首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
Some new results on bar visibility of digraphs 关于条形图可见性的一些新结果
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/j.dam.2024.09.024
Yuanrui Feng , Jun Ge , Douglas B. West , Yan Yang
Visibility representation of digraphs was introduced by Axenovich et al. (2013) as a natural generalization of t-bar visibility representation of undirected graphs. A t-bar visibility representation of a digraph G assigns each vertex at most t horizontal bars in the plane so that there is an arc xy in the digraph if and only if some bar for x “sees” some bar for y above it along an unblocked vertical strip with positive width. The visibility number b(G) is the least t such that G has a t-bar visibility representation. In this paper, we solve several problems about b(G) posed by Axenovich et al. and prove that determining whether the bar visibility number of a digraph is 2 is NP-complete.
数图的可见性表示是由 Axenovich 等人(2013 年)提出的,是对无向图的 t 条可见性表示的自然概括。数图 G 的 t 条可见度表示法为每个顶点在平面上分配了最多 t 条水平条,因此当且仅当 x 的某个条沿着宽度为正的无阻挡垂直条 "看到 "其上方 y 的某个条时,数图中才有弧 xy。可见度数 b(G) 是 G 具有 t 条可见度表示的最小 t。在本文中,我们解决了阿克森诺维奇等人提出的几个关于 b(G) 的问题,并证明确定一个数图的条形可见度数是否为 2 是 NP-完全的。
{"title":"Some new results on bar visibility of digraphs","authors":"Yuanrui Feng ,&nbsp;Jun Ge ,&nbsp;Douglas B. West ,&nbsp;Yan Yang","doi":"10.1016/j.dam.2024.09.024","DOIUrl":"10.1016/j.dam.2024.09.024","url":null,"abstract":"<div><div>Visibility representation of digraphs was introduced by Axenovich et al. (2013) as a natural generalization of <span><math><mi>t</mi></math></span>-bar visibility representation of undirected graphs. A <span><math><mi>t</mi></math></span><em>-bar visibility representation</em> of a digraph <span><math><mi>G</mi></math></span> assigns each vertex at most <span><math><mi>t</mi></math></span> horizontal bars in the plane so that there is an arc <span><math><mrow><mi>x</mi><mi>y</mi></mrow></math></span> in the digraph if and only if some bar for <span><math><mi>x</mi></math></span> “sees” some bar for <span><math><mi>y</mi></math></span> above it along an unblocked vertical strip with positive width. The <em>visibility number</em> <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the least <span><math><mi>t</mi></math></span> such that <span><math><mi>G</mi></math></span> has a <span><math><mi>t</mi></math></span>-bar visibility representation. In this paper, we solve several problems about <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> posed by Axenovich et al. and prove that determining whether the bar visibility number of a digraph is 2 is NP-complete.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 342-352"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monochromatic k-connection of graphs 图形的单色 k 连接
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-10-01 DOI: 10.1016/j.dam.2024.09.025
Qingqiong Cai , Shinya Fujita , Henry Liu , Boram Park
An edge-coloured path is monochromatic if all of its edges have the same colour. For a k-connected graph G, the monochromatic k-connection number of G, denoted by mck(G), is the maximum number of colours in an edge-colouring of G such that, any two vertices are connected by k internally vertex-disjoint monochromatic paths. In this paper, we shall study the parameter mck(G). We obtain bounds for mck(G), for general graphs G. We also compute mck(G) exactly when k is small, and G is a graph on n vertices, with a spanning k-connected subgraph having the minimum possible number of edges, namely kn2. We prove a similar result when G is a bipartite graph.
如果一条边缘着色的路径的所有边缘颜色相同,那么这条路径就是单色的。对于 k 个连接图 G,G 的单色 k 连接数(用 mck(G) 表示)是指在 G 的边缘颜色中,任意两个顶点通过 k 个内部顶点相交的单色路径连接的最大颜色数。本文将研究 mck(G) 参数。对于一般图 G,我们得到了 mck(G) 的边界。当 k 很小时,我们也能精确计算 mck(G)。当 G 是 n 个顶点上的图时,有一个跨 k 连接的子图具有尽可能少的边数,即 ⌈kn2⌉。当 G 是双向图时,我们会证明类似的结果。
{"title":"Monochromatic k-connection of graphs","authors":"Qingqiong Cai ,&nbsp;Shinya Fujita ,&nbsp;Henry Liu ,&nbsp;Boram Park","doi":"10.1016/j.dam.2024.09.025","DOIUrl":"10.1016/j.dam.2024.09.025","url":null,"abstract":"<div><div>An edge-coloured path is <em>monochromatic</em> if all of its edges have the same colour. For a <span><math><mi>k</mi></math></span>-connected graph <span><math><mi>G</mi></math></span>, the <em>monochromatic</em> <span><math><mi>k</mi></math></span><em>-connection number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the maximum number of colours in an edge-colouring of <span><math><mi>G</mi></math></span> such that, any two vertices are connected by <span><math><mi>k</mi></math></span> internally vertex-disjoint monochromatic paths. In this paper, we shall study the parameter <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We obtain bounds for <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, for general graphs <span><math><mi>G</mi></math></span>. We also compute <span><math><mrow><mi>m</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> exactly when <span><math><mi>k</mi></math></span> is small, and <span><math><mi>G</mi></math></span> is a graph on <span><math><mi>n</mi></math></span> vertices, with a spanning <span><math><mi>k</mi></math></span>-connected subgraph having the minimum possible number of edges, namely <span><math><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow></math></span>. We prove a similar result when <span><math><mi>G</mi></math></span> is a bipartite graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 328-341"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notes on Boolean read-k and multilinear circuits 布尔读-k 和多线性电路注释
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-30 DOI: 10.1016/j.dam.2024.09.023
Stasys Jukna
A monotone Boolean (,) circuit computing a monotone Boolean function f is a read-k circuit if the polynomial produced (purely syntactically) by the arithmetic (+,×) version of the circuit has the property that for every prime implicant of f, the polynomial contains at least one monomial with the same set of variables, each appearing with degree k. Every monotone circuit is a read-k circuit for some k. We show that already read-1 (,) circuits are not weaker than monotone arithmetic constant-free (+,×) circuits computing multilinear polynomials, are not weaker than non-monotone multilinear (,,¬) circuits computing monotone Boolean functions, and have the same power as tropical (min,+) circuits solving 0/1 minimization problems. Finally, we show that read-2 (,) circuits can be exponentially smaller than read-1 (,) circuits.
如果一个计算单调布尔函数 f 的单调布尔 (∨,∧) 电路的算术 (+,×) 版本所产生的多项式(纯语法)具有这样的性质,即对于 f 的每一个素隐含式,该多项式包含至少一个具有相同变量集的单项式,每个单项式的阶数为⩽k,那么这个单调布尔 (∨,∧) 电路就是一个读-k 电路。我们证明已读-1 (∨,∧) 电路不弱于计算多线性多项式的单调无算术常数 (+,×) 电路,不弱于计算单调布尔函数的非单调多线性 (∨,∧,¬) 电路,并且与解决 0/1 最小化问题的热带 (min,+) 电路具有相同的能力。最后,我们证明读-2 (∨,∧) 电路比读-1 (∨,∧) 电路小得多。
{"title":"Notes on Boolean read-k and multilinear circuits","authors":"Stasys Jukna","doi":"10.1016/j.dam.2024.09.023","DOIUrl":"10.1016/j.dam.2024.09.023","url":null,"abstract":"<div><div>A monotone Boolean <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuit computing a monotone Boolean function <span><math><mi>f</mi></math></span> is a read-<span><math><mi>k</mi></math></span> circuit if the polynomial produced (purely syntactically) by the arithmetic <span><math><mrow><mo>(</mo><mo>+</mo><mo>,</mo><mo>×</mo><mo>)</mo></mrow></math></span> version of the circuit has the property that for every prime implicant of <span><math><mi>f</mi></math></span>, the polynomial contains at least one monomial with the same set of variables, each appearing with degree <span><math><mrow><mo>⩽</mo><mi>k</mi></mrow></math></span>. Every monotone circuit is a read-<span><math><mi>k</mi></math></span> circuit for some <span><math><mi>k</mi></math></span>. We show that already read-1 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits are not weaker than monotone arithmetic constant-free <span><math><mrow><mo>(</mo><mo>+</mo><mo>,</mo><mo>×</mo><mo>)</mo></mrow></math></span> circuits computing multilinear polynomials, are not weaker than non-monotone multilinear <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>,</mo><mo>¬</mo><mo>)</mo></mrow></math></span> circuits computing monotone Boolean functions, and have the same power as tropical <span><math><mrow><mo>(</mo><mo>min</mo><mo>,</mo><mo>+</mo><mo>)</mo></mrow></math></span> circuits solving <span><math><mrow><mn>0</mn><mo>/</mo><mn>1</mn></mrow></math></span> minimization problems. Finally, we show that read-2 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits can be exponentially smaller than read-1 <span><math><mrow><mo>(</mo><mo>∨</mo><mo>,</mo><mo>∧</mo><mo>)</mo></mrow></math></span> circuits.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 307-327"},"PeriodicalIF":1.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-indumatched Pseudoforests 不匹配的伪森林
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-30 DOI: 10.1016/j.dam.2024.09.018
Yasemin Büyükçolak , Didem Gözüpek , Sibel Özkan
A graph is called well-indumatched if all of its maximal induced matchings have the same size. Akbari et al. (0000) provided a characterization of well-indumatched trees and some results on well-indumatched unicyclic graphs. In this paper, we extend this result by providing a complete structural characterization of well-indumatched pseudotrees, in which each component has no cycle or a unique cycle, by identifying the well-indumatched graph families.
如果一个图的所有最大诱导匹配都具有相同的大小,那么这个图就被称为wellindumatched。Akbari 等人(0000 年)提供了良好不匹配树的表征,以及一些关于良好不匹配单环图的结果。在本文中,我们对这一结果进行了扩展,通过确定良好不匹配图族,提供了良好不匹配伪树的完整结构特征,其中每个分量都没有循环或唯一循环。
{"title":"Well-indumatched Pseudoforests","authors":"Yasemin Büyükçolak ,&nbsp;Didem Gözüpek ,&nbsp;Sibel Özkan","doi":"10.1016/j.dam.2024.09.018","DOIUrl":"10.1016/j.dam.2024.09.018","url":null,"abstract":"<div><div>A graph is called well-indumatched if all of its maximal induced matchings have the same size. Akbari et al. (0000) provided a characterization of well-indumatched trees and some results on well-indumatched unicyclic graphs. In this paper, we extend this result by providing a complete structural characterization of well-indumatched pseudotrees, in which each component has no cycle or a unique cycle, by identifying the well-indumatched graph families.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 85-102"},"PeriodicalIF":1.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact vertex forwarding index of the Strong product of complete graph and cycle 完整图与循环强积的精确顶点转发指数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-28 DOI: 10.1016/j.dam.2024.09.016
Weimin Qian, Feng Li
Effectiveness represents a fundamental performance metric in network communication systems and is intricately tied to the routing made within the network. Since the vertex forwarding index is primarily employed to measure the load-bearing capacity of network nodes, it has become a crucial parameter for evaluating the quality of network routing. By investigating the topological parameters and properties of the Strong product network KkCc and its factor networks (The undirected cycle networks Cc with c3 vertices and the complete networks Kk with k2 vertices), we have determined the exact vertex forwarding index of Strong product graph KkCc, which depends solely on the number of vertices in the factor networks.
有效性是网络通信系统的基本性能指标,与网络内的路由选择密切相关。由于顶点转发指数主要用于衡量网络节点的承载能力,因此它已成为评估网络路由质量的重要参数。通过研究强积网络 Kk⊗Cc 及其因子网络(顶点数为 c≥3 的无向循环网络 Cc 和顶点数为 k≥2 的完整网络 Kk)的拓扑参数和特性,我们确定了强积图 Kk⊗Cc 的精确顶点转发指数,该指数完全取决于因子网络中的顶点数。
{"title":"Exact vertex forwarding index of the Strong product of complete graph and cycle","authors":"Weimin Qian,&nbsp;Feng Li","doi":"10.1016/j.dam.2024.09.016","DOIUrl":"10.1016/j.dam.2024.09.016","url":null,"abstract":"<div><div>Effectiveness represents a fundamental performance metric in network communication systems and is intricately tied to the routing made within the network. Since the vertex forwarding index is primarily employed to measure the load-bearing capacity of network nodes, it has become a crucial parameter for evaluating the quality of network routing. By investigating the topological parameters and properties of the Strong product network <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> and its factor networks (The undirected cycle networks <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> with <span><math><mrow><mi>c</mi><mo>≥</mo><mn>3</mn></mrow></math></span> vertices and the complete networks <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> with <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> vertices), we have determined the exact vertex forwarding index of Strong product graph <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, which depends solely on the number of vertices in the factor networks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 69-84"},"PeriodicalIF":1.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation algorithm of maximizing non-submodular functions under non-submodular constraint 非次模化约束条件下的非次模化函数最大化近似算法
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-26 DOI: 10.1016/j.dam.2024.09.022
Xiaoyan Lai, Yishuo Shi
Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.
如今,在Knapsack约束或Cardinality约束下最大化非负和非次模态目标函数的研究已经非常深入。然而,很少有人研究非次模化约束下的非次模化目标函数。而这种情况在实际应用中很多,如流行病传播、传感器安置和特征选择问题等。本文研究了非次模化约束下的非次模化目标函数最大化问题。基于非次模化约束,我们讨论了目标函数最大化的一些特定属性,其中包括负属性,然后通过贪婪算法得到了相应的近似比率。更重要的是,当约束条件变得严格时,这些近似比率可以得到改善。
{"title":"Approximation algorithm of maximizing non-submodular functions under non-submodular constraint","authors":"Xiaoyan Lai,&nbsp;Yishuo Shi","doi":"10.1016/j.dam.2024.09.022","DOIUrl":"10.1016/j.dam.2024.09.022","url":null,"abstract":"<div><div>Nowadays, maximizing the non-negative and non-submodular objective functions under Knapsack constraint or Cardinality constraint is deeply researched. Nevertheless, few studies study the objective functions with non-submodularity under the non-submodular constraint. And there are many practical applications of the situations, such as Epidemic transmission, and Sensor Placement and Feature Selection problem. In this paper, we study the maximization of the non-submodular objective functions under the non-submodular constraint. Based on the non-submodular constraint, we discuss the maximization of the objective functions with some specific properties, which includes the property of negative, and then, we obtain the corresponding approximate ratios by the greedy algorithm. What is more, these approximate ratios could be improved when the constraint becomes tight.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 48-68"},"PeriodicalIF":1.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the enigmatic irregular coloring of Honeycomb Networks 揭开蜂巢网络神秘的不规则着色面纱
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-23 DOI: 10.1016/j.dam.2024.09.013
Shyama S. , Radha R. Iyer
The honeycomb mesh, based on the hexagonal tessellation, is considered a multiprocessor interconnection network. Cellular phone station placement, computer graphics and image processing are some applications where hexagonal tessellations are used. They are also used for the representation of benzenoid hydrocarbons. In this paper, we study the irregular chromatic number of Honeycomb Network, Honeycomb Cup Network and Honeycomb Torus and establish an exact value for the same. Also, we find an upper bound for the Honeycomb Rhombic and Rectangular Torus networks.
基于六边形细分的蜂巢网格被认为是一种多处理器互连网络。蜂窝电话站布局、计算机制图和图像处理都是六边形网格的应用领域。它们还用于表示苯碳氢化合物。本文研究了蜂巢网络、蜂巢杯状网络和蜂巢环状网络的不规则色度数,并确定了其精确值。此外,我们还找到了蜂巢菱形网和矩形环网的上限。
{"title":"Unraveling the enigmatic irregular coloring of Honeycomb Networks","authors":"Shyama S. ,&nbsp;Radha R. Iyer","doi":"10.1016/j.dam.2024.09.013","DOIUrl":"10.1016/j.dam.2024.09.013","url":null,"abstract":"<div><div>The honeycomb mesh, based on the hexagonal tessellation, is considered a multiprocessor interconnection network. Cellular phone station placement, computer graphics and image processing are some applications where hexagonal tessellations are used. They are also used for the representation of benzenoid hydrocarbons. In this paper, we study the irregular chromatic number of Honeycomb Network, Honeycomb Cup Network and Honeycomb Torus and establish an exact value for the same. Also, we find an upper bound for the Honeycomb Rhombic and Rectangular Torus networks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 282-296"},"PeriodicalIF":1.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum energy bicyclic graphs containing two odd cycles with one common vertex 包含两个奇数循环和一个共同顶点的最大能量双环图
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-23 DOI: 10.1016/j.dam.2024.09.014
Jing Gao, Xueliang Li, Ning Yang, Ruiling Zheng
The energy of a graph is the sum of the absolute values of all eigenvalues of its adjacency matrix. Let Pn6,6 be the graph obtained from two copies of C6 joined by a path Pn10. In 2001, Gutman and Vidović (2001) conjectured that the bicyclic graph with the maximal energy is Pn6,6. This conjecture is true for bipartite bicyclic graphs. For non-bipartite bicyclic graphs, Ji and Li (2012) proved the conjecture for bicyclic graphs which have exactly two edge-disjoint cycles such that one of them is even and the other is odd. This paper is to prove the conjecture for bicyclic graphs containing two odd cycles with one common vertex.
图形的能量是其邻接矩阵所有特征值的绝对值之和。假设 Pn6,6 是由 C6 的两个副本通过路径 Pn-10 连接而成的图。2001 年,Gutman 和 Vidović(2001 年)猜想能量最大的双环图是 Pn6,6。这一猜想适用于双方位双环图。对于非双方形双环图,Ji 和 Li(2012 年)证明了双环图的猜想,这些双环图恰好有两个边缘相交的循环,其中一个循环是偶数循环,另一个循环是奇数循环。本文将证明包含两个奇数循环且有一个共同顶点的双环图的猜想。
{"title":"Maximum energy bicyclic graphs containing two odd cycles with one common vertex","authors":"Jing Gao,&nbsp;Xueliang Li,&nbsp;Ning Yang,&nbsp;Ruiling Zheng","doi":"10.1016/j.dam.2024.09.014","DOIUrl":"10.1016/j.dam.2024.09.014","url":null,"abstract":"<div><div>The energy of a graph is the sum of the absolute values of all eigenvalues of its adjacency matrix. Let <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>6</mn><mo>,</mo><mn>6</mn></mrow></msubsup></math></span> be the graph obtained from two copies of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> joined by a path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>10</mn></mrow></msub></math></span>. In 2001, Gutman and Vidović (2001) conjectured that the bicyclic graph with the maximal energy is <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>6</mn><mo>,</mo><mn>6</mn></mrow></msubsup></math></span>. This conjecture is true for bipartite bicyclic graphs. For non-bipartite bicyclic graphs, Ji and Li (2012) proved the conjecture for bicyclic graphs which have exactly two edge-disjoint cycles such that one of them is even and the other is odd. This paper is to prove the conjecture for bicyclic graphs containing two odd cycles with one common vertex.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 1-21"},"PeriodicalIF":1.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Independence, matching and packing coloring of the iterated Mycielskian of graphs 图的迭代密西尔斯基的独立性、匹配和包装着色
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-23 DOI: 10.1016/j.dam.2024.09.015
Kamal Dliou
<div><div>Let <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ν</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote respectively the independence, matching, 2-matching and packing chromatic numbers of a graph <span><math><mi>G</mi></math></span>. A well-known construction on graphs, called the Mycielskian of a graph, transforms any <span><math><mi>k</mi></math></span>-chromatic graph <span><math><mi>G</mi></math></span> into a <span><math><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-chromatic graph <span><math><mrow><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> having an equal clique number to <span><math><mi>G</mi></math></span>. The <span><math><mi>t</mi></math></span>th iterated Mycielskian of a graph <span><math><mi>G</mi></math></span>, denoted <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is obtained by iteratively repeating the Mycielskian transformation <span><math><mi>t</mi></math></span> times. In this paper, we give <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in terms of <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Then we show that for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mo>max</mo><mrow><mo>{</mo><mrow><mo>|</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>α</mi><mrow><mo>(</mo><mi>M</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. We characterize for all <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, the connected graphs having <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> and those having <span><math><mrow><mi>α</mi><mrow><mo>(</mo><msup><mrow><mi>
让 α(G)、ν(G)、ν2(G) 和 χρ(G) 分别表示图 G 的独立色度数、匹配色度数、2-匹配色度数和打包色度数。图的第 t 次迭代 Mycielskian(记为 Mt(G))是通过重复进行 t 次 Mycielskian 变换得到的。在本文中,我们用 ν2(G)给出了 α(M(G))。然后我们证明,对于所有 t≥2,α(Mt(G))=max{|Mt-1(G)|,2t-1α(M(G))}。对于所有 t≥1,我们描述了具有 α(Mt(G))=|Mt-1(G)|的连通图和具有 α(Mt(G))=2tα(G)的连通图的特征。然后,我们给出所有 t≥1 时的ν(Mt(G))和ν2(Mt(G))。然后我们证明,对于所有 t≥1,当且仅当 G 没有完美的 2 匹配时,Mt(G) 是一个柯尼希-埃格瓦里图。随后,我们将研究 Mt(G) 的包装色度数。我们为 χρ(Mt(G))提出了几个尖锐的上界和下界,其中一些是以迭代次数 t、G 的阶、k∈{1,2,3} 的 k-independence 数和 χρ(G)来表示的。我们证明,如果 G 的直径最大为 2,χρ(Mt(G)) 可以在多项式时间内计算。最近,在 Bidine 等人 (2023) 的文章中,作者研究了 t≥1 时具有 χρ(Mt(G))=2tχρ(G)的直径为 2 的图。他们还提出了一个关于以 χρ(G) 表示的 χρ(Mt(G))增长的问题。我们证明,对于 t≥1,χρ(Mt(G)) 不可能仅由χρ(G) 的函数上界。此外,我们还讨论了 χρ(Mt(G))的可实现值,并描述了具有最小可能 χρ(Mt(G))的图的特征。
{"title":"Independence, matching and packing coloring of the iterated Mycielskian of graphs","authors":"Kamal Dliou","doi":"10.1016/j.dam.2024.09.015","DOIUrl":"10.1016/j.dam.2024.09.015","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denote respectively the independence, matching, 2-matching and packing chromatic numbers of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. A well-known construction on graphs, called the Mycielskian of a graph, transforms any &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-chromatic graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; into a &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-chromatic graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; having an equal clique number to &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;th iterated Mycielskian of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, denoted &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is obtained by iteratively repeating the Mycielskian transformation &lt;span&gt;&lt;math&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; times. In this paper, we give &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in terms of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Then we show that for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;max&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We characterize for all &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the connected graphs having &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and those having &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 22-33"},"PeriodicalIF":1.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toughness and distance spectral radius in graphs involving minimum degree 涉及最小度的图中的韧性和距离谱半径
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-23 DOI: 10.1016/j.dam.2024.09.019
Jing Lou , Ruifang Liu , Jinlong Shu
The toughness τ(G)=min{|S|c(GS):Sis a cut set of vertices inG} for GKn. The concept of toughness initially proposed by Chvátal in 1973, which serves as a simple way to measure how tightly various pieces of a graph hold together. A graph G is called t-tough if τ(G)t. It is very interesting to investigate the relations between toughness and eigenvalues of graphs. Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] provided sufficient conditions in terms of the spectral radius for a graph to be 1-tough with minimum degree δ and t-tough with t1 being an integer, respectively. By using some typical distance spectral techniques and structural analysis, we in this paper present a sufficient condition based on the distance spectral radius to guarantee a graph to be 1-tough with minimum degree δ. Moreover, we also prove sufficient conditions with respect to the distance spectral radius for a graph to be t-tough, where t or 1t is a positive integer.
G≇Kn 的韧性 τ(G)=min{|S|c(G-S):Sis a cut set of vertices inG} 。韧性的概念最初是由 Chvátal 于 1973 年提出的,它是一种简单的方法来衡量图中各个部分的紧密程度。如果 τ(G)≥t ,则图 G 称为 t-韧性图。研究图的韧性和特征值之间的关系非常有趣。Fan、Lin 和 Lu [European J. Combin.通过使用一些典型的距离谱技术和结构分析,我们在本文中提出了一个基于距离谱半径的充分条件,以保证图是最小度为 δ 的 1-韧图。此外,我们还证明了关于距离谱半径的充分条件,以保证图是 t-韧图,其中 t 或 1t 是正整数。
{"title":"Toughness and distance spectral radius in graphs involving minimum degree","authors":"Jing Lou ,&nbsp;Ruifang Liu ,&nbsp;Jinlong Shu","doi":"10.1016/j.dam.2024.09.019","DOIUrl":"10.1016/j.dam.2024.09.019","url":null,"abstract":"<div><div>The <em>toughness</em> <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>min</mi><mrow><mo>{</mo><mfrac><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow></mrow><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>−</mo><mi>S</mi><mo>)</mo></mrow></mrow></mfrac><mo>:</mo><mi>S</mi><mspace></mspace><mtext>is a cut set of vertices in</mtext><mspace></mspace><mi>G</mi><mo>}</mo></mrow></mrow></math></span> for <span><math><mrow><mi>G</mi><mo>≇</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>.</mo></mrow></math></span> The concept of toughness initially proposed by Chvátal in 1973, which serves as a simple way to measure how tightly various pieces of a graph hold together. A graph <span><math><mi>G</mi></math></span> is called <span><math><mi>t</mi></math></span><em>-tough</em> if <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>t</mi><mo>.</mo></mrow></math></span> It is very interesting to investigate the relations between toughness and eigenvalues of graphs. Fan, Lin and Lu [European J. Combin. 110 (2023) 103701] provided sufficient conditions in terms of the spectral radius for a graph to be 1-tough with minimum degree <span><math><mi>δ</mi></math></span> and <span><math><mi>t</mi></math></span>-tough with <span><math><mrow><mi>t</mi><mo>≥</mo><mn>1</mn></mrow></math></span> being an integer, respectively. By using some typical distance spectral techniques and structural analysis, we in this paper present a sufficient condition based on the distance spectral radius to guarantee a graph to be 1-tough with minimum degree <span><math><mrow><mi>δ</mi><mo>.</mo></mrow></math></span> Moreover, we also prove sufficient conditions with respect to the distance spectral radius for a graph to be <span><math><mi>t</mi></math></span>-tough, where <span><math><mi>t</mi></math></span> or <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi></mrow></mfrac></math></span> is a positive integer.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 34-47"},"PeriodicalIF":1.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142312390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1