Pub Date : 2025-12-12DOI: 10.1016/j.dam.2025.12.021
Ioan Tomescu
The bond incident degree (BID) index of a connected graph with edge-weight function is defined as where is a symmetric real function with and and is the degree of vertex in . In this paper, we find extremal trees and unicyclic graphs of order with given maximum degree having maximum bond incident degree index if edge-weight symmetric function satisfies five conditions. These conditions are fulfilled by sum-connectivity index, general sum-connectivity index, modified Sombor index and harmonic index.
{"title":"Maximum bond incident degree indices for trees and unicyclic graphs with given maximum degree","authors":"Ioan Tomescu","doi":"10.1016/j.dam.2025.12.021","DOIUrl":"10.1016/j.dam.2025.12.021","url":null,"abstract":"<div><div>The bond incident degree (BID) index <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a connected graph <span><math><mi>G</mi></math></span> with edge-weight function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> is defined as <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></munder><mi>f</mi><mrow><mo>(</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> is a symmetric real function with <span><math><mrow><mi>x</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is the degree of vertex <span><math><mi>u</mi></math></span> in <span><math><mi>G</mi></math></span>. In this paper, we find extremal trees and unicyclic graphs of order <span><math><mi>n</mi></math></span> with given maximum degree having maximum bond incident degree index <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> if edge-weight symmetric function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> satisfies five conditions. These conditions are fulfilled by sum-connectivity index, general sum-connectivity index, modified Sombor index and harmonic index.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 272-276"},"PeriodicalIF":1.0,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.1016/j.dam.2025.12.009
Peter Damaschke , Karinne Ramirez-Amaro
Suppose that we are given a finite set of Boolean attributes and a set of actions defined on them. Every action has the effect of changing some attribute values and may also depend on further attribute values which are, however, not changed. The subset of attributes affected by an action is known as precondition. The goal is to find some sequence of executable actions that transform a given initial state into a desired target state. This type of problem appears, e.g., in robot motion planning. In this paper, we study cases of the problem where the precondition of every action only depends on a conjunction of terms with at most two attributes. We classify a number of cases as polynomial-time solvable or NP-complete. They amount to extended versions of some classic graph problems, among them topological orderings and perfect matchings. This appears to be the first systematic study of preconditions, despite the rich literature on many aspects of path finding in finite state spaces. A complete dichotomy of polynomial-time and NP-complete cases remains an open question.
{"title":"Complexity of action path finding with small precondition sets","authors":"Peter Damaschke , Karinne Ramirez-Amaro","doi":"10.1016/j.dam.2025.12.009","DOIUrl":"10.1016/j.dam.2025.12.009","url":null,"abstract":"<div><div>Suppose that we are given a finite set of Boolean attributes and a set of actions defined on them. Every action has the effect of changing some attribute values and may also depend on further attribute values which are, however, not changed. The subset of attributes affected by an action is known as precondition. The goal is to find some sequence of executable actions that transform a given initial state into a desired target state. This type of problem appears, e.g., in robot motion planning. In this paper, we study cases of the problem where the precondition of every action only depends on a conjunction of terms with at most two attributes. We classify a number of cases as polynomial-time solvable or NP-complete. They amount to extended versions of some classic graph problems, among them topological orderings and perfect matchings. This appears to be the first systematic study of preconditions, despite the rich literature on many aspects of path finding in finite state spaces. A complete dichotomy of polynomial-time and NP-complete cases remains an open question.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 339-348"},"PeriodicalIF":1.0,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145790231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.1016/j.dam.2025.12.014
Chunli Deng , Junchen Dong , Haifeng Li
For -uniform hypergraphs, this paper establishes several new bounds on the spectral radii of the adjacency and signless Laplacian tensors. These bounds are expressed by vertex degrees and average 2-degrees of hypergraphs. Furthermore, the bounds are compared with the known results, and the example shows that our bounds are better in some cases. As applications, the spectral radii of the generalized power hypergraphs of stars and cycles are presented, respectively.
{"title":"Several bounds on the spectral radius of uniform hypergraphs","authors":"Chunli Deng , Junchen Dong , Haifeng Li","doi":"10.1016/j.dam.2025.12.014","DOIUrl":"10.1016/j.dam.2025.12.014","url":null,"abstract":"<div><div>For <span><math><mi>k</mi></math></span>-uniform hypergraphs, this paper establishes several new bounds on the spectral radii of the adjacency and signless Laplacian tensors. These bounds are expressed by vertex degrees and average 2-degrees of hypergraphs. Furthermore, the bounds are compared with the known results, and the example shows that our bounds are better in some cases. As applications, the spectral radii of the generalized power hypergraphs of stars and cycles are presented, respectively.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 317-326"},"PeriodicalIF":1.0,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.1016/j.dam.2025.12.019
Tingyan Ma , Edwin R. van Dam , Ligong Wang
A graph is called -factor-critical if has a perfect matching for every with . A connected graph is called -connected if it has more than vertices and remains connected whenever fewer than vertices are removed. We give a condition on the number of edges and a condition on the spectral radius for -factor-criticality in -connected graphs.
{"title":"Spectral condition for k-factor-criticality in t-connected graphs","authors":"Tingyan Ma , Edwin R. van Dam , Ligong Wang","doi":"10.1016/j.dam.2025.12.019","DOIUrl":"10.1016/j.dam.2025.12.019","url":null,"abstract":"<div><div>A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>k</mi></math></span>-factor-critical if <span><math><mrow><mi>G</mi><mo>−</mo><mi>S</mi></mrow></math></span> has a perfect matching for every <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span>. A connected graph <span><math><mi>G</mi></math></span> is called <span><math><mi>t</mi></math></span>-connected if it has more than <span><math><mi>t</mi></math></span> vertices and remains connected whenever fewer than <span><math><mi>t</mi></math></span> vertices are removed. We give a condition on the number of edges and a condition on the spectral radius for <span><math><mi>k</mi></math></span>-factor-criticality in <span><math><mi>t</mi></math></span>-connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 310-316"},"PeriodicalIF":1.0,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-12DOI: 10.1016/j.dam.2025.11.044
Sourav Chakraborty , Arijit Ghosh , Soumi Nandi
We prove a colorful extension of a Helly-type theorem by Danzer and Grünbaum (1982) concerning two-piercing families of axis-parallel boxes in . We also show that our result is tight by constructing extremal families that achieve the bound. Related work includes a graph-theoretic proof of the original theorem by Pendavingh et al. (2008), and a two-piercing result for lower-dimensional boxes by Baños and Oliveros (2018).
{"title":"Colorful two-piercing theorem for boxes","authors":"Sourav Chakraborty , Arijit Ghosh , Soumi Nandi","doi":"10.1016/j.dam.2025.11.044","DOIUrl":"10.1016/j.dam.2025.11.044","url":null,"abstract":"<div><div>We prove a colorful extension of a Helly-type theorem by Danzer and Grünbaum (1982) concerning two-piercing families of axis-parallel boxes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We also show that our result is tight by constructing extremal families that achieve the bound. Related work includes a graph-theoretic proof of the original theorem by Pendavingh et al. (2008), and a two-piercing result for lower-dimensional boxes by Baños and Oliveros (2018).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 301-309"},"PeriodicalIF":1.0,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-11DOI: 10.1016/j.dam.2025.12.012
Xiaoyu Chen , Marc Goerigk , Michael Poss
We explore a multiple-stage variant of the min–max robust selection problem with budgeted uncertainty that includes queries. First, one queries a subset of items and gets the exact values of their uncertain parameters. Given this information, one can then choose the set of items to be selected, still facing uncertainty on the unobserved parameters. In this paper, we study two specific variants of this problem. The first variant considers objective uncertainty and focuses on selecting a single item. The second variant considers constraint uncertainty instead, which means that some selected items may fail. We show that both problems are NP-hard in general. We also propose polynomial-time algorithms for special cases where the sets of items that can be simultaneously queried are defined by a cardinality or a knapsack constraint. For the problem with constraint uncertainty, we also show how the objective function can be expressed as a linear program, leading to a mixed-integer linear programming reformulation for the general case. We illustrate the performance of this formulation using numerical experiments.
{"title":"The robust selection problem with information discovery","authors":"Xiaoyu Chen , Marc Goerigk , Michael Poss","doi":"10.1016/j.dam.2025.12.012","DOIUrl":"10.1016/j.dam.2025.12.012","url":null,"abstract":"<div><div>We explore a multiple-stage variant of the min–max robust selection problem with budgeted uncertainty that includes queries. First, one queries a subset of items and gets the exact values of their uncertain parameters. Given this information, one can then choose the set of items to be selected, still facing uncertainty on the unobserved parameters. In this paper, we study two specific variants of this problem. The first variant considers objective uncertainty and focuses on selecting a single item. The second variant considers constraint uncertainty instead, which means that some selected items may fail. We show that both problems are NP-hard in general. We also propose polynomial-time algorithms for special cases where the sets of items that can be simultaneously queried are defined by a cardinality or a knapsack constraint. For the problem with constraint uncertainty, we also show how the objective function can be expressed as a linear program, leading to a mixed-integer linear programming reformulation for the general case. We illustrate the performance of this formulation using numerical experiments.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 277-292"},"PeriodicalIF":1.0,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-10DOI: 10.1016/j.dam.2025.12.002
Yanhong Chen , Anshui Li , Biao Wu , Huajun Zhang
Two families and are called cross--intersecting if for all , . Let , and be positive integers such that and . In this paper, we will determine the upper bound of for cross-2-intersecting families and . The structures of the extremal families attaining the upper bound are also characterized. The similar result obtained by Tokushige can be considered as a special case of ours when , but under a more strong condition . Moreover, combined with the results obtained in this paper, the complicated extremal structures attaining the upper bound for nontrivial cases can be relatively easy to reach with similar techniques.
{"title":"On cross-2-intersecting families","authors":"Yanhong Chen , Anshui Li , Biao Wu , Huajun Zhang","doi":"10.1016/j.dam.2025.12.002","DOIUrl":"10.1016/j.dam.2025.12.002","url":null,"abstract":"<div><div>Two families <span><math><mrow><mi>A</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>ℓ</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> are called cross-<span><math><mi>t</mi></math></span>-intersecting if <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>|</mo></mrow><mo>≥</mo><mi>t</mi></mrow></math></span> for all <span><math><mrow><mi>A</mi><mo>∈</mo><mi>A</mi></mrow></math></span>, <span><math><mrow><mi>B</mi><mo>∈</mo><mi>B</mi></mrow></math></span>. Let <span><math><mi>n</mi></math></span>, <span><math><mi>k</mi></math></span> and <span><math><mi>ℓ</mi></math></span> be positive integers such that <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn><mo>.</mo><mn>38</mn><mi>ℓ</mi></mrow></math></span> and <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. In this paper, we will determine the upper bound of <span><math><mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow></mrow></math></span> for cross-2-intersecting families <span><math><mrow><mi>A</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><mi>ℓ</mi></mrow></mfrac></mrow></mfenced></mrow></math></span>. The structures of the extremal families attaining the upper bound are also characterized. The similar result obtained by Tokushige can be considered as a special case of ours when <span><math><mrow><mi>k</mi><mo>=</mo><mi>ℓ</mi></mrow></math></span>, but under a more strong condition <span><math><mrow><mi>n</mi><mo>></mo><mn>3</mn><mo>.</mo><mn>42</mn><mi>k</mi></mrow></math></span>. Moreover, combined with the results obtained in this paper, the complicated extremal structures attaining the upper bound for nontrivial cases can be relatively easy to reach with similar techniques.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 259-271"},"PeriodicalIF":1.0,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-10DOI: 10.1016/j.dam.2025.12.004
Zhimin Wang , Guiying Yan , Xia Zhang
Shannon’s theorem states that every graph has chromatic index no more than . In 2000, Dvořák generalized Shannon’s result to hypergraphs without multiple 2-edges, and conjectured every hypergraph has , where . In this paper, we show that the conjecture holds for hypergraphs with no intersecting multiple 2-edges, which extends the result of Dvořák.
{"title":"The chromatic index of hypergraphs with no intersecting multiple 2-edges","authors":"Zhimin Wang , Guiying Yan , Xia Zhang","doi":"10.1016/j.dam.2025.12.004","DOIUrl":"10.1016/j.dam.2025.12.004","url":null,"abstract":"<div><div>Shannon’s theorem states that every graph <span><math><mi>G</mi></math></span> has chromatic index no more than <span><math><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>⌋</mo></mrow></math></span>. In 2000, Dvořák generalized Shannon’s result to hypergraphs without multiple 2-edges, and conjectured every hypergraph <span><math><mi>H</mi></math></span> has <span><math><mrow><msup><mrow><mi>χ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>Δ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>⌋</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mo>max</mo><mrow><mo>{</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>∋</mo><mi>v</mi></mrow></msub><mrow><mo>(</mo><mrow><mo>|</mo><mi>e</mi><mo>|</mo></mrow><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>:</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. In this paper, we show that the conjecture holds for hypergraphs with no intersecting multiple 2-edges, which extends the result of Dvořák.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 321-338"},"PeriodicalIF":1.0,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145790232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-10DOI: 10.1016/j.dam.2025.12.005
Patricia Zu’rob, Abdelrahim S. Mousa
We introduce a welfare–Nash game model for a group of homogeneous players. We characterize player’s behavior based on well-defined quasi-linear utility and establish a unified analytical structure that jointly characterizes welfare optimal strategies and Nash equilibrium strategies. We derive two coalition thresholds, two Nash thresholds, and a general form of welfare thresholds. We give full characterization for the order of all coalition, Nash and welfare thresholds based on the values of the influence parameter of externality. We identify the precise conditions under which players’ behaviors transition between cooperative (welfare-oriented) and selfish (Nash-oriented) regimes. This shows the existence of single, double and degenerate bifurcations between coalition and Nash thresholds. We determine all possible strategies that form optimal welfare strategies or Nash Equilibrium strategies, or neither one nor the other. Finally, we show two phase dynamics in the players’ decision process, and we show how small perturbation on the influence parameter would imply a different dynamical phase to adapt an alternative decision.
{"title":"Optimal welfare strategies vs Nash Equilibrium strategies in a game with homogeneous players","authors":"Patricia Zu’rob, Abdelrahim S. Mousa","doi":"10.1016/j.dam.2025.12.005","DOIUrl":"10.1016/j.dam.2025.12.005","url":null,"abstract":"<div><div>We introduce a welfare–Nash game model for a group of homogeneous players. We characterize player’s behavior based on well-defined quasi-linear utility and establish a unified analytical structure that jointly characterizes welfare optimal strategies and Nash equilibrium strategies. We derive two coalition thresholds, two Nash thresholds, and a general form of welfare thresholds. We give full characterization for the order of all coalition, Nash and welfare thresholds based on the values of the influence parameter of externality. We identify the precise conditions under which players’ behaviors transition between cooperative (welfare-oriented) and selfish (Nash-oriented) regimes. This shows the existence of single, double and degenerate bifurcations between coalition and Nash thresholds. We determine all possible strategies that form optimal welfare strategies or Nash Equilibrium strategies, or neither one nor the other. Finally, we show two phase dynamics in the players’ decision process, and we show how small perturbation on the influence parameter would imply a different dynamical phase to adapt an alternative decision.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 245-258"},"PeriodicalIF":1.0,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-08DOI: 10.1016/j.dam.2025.12.006
Aofei Hu , Yan Li , Yusheng Li , Ye Wang
<div><div>Ramsey theory has significant applications in interconnection networks, such as the identification of structured subgraphs and the analysis of network connectivity. For graphs <span><math><mi>F</mi></math></span>, <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, let <span><math><mrow><mi>F</mi><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> signify that any red/blue edge coloring of <span><math><mi>F</mi></math></span> contains a red <span><math><mi>G</mi></math></span> or a blue <span><math><mi>H</mi></math></span>. The Ramsey number <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest <span><math><mi>r</mi></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, and the star-critical Ramsey number <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest <span><math><mi>n</mi></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⊔</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>r</mi><mo>=</mo><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⊔</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub></mrow></math></span> is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and an additional vertex <span><math><mi>v</mi></math></span> by joining <span><math><mi>v</mi></math></span> to <span><math><mi>n</mi></math></span> vertices of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mrow><mi>n</mi><mo>≤</mo><mi>r</mi><mo>−</mo><mn>1</mn></mrow></math></span>. In this note, we show that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mi>m</mi></math></span> is odd and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>25</mn><mi>m</mi></mrow></math></span>, and <span><math><mrow><msub><mrow><mi
{"title":"Star-critical Ramsey numbers of trees versus wheels","authors":"Aofei Hu , Yan Li , Yusheng Li , Ye Wang","doi":"10.1016/j.dam.2025.12.006","DOIUrl":"10.1016/j.dam.2025.12.006","url":null,"abstract":"<div><div>Ramsey theory has significant applications in interconnection networks, such as the identification of structured subgraphs and the analysis of network connectivity. For graphs <span><math><mi>F</mi></math></span>, <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, let <span><math><mrow><mi>F</mi><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> signify that any red/blue edge coloring of <span><math><mi>F</mi></math></span> contains a red <span><math><mi>G</mi></math></span> or a blue <span><math><mi>H</mi></math></span>. The Ramsey number <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest <span><math><mi>r</mi></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, and the star-critical Ramsey number <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest <span><math><mi>n</mi></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⊔</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>r</mi><mo>=</mo><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>⊔</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi></mrow></msub></mrow></math></span> is the graph obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and an additional vertex <span><math><mi>v</mi></math></span> by joining <span><math><mi>v</mi></math></span> to <span><math><mi>n</mi></math></span> vertices of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> for <span><math><mrow><mi>n</mi><mo>≤</mo><mi>r</mi><mo>−</mo><mn>1</mn></mrow></math></span>. In this note, we show that <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mi>m</mi></math></span> is odd and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>25</mn><mi>m</mi></mrow></math></span>, and <span><math><mrow><msub><mrow><mi","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 241-244"},"PeriodicalIF":1.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}