首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
A note on the second-largest number of dissociation sets in connected graphs 关于连通图中第二多解离集的注释
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-07 DOI: 10.1016/j.dam.2025.12.045
Pingshan Li, Ke Yang, Wei Jin
A subset of vertices is called a dissociation set if it induces a subgraph with vertex degree at most one. Recently, Yuan et al. established the upper bound of the maximum number of dissociation sets among all connected graphs of order n and characterized the corresponding extremal graphs. They also proposed a question regarding the second-largest number of dissociation sets among all connected graphs of order n and the corresponding extremal graphs. In this paper, we give a positive answer to this question.
如果一个顶点的子集诱导出一个顶点度最多为1的子图,则称为解离集。最近Yuan等人建立了所有n阶连通图的最大解离集数的上界,并刻画了相应的极值图。他们还提出了一个关于在所有n阶连通图和相应的极值图中解离集数量第二的问题。本文对这一问题给出了肯定的回答。
{"title":"A note on the second-largest number of dissociation sets in connected graphs","authors":"Pingshan Li,&nbsp;Ke Yang,&nbsp;Wei Jin","doi":"10.1016/j.dam.2025.12.045","DOIUrl":"10.1016/j.dam.2025.12.045","url":null,"abstract":"<div><div>A subset of vertices is called a dissociation set if it induces a subgraph with vertex degree at most one. Recently, Yuan et al. established the upper bound of the maximum number of dissociation sets among all connected graphs of order <span><math><mi>n</mi></math></span> and characterized the corresponding extremal graphs. They also proposed a question regarding the second-largest number of dissociation sets among all connected graphs of order <span><math><mi>n</mi></math></span> and the corresponding extremal graphs. In this paper, we give a positive answer to this question.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 34-40"},"PeriodicalIF":1.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal graphs for the sum of the first two largest signless Laplacian eigenvalues 前两个最大的无符号拉普拉斯特征值和的极值图
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-07 DOI: 10.1016/j.dam.2025.12.046
Zi-Ming Zhou , Zhi-Bin Du , Chang-Xiang He
For a graph G, let S2(G) be the sum of the first two largest signless Laplacian eigenvalues of G, and f(G)=e(G)+3S2(G). Very recently, Zhou et al. (2024) proved that K1,n1+ (the star graph with an additional edge) is the unique graph with minimum value of f(G) among the graphs on n vertices. In this paper, we prove that the vertex-disjoint union of K1,e(G)1+ and possibly some isolated vertices is the unique graph with minimum value of f(G) among the graphs with e(G) edges.
对于图G,设S2(G)为G的前两个最大的无符号拉普拉斯特征值的和,f(G)=e(G)+3 - S2(G)。最近,Zhou等人(2024)证明了K1,n−1+(附加一条边的星图)是n个顶点图中f(G)值最小的唯一图。本文证明了K1、e(G)−1+和可能的一些孤立顶点的顶点不相交并是具有e(G)条边的图中f(G)值最小的唯一图。
{"title":"Extremal graphs for the sum of the first two largest signless Laplacian eigenvalues","authors":"Zi-Ming Zhou ,&nbsp;Zhi-Bin Du ,&nbsp;Chang-Xiang He","doi":"10.1016/j.dam.2025.12.046","DOIUrl":"10.1016/j.dam.2025.12.046","url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, let <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> be the sum of the first two largest signless Laplacian eigenvalues of <span><math><mi>G</mi></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Very recently, Zhou et al. (2024) proved that <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> (the star graph with an additional edge) is the unique graph with minimum value of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among the graphs on <span><math><mi>n</mi></math></span> vertices. In this paper, we prove that the vertex-disjoint union of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> and possibly some isolated vertices is the unique graph with minimum value of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> among the graphs with <span><math><mrow><mi>e</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> edges.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 139-144"},"PeriodicalIF":1.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensional edge fault-tolerant Hamiltonicity of (folded) hypercubes (折叠)超立方体的空间边容错哈密顿性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-07 DOI: 10.1016/j.dam.2025.12.051
Junqing Cai , Meirun Chen , Cheng-Kuan Lin
The hypercube Qn and folded hypercube FQn serve as fundamental interconnection network topologies in parallel computing, valued for their efficient communication and inherent fault tolerance. This paper investigates their resilience to dimensional-edge faults with respect to three critical Hamiltonian properties: Hamiltonicity, Hamiltonian laceability, and hyper Hamiltonian laceability. We establish precise bounds for fault tolerance in these structures, proving that: (1) For Qn, both the dimensional-edge fault-tolerant Hamiltonicity and Hamiltonian laceability equal 2n1n, while hyper Hamiltonian laceability tolerates up to 2n12n+2; (2) For FQn, the dimensional-edge fault-tolerant Hamiltonicity is 2nn; (3) For odd-dimensional FQ2n+1, the dimensional-edge fault-tolerant Hamiltonian laceability and hyper Hamiltonian laceability are 22n+12n1 and 22n+14n, respectively. These results significantly advance our understanding of fault tolerance in cube-based network topologies and provide rigorous theoretical guarantees for their reliable operation in practical systems.
超立方体Qn和折叠超立方体FQn作为并行计算中基本的互连网络拓扑,以其高效的通信和固有的容错性而受到重视。本文从哈密顿性、哈密顿可缺性和超哈密顿可缺性这三个关键哈密顿性质出发,研究了它们对维边断裂的弹性。我们建立了这些结构的容错性的精确边界,证明了:(1)对于Qn,维边容错哈密顿性和哈密顿可溶性均等于2n−1−n,而超哈密顿可溶性可容性可达2n−1−2n+2;(2)对于FQn,维边容错哈密度为2n−n;(3)对于奇维FQ2n+1,维边容错哈密顿可缺性为22n+1−2n−1,超哈密顿可缺性为22n+1−4n。这些结果极大地促进了我们对基于立方体的网络拓扑容错的理解,并为其在实际系统中的可靠运行提供了严格的理论保证。
{"title":"Dimensional edge fault-tolerant Hamiltonicity of (folded) hypercubes","authors":"Junqing Cai ,&nbsp;Meirun Chen ,&nbsp;Cheng-Kuan Lin","doi":"10.1016/j.dam.2025.12.051","DOIUrl":"10.1016/j.dam.2025.12.051","url":null,"abstract":"<div><div>The hypercube <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and folded hypercube <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> serve as fundamental interconnection network topologies in parallel computing, valued for their efficient communication and inherent fault tolerance. This paper investigates their resilience to dimensional-edge faults with respect to three critical Hamiltonian properties: Hamiltonicity, Hamiltonian laceability, and hyper Hamiltonian laceability. We establish precise bounds for fault tolerance in these structures, proving that: (1) For <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, both the dimensional-edge fault-tolerant Hamiltonicity and Hamiltonian laceability equal <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>n</mi></mrow></math></span>, while hyper Hamiltonian laceability tolerates up to <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>2</mn></mrow></math></span>; (2) For <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, the dimensional-edge fault-tolerant Hamiltonicity is <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mi>n</mi></mrow></math></span>; (3) For odd-dimensional <span><math><mrow><mi>F</mi><msub><mrow><mi>Q</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>, the dimensional-edge fault-tolerant Hamiltonian laceability and hyper Hamiltonian laceability are <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>4</mn><mi>n</mi></mrow></math></span>, respectively. These results significantly advance our understanding of fault tolerance in cube-based network topologies and provide rigorous theoretical guarantees for their reliable operation in practical systems.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 154-164"},"PeriodicalIF":1.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some critical Ramsey numbers involving paths 在一些关键的拉姆齐数上
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-07 DOI: 10.1016/j.dam.2025.12.048
Yahui Zhang, Yan Li, Changxiang He
For graphs F, G and H, let F(G,H) signify that any red-blue edge-coloring of F contains either a red G or a blue H. The Ramsey number R(G,H) is defined as min{r|Kr(G,H)}. In this note, we show that KrPr(G,Pn) and KrKn21,n21(G,Pn) under some bounds on n, where r=R(G,Pn) and G is a given graph with minimum color class of size 1. Our construction of edge-deleted balanced complete bipartite graphs removes more edges than earlier results concerning the critical Ramsey number of paths.
对于图F, G和H,设F→(G,H)表示F的任何红蓝边着色包含一个红色G或一个蓝色H,拉姆齐数R(G,H)定义为min{R |Kr→(G,H)}。在这篇文章中,我们证明了Kr∈Pr→(G,Pn)和Kr∈K≤≤n2²−1,≤n2²−1→(G,Pn)在n上的某些界下,其中r= r (G,Pn),并且G是一个最小色类大小为1的给定图。我们构造的边删除平衡完全二部图比先前关于路径临界拉姆齐数的结果删除了更多的边。
{"title":"On some critical Ramsey numbers involving paths","authors":"Yahui Zhang,&nbsp;Yan Li,&nbsp;Changxiang He","doi":"10.1016/j.dam.2025.12.048","DOIUrl":"10.1016/j.dam.2025.12.048","url":null,"abstract":"<div><div>For graphs <span><math><mi>F</mi></math></span>, <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, let <span><math><mrow><mi>F</mi><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> signify that any red-blue edge-coloring of <span><math><mi>F</mi></math></span> contains either a red <span><math><mi>G</mi></math></span> or a blue <span><math><mi>H</mi></math></span>. The Ramsey number <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is defined as <span><math><mrow><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>{</mo><mi>r</mi><mspace></mspace><mo>|</mo><mspace></mspace><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>. In this note, we show that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> under some bounds on <span><math><mi>n</mi></math></span>, where <span><math><mrow><mi>r</mi><mo>=</mo><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>G</mi></math></span> is a given graph with minimum color class of size 1. Our construction of edge-deleted balanced complete bipartite graphs removes more edges than earlier results concerning the critical Ramsey number of paths.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 145-153"},"PeriodicalIF":1.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pair state transfer in tensor product and double cover 张量积和双盖中的对状态转移
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-07 DOI: 10.1016/j.dam.2025.12.053
Ming Jiang , Xiaogang Liu , Jing Wang
Quantum state transfer, first introduced by Bose in 2003, is an important physical phenomenon in quantum networks, which plays a vital role in quantum communication and quantum computing. In 2004, Christandl et al. proposed the concept of perfect state transfer on graphs by modeling the quantum network using graphs, and unveiled the feasibility of applying graph theory to quantum state transfer. In 2018, Chen and Godsil proposed the definition of Laplacian perfect pair state transfer on graphs, which is a brilliant generalization of perfect state transfer. In this paper, we investigate the existence of Laplacian perfect pair state transfer in tensor product and double cover of two regular graphs, respectively, and reveal fundamental connections between perfect state transfer and Laplacian perfect pair state transfer. We give necessary and sufficient conditions for the tensor product of two regular graphs to admit Laplacian perfect pair state transfer, where one of the two regular graphs admits perfect state transfer or Laplacian perfect pair state transfer. Additionally, we characterize the existence of Laplacian perfect pair state transfer in the double cover of two regular graphs. By our results, a variety of families of graphs admitting Laplacian perfect pair state transfer can be constructed.
量子态转移是2003年由Bose首次提出的量子网络中的重要物理现象,在量子通信和量子计算中起着至关重要的作用。2004年,Christandl等人利用图对量子网络进行建模,提出了图上完美状态转移的概念,揭示了将图论应用于量子状态转移的可行性。2018年,Chen和Godsil在图上提出了Laplacian完美对状态转移的定义,这是对完美状态转移的一个精彩推广。本文分别研究了两个正则图的张量积和双覆盖中拉普拉斯完美对状态转移的存在性,揭示了完美状态转移与拉普拉斯完美对状态转移之间的基本联系。给出了两个正则图的张量积允许拉普拉斯完美对状态转移的充分必要条件,其中一个正则图允许完全状态转移或拉普拉斯完美对状态转移。此外,我们还刻画了两个正则图的双覆盖上存在拉普拉斯完美对状态转移。根据我们的研究结果,可以构造各种允许拉普拉斯完美对状态转移的图族。
{"title":"Pair state transfer in tensor product and double cover","authors":"Ming Jiang ,&nbsp;Xiaogang Liu ,&nbsp;Jing Wang","doi":"10.1016/j.dam.2025.12.053","DOIUrl":"10.1016/j.dam.2025.12.053","url":null,"abstract":"<div><div>Quantum state transfer, first introduced by Bose in 2003, is an important physical phenomenon in quantum networks, which plays a vital role in quantum communication and quantum computing. In 2004, Christandl et al. proposed the concept of perfect state transfer on graphs by modeling the quantum network using graphs, and unveiled the feasibility of applying graph theory to quantum state transfer. In 2018, Chen and Godsil proposed the definition of Laplacian perfect pair state transfer on graphs, which is a brilliant generalization of perfect state transfer. In this paper, we investigate the existence of Laplacian perfect pair state transfer in tensor product and double cover of two regular graphs, respectively, and reveal fundamental connections between perfect state transfer and Laplacian perfect pair state transfer. We give necessary and sufficient conditions for the tensor product of two regular graphs to admit Laplacian perfect pair state transfer, where one of the two regular graphs admits perfect state transfer or Laplacian perfect pair state transfer. Additionally, we characterize the existence of Laplacian perfect pair state transfer in the double cover of two regular graphs. By our results, a variety of families of graphs admitting Laplacian perfect pair state transfer can be constructed.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 165-176"},"PeriodicalIF":1.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neighbor connectivity of hypercube-based compound network 基于超立方体的复合网络的邻居连通性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.049
Yifan Li , Shuming Zhou , Qifan Zhang
For a network G, the subversion at the vertex set (resp., edge set) of G is defined as the removal of the closed neighborhood of the vertex set (resp., all end vertices of the edge set) from G, where the vertex set (resp., edge set) is referred as subverted vertices (resp., edges). Neighbor connectivity and edge neighbor connectivity serve as key indicators for assessing the subversion of spy networks and network disruptions throughout the deletion of closed neighborhood. The neighbor connectivity κNB(G) (resp., edge neighbor connectivity λNB(G)) of a network G is defined as the minimum number of subverted vertices (resp., edges) required to disconnect it, make it empty or complete (resp., trivial). Gu et al. (IEEE Trans. Netw. Sci. Eng. 11 (5) (2024) 1-13) conjectured that whether κNB(G)=δ(G)12+1 holds for all compound graphs G constructed by the underlying block Qn. In this paper, we solve this conjecture and determine the (edge) neighbor connectivity of a class of hypercube-based compound network, including half hypercube, hierarchical hypercube, hierarchical cubic network and dual-cube-like network. In addition, we present network vulnerability analysis algorithms based on neighborhood fault pattern. To evaluate their effectiveness, taking the half hypercube, hierarchical cubic network and real-world network dwt-918 as examples, we perform experimental simulations to analyze both the cardinality distribution of subverted vertices and topological configurations of survival graph.
对于网络G,在顶点集(p。,边集)定义为顶点集(resp.)的闭邻域的移除。,边集的所有端点)来自G,其中顶点集(resp。,边集)被称为颠覆顶点(如。,边缘)。邻居连通性和边缘邻居连通性是评估间谍网络颠覆和网络中断的关键指标。邻居连通性κNB(G)。,网络G的边缘邻居连通性λNB(G)定义为颠覆顶点的最小个数(p。需要断开它,使其为空或完整(参见。琐碎的)。Gu et al. (IEEE译)Netw。科学。Eng. 11(5)(2024) 1-13)推测κNB(G)=δ(G)−12+1是否对所有由底层块Qn构造的复合图G成立。本文解决了这一猜想,并确定了一类基于超立方体的复合网络(包括半超立方体、分层超立方体、分层立方网络和双类立方体网络)的(边)邻居连通性。此外,提出了基于邻域故障模式的网络漏洞分析算法。为了评估它们的有效性,我们以半超立方体、分层立方网络和现实世界网络dwt-918为例,进行了实验模拟,分析了颠覆顶点的基数分布和生存图的拓扑构型。
{"title":"Neighbor connectivity of hypercube-based compound network","authors":"Yifan Li ,&nbsp;Shuming Zhou ,&nbsp;Qifan Zhang","doi":"10.1016/j.dam.2025.12.049","DOIUrl":"10.1016/j.dam.2025.12.049","url":null,"abstract":"<div><div>For a network <span><math><mi>G</mi></math></span>, the subversion at the vertex set (resp., edge set) of <span><math><mi>G</mi></math></span> is defined as the removal of the closed neighborhood of the vertex set (resp., all end vertices of the edge set) from <span><math><mi>G</mi></math></span>, where the vertex set (resp., edge set) is referred as subverted vertices (resp., edges). Neighbor connectivity and edge neighbor connectivity serve as key indicators for assessing the subversion of spy networks and network disruptions throughout the deletion of closed neighborhood. The neighbor connectivity <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>N</mi><mi>B</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> (resp., edge neighbor connectivity <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>N</mi><mi>B</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>) of a network <span><math><mi>G</mi></math></span> is defined as the minimum number of subverted vertices (resp., edges) required to disconnect it, make it empty or complete (resp., trivial). Gu et al. (IEEE Trans. Netw. Sci. Eng. 11 (5) (2024) 1-13) conjectured that whether <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>NB</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mfrac><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced><mo>+</mo><mn>1</mn></mrow></math></span> holds for all compound graphs <span><math><mi>G</mi></math></span> constructed by the underlying block <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In this paper, we solve this conjecture and determine the (edge) neighbor connectivity of a class of hypercube-based compound network, including half hypercube, hierarchical hypercube, hierarchical cubic network and dual-cube-like network. In addition, we present network vulnerability analysis algorithms based on neighborhood fault pattern. To evaluate their effectiveness, taking the half hypercube, hierarchical cubic network and real-world network dwt-918 as examples, we perform experimental simulations to analyze both the cardinality distribution of subverted vertices and topological configurations of survival graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 1-15"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance signless Laplacian spectra of graphs: A survey 图的距离无符号拉普拉斯谱:综述
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.044
Bilal Ahmad Rather , Hilal Ahmad Ganie , Jainfeng Wang
In a connected graph G, the distance signless Laplacian is defined as DQ(G)=Diag(Tr)+D(G), where Diag(Tr) is the diagonal matrix of vertex transmissions and D(G)=(Di,j)n×n is the distance matrix indexed by the vertices of G, such that Di,j=d(vi,vj), where d(vi,vj) represents the distance between the vertices vi and vj. Motivated by the Laplacian and signless Laplacian matrices of G, Aouchiche and Hensen (2013) developed the idea of distance (signless) Laplacian matrix, which has attracted the interest among numerous spectral graph theory researchers in the field of algebraic graph theory. The spectral investigation of DQ(G) resulted in numerous articles. In this paper, we present a review of research on the distance signless Laplacian of connected graphs.
在连通图G中,距离无符号拉普拉斯函数定义为DQ(G)=Diag(Tr)+D(G),其中Diag(Tr)是顶点传输的对角矩阵,D(G)=(Di,j)n×n是由G的顶点索引的距离矩阵,使得Di,j= D(vi,vj),其中D(vi,vj)表示顶点vi与vj之间的距离。Aouchiche和Hensen(2013)在G的拉普拉斯矩阵和无符号拉普拉斯矩阵的激励下,提出了距离(无符号)拉普拉斯矩阵的思想,引起了代数图论领域众多谱图理论研究者的兴趣。DQ(G)的光谱研究产生了许多文章。本文对连通图的距离无符号拉普拉斯算子的研究进行了综述。
{"title":"Distance signless Laplacian spectra of graphs: A survey","authors":"Bilal Ahmad Rather ,&nbsp;Hilal Ahmad Ganie ,&nbsp;Jainfeng Wang","doi":"10.1016/j.dam.2025.12.044","DOIUrl":"10.1016/j.dam.2025.12.044","url":null,"abstract":"<div><div>In a connected graph <span><math><mi>G</mi></math></span>, the distance signless Laplacian is defined as <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>D</mi><mi>i</mi><mi>a</mi><mi>g</mi><mrow><mo>(</mo><mi>T</mi><mi>r</mi><mo>)</mo></mrow><mo>+</mo><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mi>i</mi><mi>a</mi><mi>g</mi><mrow><mo>(</mo><mi>T</mi><mi>r</mi><mo>)</mo></mrow></mrow></math></span> is the diagonal matrix of vertex transmissions and <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></mrow></math></span> is the distance matrix indexed by the vertices of <span><math><mi>G</mi></math></span>, such that <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>=</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> represents the distance between the vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>. Motivated by the Laplacian and signless Laplacian matrices of <span><math><mi>G</mi></math></span>, Aouchiche and Hensen (2013) developed the idea of distance (signless) Laplacian matrix, which has attracted the interest among numerous spectral graph theory researchers in the field of algebraic graph theory. The spectral investigation of <span><math><mrow><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> resulted in numerous articles. In this paper, we present a review of research on the distance signless Laplacian of connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 41-138"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniqueness of maximum scores in countable-outcome round-robin tournaments 可计数结果循环赛中最大分数的唯一性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.050
Gideon Amir , Yaakov Malinovsky
In this note, we extend a recent result on the uniqueness of the maximum score in a classical round-robin tournament to general round-robin tournament models with equally strong players, where the scores take values in [0,1].
在本文中,我们将最近关于经典循环赛中最大分数的唯一性的结果扩展到具有同等实力的球员的一般循环赛模型,其中分数的值为[0,1]。
{"title":"Uniqueness of maximum scores in countable-outcome round-robin tournaments","authors":"Gideon Amir ,&nbsp;Yaakov Malinovsky","doi":"10.1016/j.dam.2025.12.050","DOIUrl":"10.1016/j.dam.2025.12.050","url":null,"abstract":"<div><div>In this note, we extend a recent result on the uniqueness of the maximum score in a classical round-robin tournament to general round-robin tournament models with equally strong players, where the scores take values in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>]</mo></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 16-22"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some results on minimum saturated graphs 关于最小饱和图的一些结果
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-05 DOI: 10.1016/j.dam.2025.12.040
Chenke Zhang , Qing Cui , Jinze Hu , Erfei Yue , Shengjin Ji
Let G be a graph and F be a family of graphs. We say a graph G is F-saturated if G does not contain any member in F and for any eE(G¯), G+e creates a copy of some member in F. The saturation number of F is the minimum number of edges of an F-saturated graphs of n vertices, denoted by sat(n,F). If F={F}, then we write it as sat(n,F) for short. In this paper, we determine the exact value of sat(n,{K3,Pk}), and as its application, we obtain two bounds on sat(n,K3Pk) for k10 and sufficiently large n. Furthermore, sat(n,K1F) is determined, where F is a linear forest without isolated vertices.
设G是一个图,F是一个图族。我们说一个图G是F饱和的,如果G不包含F中的任何元素,并且对于任何e∈e (G¯),G+e创建了F中某个元素的副本。F的饱和数是包含n个顶点的F饱和图的最小边数,用sat(n,F)表示。如果F={F},那么我们把它简称为sat(n,F)本文确定了sat(n,{K3,Pk})的精确值,并作为它的应用,得到了k≥10且n足够大时sat(n,K3∪Pk)上的两个界。进而确定了sat(n,K1∨F),其中F是一个没有孤立顶点的线性森林。
{"title":"Some results on minimum saturated graphs","authors":"Chenke Zhang ,&nbsp;Qing Cui ,&nbsp;Jinze Hu ,&nbsp;Erfei Yue ,&nbsp;Shengjin Ji","doi":"10.1016/j.dam.2025.12.040","DOIUrl":"10.1016/j.dam.2025.12.040","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a graph and <span><math><mi>F</mi></math></span> be a family of graphs. We say a graph <span><math><mi>G</mi></math></span> is <span><math><mi>F</mi></math></span>-saturated if <span><math><mi>G</mi></math></span> does not contain any member in <span><math><mi>F</mi></math></span> and for any <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>G</mi><mo>+</mo><mi>e</mi></mrow></math></span> creates a copy of some member in <span><math><mi>F</mi></math></span>. The saturation number of <span><math><mi>F</mi></math></span> is the minimum number of edges of an <span><math><mi>F</mi></math></span>-saturated graphs of <span><math><mi>n</mi></math></span> vertices, denoted by <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span>. If <span><math><mrow><mi>F</mi><mo>=</mo><mrow><mo>{</mo><mi>F</mi><mo>}</mo></mrow></mrow></math></span>, then we write it as <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> for short. In this paper, we determine the exact value of <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>, and as its application, we obtain two bounds on <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>10</mn></mrow></math></span> and sufficiently large <span><math><mi>n</mi></math></span>. Furthermore, <span><math><mrow><mi>sat</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is determined, where <span><math><mi>F</mi></math></span> is a linear forest without isolated vertices.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 23-33"},"PeriodicalIF":1.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145898209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The number of odd spanning trees in the complete graphs 完全图中奇数生成树的个数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-29 DOI: 10.1016/j.dam.2025.12.043
Yong-De Feng, Yawen Chen, Baoyindureng Wu
An odd graph is a graph G for which every vertex vV(G) satisfies dG(v)1(mod2). An odd spanning tree T of G is a spanning tree such that dT(v)1(mod2) for all vV(T). It is known that for any complete graph Kn of even order has an odd spanning tree. In this paper, we establish the exact number of labeled odd spanning trees in Kn. By employing the classical Prüfer sequence and constructing the corresponding generating function, we prove that the number of labeled odd spanning trees in Kn is given by 12nk=0nnk(2kn)n2  (where n is even).
奇图是每个顶点v∈v (G)满足dG(v)≡1(mod2)的图G。奇生成树T(G)是对所有v∈v (T) dT(v)≡1(mod2)的生成树。已知对于任何偶阶完全图Kn都有一棵奇生成树。在本文中,我们建立了Kn中标记奇生成树的确切数目。利用经典的pr fer序列,构造相应的生成函数,证明了在Kn范围内标记奇生成树的个数为12n∑k=0nnk(2k−n)n−2(其中n为偶数)。
{"title":"The number of odd spanning trees in the complete graphs","authors":"Yong-De Feng,&nbsp;Yawen Chen,&nbsp;Baoyindureng Wu","doi":"10.1016/j.dam.2025.12.043","DOIUrl":"10.1016/j.dam.2025.12.043","url":null,"abstract":"<div><div>An odd graph is a graph <span><math><mi>G</mi></math></span> for which every vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> satisfies <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. An odd spanning tree <span><math><mi>T</mi></math></span> of <span><math><mi>G</mi></math></span> is a spanning tree such that <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>T</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≡</mo><mn>1</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>2</mn><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. It is known that for any complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of even order has an odd spanning tree. In this paper, we establish the exact number of labeled odd spanning trees in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By employing the classical Prüfer sequence and constructing the corresponding generating function, we prove that the number of labeled odd spanning trees in <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is given by <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></mfenced><msup><mrow><mrow><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>\u0000 <!--> <!-->(where <span><math><mi>n</mi></math></span> is even).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 295-299"},"PeriodicalIF":1.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145885019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1