首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
Neighbor connectivity of hypercube-based compound network 基于超立方体的复合网络的邻居连通性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.049
Yifan Li , Shuming Zhou , Qifan Zhang
For a network G, the subversion at the vertex set (resp., edge set) of G is defined as the removal of the closed neighborhood of the vertex set (resp., all end vertices of the edge set) from G, where the vertex set (resp., edge set) is referred as subverted vertices (resp., edges). Neighbor connectivity and edge neighbor connectivity serve as key indicators for assessing the subversion of spy networks and network disruptions throughout the deletion of closed neighborhood. The neighbor connectivity κNB(G) (resp., edge neighbor connectivity λNB(G)) of a network G is defined as the minimum number of subverted vertices (resp., edges) required to disconnect it, make it empty or complete (resp., trivial). Gu et al. (IEEE Trans. Netw. Sci. Eng. 11 (5) (2024) 1-13) conjectured that whether κNB(G)=δ(G)12+1 holds for all compound graphs G constructed by the underlying block Qn. In this paper, we solve this conjecture and determine the (edge) neighbor connectivity of a class of hypercube-based compound network, including half hypercube, hierarchical hypercube, hierarchical cubic network and dual-cube-like network. In addition, we present network vulnerability analysis algorithms based on neighborhood fault pattern. To evaluate their effectiveness, taking the half hypercube, hierarchical cubic network and real-world network dwt-918 as examples, we perform experimental simulations to analyze both the cardinality distribution of subverted vertices and topological configurations of survival graph.
对于网络G,在顶点集(p。,边集)定义为顶点集(resp.)的闭邻域的移除。,边集的所有端点)来自G,其中顶点集(resp。,边集)被称为颠覆顶点(如。,边缘)。邻居连通性和边缘邻居连通性是评估间谍网络颠覆和网络中断的关键指标。邻居连通性κNB(G)。,网络G的边缘邻居连通性λNB(G)定义为颠覆顶点的最小个数(p。需要断开它,使其为空或完整(参见。琐碎的)。Gu et al. (IEEE译)Netw。科学。Eng. 11(5)(2024) 1-13)推测κNB(G)=δ(G)−12+1是否对所有由底层块Qn构造的复合图G成立。本文解决了这一猜想,并确定了一类基于超立方体的复合网络(包括半超立方体、分层超立方体、分层立方网络和双类立方体网络)的(边)邻居连通性。此外,提出了基于邻域故障模式的网络漏洞分析算法。为了评估它们的有效性,我们以半超立方体、分层立方网络和现实世界网络dwt-918为例,进行了实验模拟,分析了颠覆顶点的基数分布和生存图的拓扑构型。
{"title":"Neighbor connectivity of hypercube-based compound network","authors":"Yifan Li ,&nbsp;Shuming Zhou ,&nbsp;Qifan Zhang","doi":"10.1016/j.dam.2025.12.049","DOIUrl":"10.1016/j.dam.2025.12.049","url":null,"abstract":"<div><div>For a network <span><math><mi>G</mi></math></span>, the subversion at the vertex set (resp., edge set) of <span><math><mi>G</mi></math></span> is defined as the removal of the closed neighborhood of the vertex set (resp., all end vertices of the edge set) from <span><math><mi>G</mi></math></span>, where the vertex set (resp., edge set) is referred as subverted vertices (resp., edges). Neighbor connectivity and edge neighbor connectivity serve as key indicators for assessing the subversion of spy networks and network disruptions throughout the deletion of closed neighborhood. The neighbor connectivity <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>N</mi><mi>B</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (resp., edge neighbor connectivity <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>N</mi><mi>B</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>) of a network <span><math><mi>G</mi></math></span> is defined as the minimum number of subverted vertices (resp., edges) required to disconnect it, make it empty or complete (resp., trivial). Gu et al. (IEEE Trans. Netw. Sci. Eng. 11 (5) (2024) 1-13) conjectured that whether <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>NB</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span> holds for all compound graphs <span><math><mi>G</mi></math></span> constructed by the underlying block <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In this paper, we solve this conjecture and determine the (edge) neighbor connectivity of a class of hypercube-based compound network, including half hypercube, hierarchical hypercube, hierarchical cubic network and dual-cube-like network. In addition, we present network vulnerability analysis algorithms based on neighborhood fault pattern. To evaluate their effectiveness, taking the half hypercube, hierarchical cubic network and real-world network dwt-918 as examples, we perform experimental simulations to analyze both the cardinality distribution of subverted vertices and topological configurations of survival graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 1-15"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance signless Laplacian spectra of graphs: A survey 图的距离无符号拉普拉斯谱:综述
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.044
Bilal Ahmad Rather , Hilal Ahmad Ganie , Jainfeng Wang
In a connected graph G, the distance signless Laplacian is defined as DQ(G)=Diag(Tr)+D(G), where Diag(Tr) is the diagonal matrix of vertex transmissions and D(G)=(Di,j)n×n is the distance matrix indexed by the vertices of G, such that Di,j=d(vi,vj), where d(vi,vj) represents the distance between the vertices vi and vj. Motivated by the Laplacian and signless Laplacian matrices of G, Aouchiche and Hensen (2013) developed the idea of distance (signless) Laplacian matrix, which has attracted the interest among numerous spectral graph theory researchers in the field of algebraic graph theory. The spectral investigation of DQ(G) resulted in numerous articles. In this paper, we present a review of research on the distance signless Laplacian of connected graphs.
在连通图G中,距离无符号拉普拉斯函数定义为DQ(G)=Diag(Tr)+D(G),其中Diag(Tr)是顶点传输的对角矩阵,D(G)=(Di,j)n×n是由G的顶点索引的距离矩阵,使得Di,j= D(vi,vj),其中D(vi,vj)表示顶点vi与vj之间的距离。Aouchiche和Hensen(2013)在G的拉普拉斯矩阵和无符号拉普拉斯矩阵的激励下,提出了距离(无符号)拉普拉斯矩阵的思想,引起了代数图论领域众多谱图理论研究者的兴趣。DQ(G)的光谱研究产生了许多文章。本文对连通图的距离无符号拉普拉斯算子的研究进行了综述。
{"title":"Distance signless Laplacian spectra of graphs: A survey","authors":"Bilal Ahmad Rather ,&nbsp;Hilal Ahmad Ganie ,&nbsp;Jainfeng Wang","doi":"10.1016/j.dam.2025.12.044","DOIUrl":"10.1016/j.dam.2025.12.044","url":null,"abstract":"<div><div>In a connected graph <span><math><mi>G</mi></math></span>, the distance signless Laplacian is defined as <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mi>i</mi><mi>a</mi><mi>g</mi><mrow><mo>(</mo><mi>T</mi><mi>r</mi><mo>)</mo></mrow><mo>+</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mi>i</mi><mi>a</mi><mi>g</mi><mrow><mo>(</mo><mi>T</mi><mi>r</mi><mo>)</mo></mrow></mrow></math></span> is the diagonal matrix of vertex transmissions and <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></mrow></math></span> is the distance matrix indexed by the vertices of <span><math><mi>G</mi></math></span>, such that <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>=</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> represents the distance between the vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>. Motivated by the Laplacian and signless Laplacian matrices of <span><math><mi>G</mi></math></span>, Aouchiche and Hensen (2013) developed the idea of distance (signless) Laplacian matrix, which has attracted the interest among numerous spectral graph theory researchers in the field of algebraic graph theory. The spectral investigation of <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> resulted in numerous articles. In this paper, we present a review of research on the distance signless Laplacian of connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 41-138"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniqueness of maximum scores in countable-outcome round-robin tournaments 可计数结果循环赛中最大分数的唯一性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.050
Gideon Amir , Yaakov Malinovsky
In this note, we extend a recent result on the uniqueness of the maximum score in a classical round-robin tournament to general round-robin tournament models with equally strong players, where the scores take values in [0,1].
在本文中,我们将最近关于经典循环赛中最大分数的唯一性的结果扩展到具有同等实力的球员的一般循环赛模型,其中分数的值为[0,1]。
{"title":"Uniqueness of maximum scores in countable-outcome round-robin tournaments","authors":"Gideon Amir ,&nbsp;Yaakov Malinovsky","doi":"10.1016/j.dam.2025.12.050","DOIUrl":"10.1016/j.dam.2025.12.050","url":null,"abstract":"<div><div>In this note, we extend a recent result on the uniqueness of the maximum score in a classical round-robin tournament to general round-robin tournament models with equally strong players, where the scores take values in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>]</mo></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 16-22"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some results on minimum saturated graphs 关于最小饱和图的一些结果
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.040
Chenke Zhang , Qing Cui , Jinze Hu , Erfei Yue , Shengjin Ji
Let G be a graph and F be a family of graphs. We say a graph G is F-saturated if G does not contain any member in F and for any eE(G¯), G+e creates a copy of some member in F. The saturation number of F is the minimum number of edges of an F-saturated graphs of n vertices, denoted by sat(n,F). If F={F}, then we write it as sat(n,F) for short. In this paper, we determine the exact value of sat(n,{K3,Pk}), and as its application, we obtain two bounds on sat(n,K3Pk) for k10 and sufficiently large n. Furthermore, sat(n,K1F) is determined, where F is a linear forest without isolated vertices.
设G是一个图,F是一个图族。我们说一个图G是F饱和的,如果G不包含F中的任何元素,并且对于任何e∈e (G¯),G+e创建了F中某个元素的副本。F的饱和数是包含n个顶点的F饱和图的最小边数,用sat(n,F)表示。如果F={F},那么我们把它简称为sat(n,F)本文确定了sat(n,{K3,Pk})的精确值,并作为它的应用,得到了k≥10且n足够大时sat(n,K3∪Pk)上的两个界。进而确定了sat(n,K1∨F),其中F是一个没有孤立顶点的线性森林。
{"title":"Some results on minimum saturated graphs","authors":"Chenke Zhang ,&nbsp;Qing Cui ,&nbsp;Jinze Hu ,&nbsp;Erfei Yue ,&nbsp;Shengjin Ji","doi":"10.1016/j.dam.2025.12.040","DOIUrl":"10.1016/j.dam.2025.12.040","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mi>F</mi></math></span> be a family of graphs. We say a graph <span><math><mi>G</mi></math></span> is <span><math><mi>F</mi></math></span>-saturated if <span><math><mi>G</mi></math></span> does not contain any member in <span><math><mi>F</mi></math></span> and for any <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>G</mi><mo>+</mo><mi>e</mi></mrow></math></span> creates a copy of some member in <span><math><mi>F</mi></math></span>. The saturation number of <span><math><mi>F</mi></math></span> is the minimum number of edges of an <span><math><mi>F</mi></math></span>-saturated graphs of <span><math><mi>n</mi></math></span> vertices, denoted by <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. If <span><math><mrow><mi>F</mi><mo>=</mo><mrow><mo>{</mo><mi>F</mi><mo>}</mo></mrow></mrow></math></span>, then we write it as <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> for short. In this paper, we determine the exact value of <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>, and as its application, we obtain two bounds on <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>10</mn></mrow></math></span> and sufficiently large <span><math><mi>n</mi></math></span>. Furthermore, <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is determined, where <span><math><mi>F</mi></math></span> is a linear forest without isolated vertices.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 23-33"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The number of odd spanning trees in the complete graphs 完全图中奇数生成树的个数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-29 DOI: 10.1016/j.dam.2025.12.043
Yong-De Feng, Yawen Chen, Baoyindureng Wu
An odd graph is a graph G for which every vertex vV(G) satisfies dG(v)1(mod2). An odd spanning tree T of G is a spanning tree such that dT(v)1(mod2) for all vV(T). It is known that for any complete graph Kn of even order has an odd spanning tree. In this paper, we establish the exact number of labeled odd spanning trees in Kn. By employing the classical Prüfer sequence and constructing the corresponding generating function, we prove that the number of labeled odd spanning trees in Kn is given by 12nk=0nnk(2kn)n2  (where n is even).
奇图是每个顶点v∈v (G)满足dG(v)≡1(mod2)的图G。奇生成树T(G)是对所有v∈v (T) dT(v)≡1(mod2)的生成树。已知对于任何偶阶完全图Kn都有一棵奇生成树。在本文中,我们建立了Kn中标记奇生成树的确切数目。利用经典的pr fer序列,构造相应的生成函数,证明了在Kn范围内标记奇生成树的个数为12n∑k=0nnk(2k−n)n−2(其中n为偶数)。
{"title":"The number of odd spanning trees in the complete graphs","authors":"Yong-De Feng,&nbsp;Yawen Chen,&nbsp;Baoyindureng Wu","doi":"10.1016/j.dam.2025.12.043","DOIUrl":"10.1016/j.dam.2025.12.043","url":null,"abstract":"<div><div>An odd graph is a graph <span><math><mi>G</mi></math></span> for which every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> satisfies <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. An odd spanning tree <span><math><mi>T</mi></math></span> of <span><math><mi>G</mi></math></span> is a spanning tree such that <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>T</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>2</mn><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. It is known that for any complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of even order has an odd spanning tree. In this paper, we establish the exact number of labeled odd spanning trees in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By employing the classical Prüfer sequence and constructing the corresponding generating function, we prove that the number of labeled odd spanning trees in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is given by <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced><msup><mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>\u0000 <!--> <!-->(where <span><math><mi>n</mi></math></span> is even).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 295-299"},"PeriodicalIF":1.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145885019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Exploring graphs with distinct M-eigenvalues: Product operation, Wronskian vertices, and controllability” [Discrete Appl. Math. 373 (2025) 125–136] “探索具有不同m特征值的图:乘积运算,朗斯基顶点和可控性”的勘误表[离散应用]。数学。373 (2025)125-136]
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-26 DOI: 10.1016/j.dam.2025.12.008
Haiying Shan, Xiaoqi Liu
{"title":"Corrigendum to “Exploring graphs with distinct M-eigenvalues: Product operation, Wronskian vertices, and controllability” [Discrete Appl. Math. 373 (2025) 125–136]","authors":"Haiying Shan,&nbsp;Xiaoqi Liu","doi":"10.1016/j.dam.2025.12.008","DOIUrl":"10.1016/j.dam.2025.12.008","url":null,"abstract":"","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 398-399"},"PeriodicalIF":1.0,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145976200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationships between minimum rank problem parameters for cobipartite graphs 二部图最小秩问题参数之间的关系
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-26 DOI: 10.1016/j.dam.2025.12.022
Louis Deaett , Derek Young
For a simple graph, the minimum rank problem is to determine the smallest rank among the symmetric matrices whose off-diagonal nonzero entries occur in positions corresponding to the edges of the graph. Bounds on this minimum rank (and on an equivalent value, the maximum nullity) are given by various graph parameters, most notably the zero forcing number and its variants. For a matrix, replacing each nonzero entry with the symbol gives its zero-nonzero pattern. The associated minimum rank problem is to determine, given only this pattern, the smallest possible rank of the matrix. The most fundamental lower bound on this minimum rank is the triangle number of the pattern. A cobipartite graph is the complement of a bipartite graph; its vertices can be partitioned into two cliques. Such a graph corresponds to a zero-nonzero pattern in a natural way. Over an infinite field, the maximum nullity of the graph and the minimum rank of the pattern obey a simple relationship. We show that the zero forcing number of the graph and the triangle number of the pattern follow this same relationship. This has implications for the relationship between the two minimum rank problems. We also explore how, for cobipartite graphs, variants of the zero forcing number and other parameters important to the minimum rank problem are related, as well as how, for graphs in general, these parameters can be interpreted in terms of the zero-nonzero patterns of the symmetric matrices associated with the graph.
对于一个简单图,最小秩问题是确定非对角线非零条目出现在图边对应位置的对称矩阵中的最小秩。这个最小秩的边界(以及等价的最大值)由各种图参数给出,最明显的是零强迫数及其变体。对于一个矩阵,用符号*替换每一个非零项,给出它的零-非零模式。相关的最小秩问题是,仅在给定这种模式的情况下,确定矩阵的最小可能秩。这个最小秩的最基本的下界是图案的三角形数。协部图是二部图的补;它的顶点可以划分为两个团。这样的图自然地对应于零-非零模式。在无限域上,图的最大零值和模式的最小秩服从一个简单的关系。我们证明了图的零强迫数和模式的三角数遵循相同的关系。这暗示了两个最小秩问题之间的关系。我们还探讨了对于协部图,零强迫数的变体和其他对最小秩问题很重要的参数是如何相关的,以及对于一般图,这些参数如何可以用与图相关的对称矩阵的零-非零模式来解释。
{"title":"Relationships between minimum rank problem parameters for cobipartite graphs","authors":"Louis Deaett ,&nbsp;Derek Young","doi":"10.1016/j.dam.2025.12.022","DOIUrl":"10.1016/j.dam.2025.12.022","url":null,"abstract":"<div><div>For a simple graph, the minimum rank problem is to determine the smallest rank among the symmetric matrices whose off-diagonal nonzero entries occur in positions corresponding to the edges of the graph. Bounds on this minimum rank (and on an equivalent value, the maximum nullity) are given by various graph parameters, most notably the zero forcing number and its variants. For a matrix, replacing each nonzero entry with the symbol <span><math><mo>∗</mo></math></span> gives its zero-nonzero pattern. The associated minimum rank problem is to determine, given only this pattern, the smallest possible rank of the matrix. The most fundamental lower bound on this minimum rank is the triangle number of the pattern. A cobipartite graph is the complement of a bipartite graph; its vertices can be partitioned into two cliques. Such a graph corresponds to a zero-nonzero pattern in a natural way. Over an infinite field, the maximum nullity of the graph and the minimum rank of the pattern obey a simple relationship. We show that the zero forcing number of the graph and the triangle number of the pattern follow this same relationship. This has implications for the relationship between the two minimum rank problems. We also explore how, for cobipartite graphs, variants of the zero forcing number and other parameters important to the minimum rank problem are related, as well as how, for graphs in general, these parameters can be interpreted in terms of the zero-nonzero patterns of the symmetric matrices associated with the graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 378-397"},"PeriodicalIF":1.0,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New perspectives on semiring applications to dynamic programming 动态规划半环应用的新视角
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-24 DOI: 10.1016/j.dam.2025.12.035
Ambroise Baril , Miguel Couceiro , Victor Lagerkvist
Semiring algebras have been shown to provide a suitable language to formalize many noteworthy combinatorial problems. For instance, the Shortest-Path problem can be seen as a special case of the Algebraic-Path problem when applied to the tropical semiring. The application of semirings typically makes it possible to solve extended problems without increasing the computational complexity. In this article we further exploit the idea of using semiring algebras to address and tackle several extensions of classical computational problems by dynamic programming.
We consider a general approach which allows us to define a semiring extension of any problem with a reasonable notion of a certificate (e.g., an NP problem). This allows us to consider cost variants of these combinatorial problems, as well as their counting extensions where the goal is to determine how many solutions a given problem admits. The approach makes no particular assumptions (such as idempotence) on the semiring structure. We also propose a new associative algebraic operation on semirings, called Δ-product, which enables our dynamic programming algorithms to count the number of solutions of minimal costs. We illustrate the advantages of our framework on two well-known but computationally very different NP-hard problems, namely, Connected-Dominating-Set problems and finite-domain Constraint Satisfaction Problems (Csps). In particular, we prove fixed parameter tractability (FPT) with respect to clique-width and tree-width of the input. This also allows us to count solutions of minimal cost, which is an overlooked problem in the literature.
半环代数已被证明提供了一种合适的语言来形式化许多值得注意的组合问题。例如,当应用于热带半环时,最短路径问题可以看作代数路径问题的一种特殊情况。半环的应用通常可以在不增加计算复杂性的情况下解决扩展问题。在本文中,我们进一步利用半环代数的思想,通过动态规划来解决和处理经典计算问题的几个扩展。我们考虑一种通用的方法,它允许我们用一个合理的证书概念(例如,一个NP问题)来定义任何问题的半环扩展。这允许我们考虑这些组合问题的成本变量,以及它们的计数扩展,其目标是确定给定问题允许多少个解决方案。这种方法对半环结构没有特别的假设(如幂等)。我们还提出了一种新的半环上的关联代数运算Δ-product,它使我们的动态规划算法能够计算最小代价的解的数量。我们举例说明了我们的框架在两个众所周知但计算上非常不同的np困难问题上的优势,即连通支配集问题和有限域约束满足问题(Csps)。特别地,我们证明了关于输入的团宽度和树宽度的固定参数可跟踪性(FPT)。这也允许我们计算最小成本的解决方案,这是一个在文献中被忽视的问题。
{"title":"New perspectives on semiring applications to dynamic programming","authors":"Ambroise Baril ,&nbsp;Miguel Couceiro ,&nbsp;Victor Lagerkvist","doi":"10.1016/j.dam.2025.12.035","DOIUrl":"10.1016/j.dam.2025.12.035","url":null,"abstract":"<div><div>Semiring algebras have been shown to provide a suitable language to formalize many noteworthy combinatorial problems. For instance, the <span>Shortest-Path</span> problem can be seen as a special case of the <span>Algebraic-Path</span> problem when applied to the tropical semiring. The application of semirings typically makes it possible to solve extended problems without increasing the computational complexity. In this article we further exploit the idea of using semiring algebras to address and tackle several extensions of classical computational problems by dynamic programming.</div><div>We consider a general approach which allows us to define a semiring extension of <em>any</em> problem with a reasonable notion of a certificate (e.g., an <span>NP</span> problem). This allows us to consider cost variants of these combinatorial problems, as well as their counting extensions where the goal is to determine how many solutions a given problem admits. The approach makes no particular assumptions (such as idempotence) on the semiring structure. We also propose a new associative algebraic operation on semirings, called <span><math><mi>Δ</mi></math></span>-product, which enables our dynamic programming algorithms to count the number of solutions of minimal costs. We illustrate the advantages of our framework on two well-known but computationally very different <span>NP</span>-hard problems, namely, <span>Connected-Dominating-Set</span> problems and finite-domain <span>Constraint Satisfaction Problems</span> (<span>Csp</span>s). In particular, we prove fixed parameter tractability (<span>FPT</span>) with respect to clique-width and tree-width of the input. This also allows us to count solutions of minimal cost, which is an overlooked problem in the literature.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 243-279"},"PeriodicalIF":1.0,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145842076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the relation between Maximinh stability and Generalized Metarationality in bilateral conflicts 双边冲突中最大稳定与广义元国家性的关系
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-24 DOI: 10.1016/j.dam.2025.12.041
Alecio Soares Silva , Giannini Italino Alves Vieira , Leandro Chaves Rêgo
In this work, assuming that preferences are asymmetric, complete and transitive, we aim to prove the equivalence, in bilateral conflicts, between the concepts of Maximinh stability and Generalized Metarationality within the graph model for conflict resolution (GMCR). This result is surprising, as these concepts are apparently distinct, due to the movements of the opponent of the focal DM, in the Generalized Metarationality, be limited by the use of a policy. To achieve our goal, we define a Maximinh tree to build maximin policies from the choices made by the focal DM opponent in this tree. We show that two kinds of maximin policies are necessary: one for conflict analysis with odd horizon and another for even horizon conflict analysis. This result, in addition to improving our understanding of these concepts, facilitates the determination of states that satisfy generalized metarationality, since maximin states can be determined by means of a backward induction procedure.
在这项工作中,假设偏好是不对称的、完全的和可传递的,我们的目标是证明在冲突解决图模型(GMCR)中,在双边冲突中,最大稳定性和广义元性概念之间的等价性。这个结果是令人惊讶的,因为这些概念显然是不同的,因为在广义元国家性中,焦点DM的对手的运动受到策略的限制。为了实现我们的目标,我们定义了一个Maximinh树,从该树中的焦点DM对手所做的选择中构建最大化策略。我们证明了两种极大值策略是必要的:一种是奇视界冲突分析的极大值策略,另一种是偶视界冲突分析的极大值策略。这个结果,除了提高我们对这些概念的理解之外,还有助于确定满足广义元国家性的状态,因为最大状态可以通过反向归纳法确定。
{"title":"On the relation between Maximinh stability and Generalized Metarationality in bilateral conflicts","authors":"Alecio Soares Silva ,&nbsp;Giannini Italino Alves Vieira ,&nbsp;Leandro Chaves Rêgo","doi":"10.1016/j.dam.2025.12.041","DOIUrl":"10.1016/j.dam.2025.12.041","url":null,"abstract":"<div><div>In this work, assuming that preferences are asymmetric, complete and transitive, we aim to prove the equivalence, in bilateral conflicts, between the concepts of Maximin<span><math><msub><mrow></mrow><mrow><mi>h</mi></mrow></msub></math></span> stability and Generalized Metarationality within the graph model for conflict resolution (GMCR). This result is surprising, as these concepts are apparently distinct, due to the movements of the opponent of the focal DM, in the Generalized Metarationality, be limited by the use of a policy. To achieve our goal, we define a Maximin<span><math><msub><mrow></mrow><mrow><mi>h</mi></mrow></msub></math></span> tree to build maximin policies from the choices made by the focal DM opponent in this tree. We show that two kinds of maximin policies are necessary: one for conflict analysis with odd horizon and another for even horizon conflict analysis. This result, in addition to improving our understanding of these concepts, facilitates the determination of states that satisfy generalized metarationality, since maximin states can be determined by means of a backward induction procedure.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 280-294"},"PeriodicalIF":1.0,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145842077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An approximation algorithm for zero forcing 零强迫的近似算法
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-23 DOI: 10.1016/j.dam.2025.12.013
Ben Cameron , Jeannette Janssen , Rogers Mathew , Zhiyuan Zhang
We give an algorithm that finds a zero forcing set which approximates the optimal size by a factor of pw(G)+1, where pw(G) is the pathwidth of G. The algorithm requires a path decomposition of G, and given this it runs in O(nm) time, where n and m are the order and size of the graph, respectively. This is the first zero forcing algorithm with a guarantee on both the approximation ratio and on the run-time. As a corollary, we obtain a new upper bound on the zero forcing number in terms of the fort number and the pathwidth. The algorithm is based on a correspondence between zero forcing sets and forcing arc sets. This correspondence leads to a new bound on the zero forcing number in terms of vertex cuts, and to new, short proofs for known bounds on the zero forcing number.
我们给出了一种算法,该算法通过因子pw(G)+1找到一个接近最优大小的零强迫集,其中pw(G)是G的路径宽度。该算法需要对G进行路径分解,并且给定此算法,它在O(nm)时间内运行,其中n和m分别是图的阶数和大小。这是第一个对近似比和运行时间都有保证的零强制算法。作为推论,我们得到了由堡垒数和路径宽度组成的零强迫数的一个新的上界。该算法基于零强迫集和强迫弧集之间的对应关系。这种对应关系导致了顶点切割的零强迫数的新界限,以及零强迫数已知界限的新的简短证明。
{"title":"An approximation algorithm for zero forcing","authors":"Ben Cameron ,&nbsp;Jeannette Janssen ,&nbsp;Rogers Mathew ,&nbsp;Zhiyuan Zhang","doi":"10.1016/j.dam.2025.12.013","DOIUrl":"10.1016/j.dam.2025.12.013","url":null,"abstract":"<div><div>We give an algorithm that finds a zero forcing set which approximates the optimal size by a factor of <span><math><mrow><mi>pw</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, where <span><math><mrow><mi>pw</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the pathwidth of <span><math><mi>G</mi></math></span>. The algorithm requires a path decomposition of <span><math><mi>G</mi></math></span>, and given this it runs in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mi>m</mi><mo>)</mo></mrow></mrow></math></span> time, where <span><math><mi>n</mi></math></span> and <span><math><mi>m</mi></math></span> are the order and size of the graph, respectively. This is the first zero forcing algorithm with a guarantee on both the approximation ratio and on the run-time. As a corollary, we obtain a new upper bound on the zero forcing number in terms of the fort number and the pathwidth. The algorithm is based on a correspondence between zero forcing sets and forcing arc sets. This correspondence leads to a new bound on the zero forcing number in terms of vertex cuts, and to new, short proofs for known bounds on the zero forcing number.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 227-242"},"PeriodicalIF":1.0,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145842075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1