a vertex from it. The domination number <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the minimum cardinality of a dominating set in <em>G</em>. For <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> denote the class of all connected graphs with minimum degree at least <em>k</em>. The problem to determine or estimate the best possible constants <span><math><msub><mrow><mi>c</mi></mrow><mrow><mrow><mi>dom</mi></mrow><mo>,</mo><mi>k</mi></mrow></msub></math></span> (which depend only on <em>k</em>) such that <span><math><mi>γ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mrow><mi>dom</mi></mrow><mo>,</mo><mi>k</mi></mrow></msub><mo>⋅</mo><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for all <span><math><mi>G</mi><mo>∈</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is well studied, where <span><math><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the order of <em>G</em>. In this paper we establish best known lower and upper bounds to date on the constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mrow><mi>dom</mi></mrow><mo>,</mo><mn>7</mn></mrow></msub></math></span>, namely <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>14</mn></mrow></mfrac><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mrow><mi>dom</mi></mrow><mo>,</mo><mn>7</mn></mrow></msub><mo>≤</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mn>14</mn></mrow></mfrac></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114424"},"PeriodicalIF":0.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Box complexes: At the crossroad of graph theory and topology
IF 0.7 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-12 DOI: 10.1016/j.disc.2025.114422
Hamid Reza Daneshpajouh , Frédéric Meunier
Various simplicial complexes can be associated with a graph. Box complexes form an important family of such simplicial complexes and are especially useful for providing lower bounds on the chromatic number of the graph via some of their topological properties. They provide thus a fascinating topic mixing topology and discrete mathematics. This paper is intended to provide an up-do-date survey on box complexes. It is based on classical results and recent findings from the literature, but also establishes new results improving our current understanding of the topic, and identifies several challenging open questions.
{"title":"Box complexes: At the crossroad of graph theory and topology","authors":"Hamid Reza Daneshpajouh ,&nbsp;Frédéric Meunier","doi":"10.1016/j.disc.2025.114422","DOIUrl":"10.1016/j.disc.2025.114422","url":null,"abstract":"<div><div>Various simplicial complexes can be associated with a graph. Box complexes form an important family of such simplicial complexes and are especially useful for providing lower bounds on the chromatic number of the graph via some of their topological properties. They provide thus a fascinating topic mixing topology and discrete mathematics. This paper is intended to provide an up-do-date survey on box complexes. It is based on classical results and recent findings from the literature, but also establishes new results improving our current understanding of the topic, and identifies several challenging open questions.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114422"},"PeriodicalIF":0.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143386853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1