Pub Date : 2024-12-20DOI: 10.1016/j.disc.2024.114374
Fang Tian , Yiting Yang
<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the
{"title":"A note on the random triadic process","authors":"Fang Tian , Yiting Yang","doi":"10.1016/j.disc.2024.114374","DOIUrl":"10.1016/j.disc.2024.114374","url":null,"abstract":"<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the ","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114374"},"PeriodicalIF":0.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For a field and integers d and k, a set is called k-nearly orthogonal if its members are non-self-orthogonal and every vectors of include an orthogonal pair. We prove that for every prime p there exists some , such that for every field of characteristic p and for all integers and , there exists a k-nearly orthogonal set of at least vectors of . The size of the set is optimal up to the term in the exponent. We further prove two extensions of this result. In the first, we provide a large set of non-self-orthogonal vectors of such that for every two subsets of of size each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every vectors of the produced set include pairwise orthogonal vectors for an arbitrary fixed integer . The proofs involve probabilistic and spectral arguments and the hypergraph container method.
{"title":"Larger nearly orthogonal sets over finite fields","authors":"Ishay Haviv , Sam Mattheus , Aleksa Milojević , Yuval Wigderson","doi":"10.1016/j.disc.2024.114373","DOIUrl":"10.1016/j.disc.2024.114373","url":null,"abstract":"<div><div>For a field <span><math><mi>F</mi></math></span> and integers <em>d</em> and <em>k</em>, a set <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is called <em>k</em>-nearly orthogonal if its members are non-self-orthogonal and every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of <span><math><mi>A</mi></math></span> include an orthogonal pair. We prove that for every prime <em>p</em> there exists some <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span>, such that for every field <span><math><mi>F</mi></math></span> of characteristic <em>p</em> and for all integers <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>≥</mo><mi>k</mi></math></span>, there exists a <em>k</em>-nearly orthogonal set of at least <span><math><msup><mrow><mi>d</mi></mrow><mrow><mi>δ</mi><mo>⋅</mo><mi>k</mi><mo>/</mo><mi>log</mi><mo></mo><mi>k</mi></mrow></msup></math></span> vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. The size of the set is optimal up to the <span><math><mi>log</mi><mo></mo><mi>k</mi></math></span> term in the exponent. We further prove two extensions of this result. In the first, we provide a large set <span><math><mi>A</mi></math></span> of non-self-orthogonal vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that for every two subsets of <span><math><mi>A</mi></math></span> of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of the produced set <span><math><mi>A</mi></math></span> include <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> pairwise orthogonal vectors for an arbitrary fixed integer <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi></math></span>. The proofs involve probabilistic and spectral arguments and the hypergraph container method.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114373"},"PeriodicalIF":0.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1016/j.disc.2024.114365
Fuliang Lu, Huali Pan
A 3-connected graph is a brick if the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer.
Lucchesi and Murty conjectured that there exists a positive integer N such that for every , every brick on n vertices has at least perfect matchings. We present an infinite family of bricks such that for each even integer n (), there exists a brick with n vertices in this family that contains at most perfect matchings, showing that this conjecture fails.
{"title":"The number of perfect matchings in a brick","authors":"Fuliang Lu, Huali Pan","doi":"10.1016/j.disc.2024.114365","DOIUrl":"10.1016/j.disc.2024.114365","url":null,"abstract":"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of the matching decomposition procedure of Kotzig, and Lovász and Plummer.</div><div>Lucchesi and Murty conjectured that there exists a positive integer <em>N</em> such that for every <span><math><mi>n</mi><mo>≥</mo><mi>N</mi></math></span>, every brick on <em>n</em> vertices has at least <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> perfect matchings. We present an infinite family of bricks such that for each even integer <em>n</em> (<span><math><mi>n</mi><mo>></mo><mn>17</mn></math></span>), there exists a brick with <em>n</em> vertices in this family that contains at most <span><math><mo>⌈</mo><mn>0.625</mn><mi>n</mi><mo>⌉</mo></math></span> perfect matchings, showing that this conjecture fails.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114365"},"PeriodicalIF":0.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, binary cyclic codes with parameters have been a hot topic since their minimum distances have a square-root bound. In this paper, we construct four classes of binary cyclic codes , and , by using two families of sequences, and obtain some codes with parameters . For , the code has parameters , and the code has parameters if and if .
{"title":"Binary [n,(n ± 1)/2] cyclic codes with good minimum distances from sequences","authors":"Xianhong Xie , Yaxin Zhao , Zhonghua Sun , Xiaobo Zhou","doi":"10.1016/j.disc.2024.114369","DOIUrl":"10.1016/j.disc.2024.114369","url":null,"abstract":"<div><div>Recently, binary cyclic codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>n</mi><mo>±</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mo>≥</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>]</mo></math></span> have been a hot topic since their minimum distances have a square-root bound. In this paper, we construct four classes of binary cyclic codes <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>1</mn></mrow></msub></math></span> by using two families of sequences, and obtain some codes with parameters <span><math><mo>[</mo><mi>n</mi><mo>,</mo><mo>(</mo><mi>n</mi><mo>±</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>,</mo><mo>≥</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>]</mo></math></span>. For <span><math><mi>m</mi><mo>≡</mo><mn>2</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>, the code <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> has parameters <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mo>]</mo></math></span>, and the code <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>D</mi><mo>,</mo><mn>0</mn></mrow></msub></math></span> has parameters <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mo>]</mo></math></span> if <span><math><mi>h</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mo>[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mo>≥</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>]</mo></math></span> if <span><math><mi>h</mi><mo>=</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114369"},"PeriodicalIF":0.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1016/j.disc.2024.114367
Mengyu Duan , Binlong Li , Shenggui Zhang
A subdigraph of an arc-colored digraph is called properly colored if its every consecutive arcs have distinct colors. Let D be a digraph. For a digraph H, let be the minimum number such that every arc-colored digraph with contains a properly colored copy of H, where is the number of colors of . Let and be the digraphs obtained from the complete graph and the complete bipartite graph respectively by replacing each edge uv with a pair of symmetric arcs and ; and let be the directed cycle of length k. In this paper we determine , and characterize the corresponding extremal arc-colorings of digraphs.
{"title":"Properly colored C4→'s in arc-colored complete and complete bipartite digraphs","authors":"Mengyu Duan , Binlong Li , Shenggui Zhang","doi":"10.1016/j.disc.2024.114367","DOIUrl":"10.1016/j.disc.2024.114367","url":null,"abstract":"<div><div>A subdigraph of an arc-colored digraph is called <em>properly colored</em> if its every consecutive arcs have distinct colors. Let <em>D</em> be a digraph. For a digraph <em>H</em>, let <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> be the minimum number such that every arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> with <span><math><mi>c</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>≥</mo><mi>p</mi><mi>c</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> contains a properly colored copy of <em>H</em>, where <span><math><mi>c</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is the number of colors of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span>. Let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> and <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> be the digraphs obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> respectively by replacing each edge <em>uv</em> with a pair of symmetric arcs <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>; and let <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> be the directed cycle of length <em>k</em>. In this paper we determine <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>)</mo></math></span>, <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>)</mo></math></span> and characterize the corresponding extremal arc-colorings of digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114367"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1016/j.disc.2024.114368
Julien Bensmail , Hervé Hocquard , Clara Marcille , Sven Meyer
The well-known 1-2-3 Conjecture asks whether almost all graphs can have their edges labelled with so that any two adjacent vertices are distinguished w.r.t. the sums of their incident labels. This conjecture has attracted increasing attention over the last years, with many of its aspects of interest being investigated by several authors. In early 2023, Keusch proposed a full solution to the 1-2-3 Conjecture.
Among other aspects of interest, several works introduced and studied ways of generalising such distinguishing labellings and the 1-2-3 Conjecture to structures more general than graphs, such as digraphs and hypergraphs. In the current work, we introduce two new variants for 2-edge-coloured graphs (having negative and positive edges), in which, through labellings, pairs of adjacent vertices are considered distinguished if and only if the differences between their incident positive and negative sums are different. The difference between the two variants we introduce is that, in one of them, this distinction must be met even when considering the absolute value of these differences.
We investigate how these two variants connect, and how they relate to the original problem. For each of the two variants, we also establish upper bounds on the minimum number of consecutive labels that suffice to design a distinguishing labelling of almost any 2-edge-coloured graph. This leads us to raise some conjectures on this minimum, which, as support, we prove for some families of 2-edge-coloured graphs. We also investigate weaker versions of these conjectures, where one can choose the polarity of the edges.
{"title":"On 1-2-3 Conjecture-like problems in 2-edge-coloured graphs","authors":"Julien Bensmail , Hervé Hocquard , Clara Marcille , Sven Meyer","doi":"10.1016/j.disc.2024.114368","DOIUrl":"10.1016/j.disc.2024.114368","url":null,"abstract":"<div><div>The well-known 1-2-3 Conjecture asks whether almost all graphs can have their edges labelled with <span><math><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span> so that any two adjacent vertices are distinguished w.r.t. the sums of their incident labels. This conjecture has attracted increasing attention over the last years, with many of its aspects of interest being investigated by several authors. In early 2023, Keusch proposed a full solution to the 1-2-3 Conjecture.</div><div>Among other aspects of interest, several works introduced and studied ways of generalising such distinguishing labellings and the 1-2-3 Conjecture to structures more general than graphs, such as digraphs and hypergraphs. In the current work, we introduce two new variants for 2-edge-coloured graphs (having negative and positive edges), in which, through labellings, pairs of adjacent vertices are considered distinguished if and only if the differences between their incident positive and negative sums are different. The difference between the two variants we introduce is that, in one of them, this distinction must be met even when considering the absolute value of these differences.</div><div>We investigate how these two variants connect, and how they relate to the original problem. For each of the two variants, we also establish upper bounds on the minimum number of consecutive labels that suffice to design a distinguishing labelling of almost any 2-edge-coloured graph. This leads us to raise some conjectures on this minimum, which, as support, we prove for some families of 2-edge-coloured graphs. We also investigate weaker versions of these conjectures, where one can choose the polarity of the edges.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114368"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The intersection density of a finite transitive group is the rational number given by the ratio between the maximum size of a subset of G in which any two permutations agree on some elements of Ω and the order of a point stabilizer of G. In 2022, Meagher asked whether for any transitive group G of degree 3p, where is an odd prime. If is transitive such that , then it is known that whenever (a) G is primitive or (b) G is imprimitive and admits a block of size p or at least two G-invariant partitions of Ω. In order to answer Meagher's question, it is left to analyze the intersection density of groups G admitting a unique G-invariant partition whose blocks are of size 3. If G is such a group and is the group induced by the action of G on , then we denote the kernel of the canonical epimorphism by . The subgroup is trivial if and only if G is quasiprimitive.
It is shown in this paper that the answer to Meagher's question is affirmative for non-quasiprimitive groups of degree 3p, unless possibly when is a Fermat prime and Ω admits a unique G-invariant partition whose blocks are of size 3 such that the induced action is an almost simple group with socle equal to .
{"title":"The intersection density of non-quasiprimitive groups of degree 3p","authors":"Roghayeh Maleki , Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1016/j.disc.2024.114364","DOIUrl":"10.1016/j.disc.2024.114364","url":null,"abstract":"<div><div>The intersection density of a finite transitive group <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is the rational number <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> given by the ratio between the maximum size of a subset of <em>G</em> in which any two permutations agree on some elements of Ω and the order of a point stabilizer of <em>G</em>. In 2022, Meagher asked whether <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>}</mo></math></span> for any transitive group <em>G</em> of degree 3<em>p</em>, where <span><math><mi>p</mi><mo>≥</mo><mn>5</mn></math></span> is an odd prime. If <span><math><mi>G</mi><mo>≤</mo><mi>Sym</mi><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> is transitive such that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mn>3</mn><mi>p</mi></math></span>, then it is known that <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> whenever (a) <em>G</em> is primitive or (b) <em>G</em> is imprimitive and admits a block of size <em>p</em> or at least two <em>G</em>-invariant partitions of Ω. In order to answer Meagher's question, it is left to analyze the intersection density of groups <em>G</em> admitting a unique <em>G</em>-invariant partition <span><math><mi>B</mi></math></span> whose blocks are of size 3. If <em>G</em> is such a group and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is the group induced by the action of <em>G</em> on <span><math><mi>B</mi></math></span>, then we denote the kernel of the canonical epimorphism <span><math><mi>G</mi><mo>→</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> by <span><math><mi>ker</mi><mo></mo><mo>(</mo><mi>G</mi><mo>→</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span>. The subgroup <span><math><mi>ker</mi><mo></mo><mo>(</mo><mi>G</mi><mo>→</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> is trivial if and only if <em>G</em> is quasiprimitive.</div><div>It is shown in this paper that the answer to Meagher's question is affirmative for non-quasiprimitive groups of degree 3<em>p</em>, unless possibly when <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>+</mo><mn>1</mn></math></span> is a Fermat prime and Ω admits a unique <em>G</em>-invariant partition <span><math><mi>B</mi></math></span> whose blocks are of size 3 such that the induced action <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is an almost simple group with socle equal to <span><math><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114364"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1016/j.disc.2024.114366
Yeonsu Chang , Sejin Ko , O-joung Kwon , Myounghwan Lee
The radius-r flip-width of a graph, for , is a graph parameter defined in terms of a variant of the cops and robber game, called the flipper game, and it was introduced by Toruńczyk (FOCS 2023). We prove that for every , the class of graphs of radius-r flip-width at most 2 is exactly the class of (, bull, gem, co-gem)-free graphs, which are known as totally decomposable graphs with respect to bi-joins.
{"title":"A characterization of graphs of radius-r flip-width at most 2","authors":"Yeonsu Chang , Sejin Ko , O-joung Kwon , Myounghwan Lee","doi":"10.1016/j.disc.2024.114366","DOIUrl":"10.1016/j.disc.2024.114366","url":null,"abstract":"<div><div>The radius-<em>r</em> flip-width of a graph, for <span><math><mi>r</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, is a graph parameter defined in terms of a variant of the cops and robber game, called the flipper game, and it was introduced by Toruńczyk (FOCS 2023). We prove that for every <span><math><mi>r</mi><mo>∈</mo><mo>(</mo><mi>N</mi><mo>∖</mo><mo>{</mo><mn>1</mn><mo>}</mo><mo>)</mo><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, the class of graphs of radius-<em>r</em> flip-width at most 2 is exactly the class of (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, bull, gem, co-gem)-free graphs, which are known as totally decomposable graphs with respect to bi-joins.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114366"},"PeriodicalIF":0.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1016/j.disc.2024.114349
Cong Yu, Shixin Zhu
<div><div>In this paper, we use the left principal ideals of group rings and skew group rings to construct linear codes over small finite fields. We study three class of groups: Semidirect product of two cyclic groups, direct product of a cyclic group and semidirect product of two cyclic groups, wreath product of a cyclic group of order <em>n</em> and a cyclic group of order 2. Using these groups, we can get some generator matrices over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Then by computer search, we obtain 18 new linear codes with parameters <span><math><msub><mrow><mo>[</mo><mn>32</mn><mo>,</mo><mn>19</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>36</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>39</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>10</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>26</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>30</mn><mo>,</mo><mn>6</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>55</mn><mo>,</mo><mn>16</mn><mo>,</mo><mn>22</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>24</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>20</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>27</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>29</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>25</mn><mo>,</mo><mn>10</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>50</mn><mo>,</mo><mn>13</mn><mo>,</mo><mn>24</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>50</mn><mo>,</mo><mn>9</mn><mo>,</mo><mn>30</mn><mo>]</mo></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>39</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>19</mn><mo>]</mo></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>26</mn><mo>]</mo></mrow><mrow><mn>7</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>18</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>6</mn><mo>]</mo></mrow><mrow><mn>9</mn></mrow></msub></math></span>, <span><math><m
{"title":"Construction of new linear codes with good parameters from group rings and skew group rings","authors":"Cong Yu, Shixin Zhu","doi":"10.1016/j.disc.2024.114349","DOIUrl":"10.1016/j.disc.2024.114349","url":null,"abstract":"<div><div>In this paper, we use the left principal ideals of group rings and skew group rings to construct linear codes over small finite fields. We study three class of groups: Semidirect product of two cyclic groups, direct product of a cyclic group and semidirect product of two cyclic groups, wreath product of a cyclic group of order <em>n</em> and a cyclic group of order 2. Using these groups, we can get some generator matrices over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Then by computer search, we obtain 18 new linear codes with parameters <span><math><msub><mrow><mo>[</mo><mn>32</mn><mo>,</mo><mn>19</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>36</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>39</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>10</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>26</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>30</mn><mo>,</mo><mn>6</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>55</mn><mo>,</mo><mn>16</mn><mo>,</mo><mn>22</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>24</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>20</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>27</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>29</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>25</mn><mo>,</mo><mn>10</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>50</mn><mo>,</mo><mn>13</mn><mo>,</mo><mn>24</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>50</mn><mo>,</mo><mn>9</mn><mo>,</mo><mn>30</mn><mo>]</mo></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>39</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>19</mn><mo>]</mo></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>26</mn><mo>]</mo></mrow><mrow><mn>7</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>18</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>6</mn><mo>]</mo></mrow><mrow><mn>9</mn></mrow></msub></math></span>, <span><math><m","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114349"},"PeriodicalIF":0.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The topic of finding sufficient conditions on graphs for their edge list chromatic number to equal their maximum degree has received significant attention in graph theory. Recently, Bernshteyn and Kostochka proposed a generalization of edge list coloring called edge DP-coloring. This development naturally leads to the investigation of similar conditions for edge DP-coloring. In this paper, we find that a graph G has edge DP-chromatic number equal to its maximum degree if (i) G is a planar graph without 4-cycles and 5-cycles, and the maximum degree of G is at least 6; or (ii) G is a planar graph without 4-, 6-cycles, and adjacent 5-cycles, and the maximum degree of G is at least 5. Our results generalize and strengthen previous results in the literature on edge list coloring.
{"title":"Edge DP-coloring of planar graphs without 4-cycles and specific cycles","authors":"Patcharapan Jumnongnit , Kittikorn Nakprasit , Watcharintorn Ruksasakchai , Pongpat Sittitrai","doi":"10.1016/j.disc.2024.114353","DOIUrl":"10.1016/j.disc.2024.114353","url":null,"abstract":"<div><div>The topic of finding sufficient conditions on graphs for their edge list chromatic number to equal their maximum degree has received significant attention in graph theory. Recently, Bernshteyn and Kostochka proposed a generalization of edge list coloring called edge DP-coloring. This development naturally leads to the investigation of similar conditions for edge DP-coloring. In this paper, we find that a graph <em>G</em> has edge DP-chromatic number equal to its maximum degree if (i) <em>G</em> is a planar graph without 4-cycles and 5-cycles, and the maximum degree of <em>G</em> is at least 6; or (ii) <em>G</em> is a planar graph without 4-, 6-cycles, and adjacent 5-cycles, and the maximum degree of <em>G</em> is at least 5. Our results generalize and strengthen previous results in the literature on edge list coloring.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114353"},"PeriodicalIF":0.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}