首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
Welfare loss in connected resource allocation 关联资源配置中的福利损失
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-19 DOI: 10.1016/j.dam.2026.01.007
Xiaohui Bei , Alexander Lam , Xinhang Lu , Warut Suksompong
We study the allocation of indivisible items that form an undirected graph and investigate the worst-case welfare loss when requiring that each agent must receive a connected subgraph. Our focus is on both egalitarian and utilitarian welfare. Specifically, we introduce the concept of egalitarian (resp., utilitarian) price of connectivity, which captures the worst-case ratio between the optimal egalitarian (resp., utilitarian) welfare among all allocations and that among connected allocations. We provide tight or asymptotically tight bounds on the price of connectivity for several large classes of graphs in the case of two agents—including graphs with vertex connectivity 1 or 2 and complete bipartite graphs—as well as for paths, stars, and cycles in the general case where the number of agents can be arbitrary.
我们研究了组成无向图的不可分割项目的分配,并研究了当要求每个智能体必须接收一个连通子图时的最坏情况下的福利损失。我们的重点是平等主义和功利主义的福利。具体来说,我们引入了平等主义(平等主义)的概念。(如功利主义)的连接价格,它捕捉了最优平均主义(如功利主义)与最坏情况之间的比率。所有分配中的福利和相关分配中的福利。我们为几个大型图类在两个智能体的情况下的连通性价格提供了紧密或渐进的紧密边界——包括顶点连通性为1或2的图和完全二部图——以及在智能体数量可以任意的一般情况下的路径、星形和循环。
{"title":"Welfare loss in connected resource allocation","authors":"Xiaohui Bei ,&nbsp;Alexander Lam ,&nbsp;Xinhang Lu ,&nbsp;Warut Suksompong","doi":"10.1016/j.dam.2026.01.007","DOIUrl":"10.1016/j.dam.2026.01.007","url":null,"abstract":"<div><div>We study the allocation of indivisible items that form an undirected graph and investigate the worst-case welfare loss when requiring that each agent must receive a connected subgraph. Our focus is on both egalitarian and utilitarian welfare. Specifically, we introduce the concept of <em>egalitarian (resp., utilitarian) price of connectivity</em>, which captures the worst-case ratio between the optimal egalitarian (resp., utilitarian) welfare among all allocations and that among connected allocations. We provide tight or asymptotically tight bounds on the price of connectivity for several large classes of graphs in the case of two agents—including graphs with vertex connectivity 1 or 2 and complete bipartite graphs—as well as for paths, stars, and cycles in the general case where the number of agents can be arbitrary.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"385 ","pages":"Pages 1-23"},"PeriodicalIF":1.0,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145993603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing circle graphs with binomial partial Petrial polynomials 用二项式偏皮特多项式表征圆图
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-19 DOI: 10.1016/j.dam.2026.01.012
Ruiqing Feng, Qi Yan, Xuan Zheng
The partial Petrial polynomial was first introduced by Gross, Mansour, and Tucker as a generating function that enumerates the Euler genera of all possible partial Petrials on a ribbon graph. Yan and Li later extended this polynomial invariant to circle graphs by utilizing the correspondence between circle graphs and bouquets. Their explicit computation demonstrated that paths produce binomial polynomials, specifically those containing exactly two non-zero terms. This discovery led them to pose a fundamental characterization problem: identify all connected circle graphs whose partial Petrial polynomial is binomial. In this paper, we solve this open problem in terms of local complementation and prove that for connected circle graphs, the binomial property holds precisely when the graph is a path.
偏Petrial多项式最初是由Gross, Mansour和Tucker作为一个生成函数引入的,它枚举了带状图上所有可能的偏Petrial的欧拉属。Yan和Li后来利用圆图和花束之间的对应关系,将这个多项式不变量推广到圆图。他们明确的计算表明,路径产生二项式多项式,特别是那些恰好包含两个非零项的多项式。这一发现使他们提出了一个基本的表征问题:确定所有部分Petrial多项式为二项的连通圆图。本文用局部补的方法解决了这个开放问题,并证明了对于连通圆图,当图是一条路径时,二项式性质是准确成立的。
{"title":"Characterizing circle graphs with binomial partial Petrial polynomials","authors":"Ruiqing Feng,&nbsp;Qi Yan,&nbsp;Xuan Zheng","doi":"10.1016/j.dam.2026.01.012","DOIUrl":"10.1016/j.dam.2026.01.012","url":null,"abstract":"<div><div>The partial Petrial polynomial was first introduced by Gross, Mansour, and Tucker as a generating function that enumerates the Euler genera of all possible partial Petrials on a ribbon graph. Yan and Li later extended this polynomial invariant to circle graphs by utilizing the correspondence between circle graphs and bouquets. Their explicit computation demonstrated that paths produce binomial polynomials, specifically those containing exactly two non-zero terms. This discovery led them to pose a fundamental characterization problem: identify all connected circle graphs whose partial Petrial polynomial is binomial. In this paper, we solve this open problem in terms of local complementation and prove that for connected circle graphs, the binomial property holds precisely when the graph is a path.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 411-416"},"PeriodicalIF":1.0,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hypergraph orientation problem with vertex constraints 具有顶点约束的超图定向问题
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-17 DOI: 10.1016/j.dam.2026.01.003
Alberto José Ferrari , Valeria Leoni , Graciela Nasini , Gabriel Valiente
In computational biology and bioinformatics, hypergraphs model metabolic pathways and networks representing compounds as vertices and reactions as hyperedges. In a previous work we considered the problem of assigning a direction to the hyperedges of a hypergraph minimizing the number of source and sink vertices. We proved that this problem is NP-hard and that it is polynomial-time solvable on graphs.
In a more general setting, a compound can be a source or a sink in a particular metabolic pathway but, in the context of a metabolic network, it may become both a sink of one pathway and a source of another pathway (an internal vertex). Therefore, in the present work we address a more general form of the hypergraph orientation problem in which some vertices are constrained to be a source, a sink, or an internal vertex. We prove that it remains polynomial-time solvable on graphs by giving a linear-time algorithm. We propose a polynomial-size ILP formulation of the problem, which, applied to the biochemical reactions stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, shows that metabolic pathways and networks, and random hypergraphs with thousands of vertices and hyperedges, can be oriented in a few seconds on a personal computer.
在计算生物学和生物信息学中,超图模拟代谢途径和网络,将化合物表示为顶点,将反应表示为超边。在之前的工作中,我们考虑了为超图的超边分配方向的问题,最小化了源顶点和汇聚顶点的数量。我们证明了这个问题是np困难的,并且在图上是多项式时间可解的。在更一般的情况下,化合物可以是特定代谢途径的源或汇,但在代谢网络的背景下,它可以成为一个途径的汇和另一个途径的源(内部顶点)。因此,在目前的工作中,我们解决了超图定向问题的一个更一般的形式,其中一些顶点被约束为源、汇或内部顶点。通过给出一个线性时间算法,证明了它在图上仍然是多项式时间可解的。我们提出了一个多项式大小的问题ILP公式,该公式应用于存储在京都基因与基因组百科全书(KEGG)数据库中的生化反应,表明代谢途径和网络以及具有数千个顶点和超边的随机超图可以在几秒钟内在个人计算机上定向。
{"title":"The hypergraph orientation problem with vertex constraints","authors":"Alberto José Ferrari ,&nbsp;Valeria Leoni ,&nbsp;Graciela Nasini ,&nbsp;Gabriel Valiente","doi":"10.1016/j.dam.2026.01.003","DOIUrl":"10.1016/j.dam.2026.01.003","url":null,"abstract":"<div><div>In computational biology and bioinformatics, hypergraphs model metabolic pathways and networks representing compounds as vertices and reactions as hyperedges. In a previous work we considered the problem of assigning a direction to the hyperedges of a hypergraph minimizing the number of source and sink vertices. We proved that this problem is NP-hard and that it is polynomial-time solvable on graphs.</div><div>In a more general setting, a compound can be a source or a sink in a particular metabolic pathway but, in the context of a metabolic network, it may become both a sink of one pathway and a source of another pathway (an internal vertex). Therefore, in the present work we address a more general form of the hypergraph orientation problem in which some vertices are constrained to be a source, a sink, or an internal vertex. We prove that it remains polynomial-time solvable on graphs by giving a linear-time algorithm. We propose a polynomial-size ILP formulation of the problem, which, applied to the biochemical reactions stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, shows that metabolic pathways and networks, and random hypergraphs with thousands of vertices and hyperedges, can be oriented in a few seconds on a personal computer.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 355-366"},"PeriodicalIF":1.0,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fault tolerance for metric dimension and its variants 公制尺寸及其变体的容错
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-16 DOI: 10.1016/j.dam.2026.01.009
Jesse Geneson , Shen-Fu Tsai
<div><div>Hernando et al. (2008) introduced the fault-tolerant metric dimension <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is the size of the smallest resolving set <span><math><mi>S</mi></math></span> of a graph <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>S</mi><mo>−</mo><mfenced><mrow><mi>s</mi></mrow></mfenced></mrow></math></span> is also a resolving set of <span><math><mi>G</mi></math></span> for every <span><math><mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></math></span>. They found an upper bound <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>⋅</mi><msup><mrow><mn>5</mn></mrow><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the standard metric dimension of <span><math><mi>G</mi></math></span>. It was unknown whether there exists a family of graphs where <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> grows exponentially in terms of <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, until recently when Knor et al. (2024) found a family with <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for any possible value of <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We improve the upper bound on fault-tolerant metric dimension by showing that <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mn>3</mn></mrow><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for every connected graph <span><math><mi>G</mi></math></span>. Moreover, we find an infinite family of connected graphs <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mat
Hernando et al.(2008)引入了容错度量维度ftdim(G),它是图G的最小解析集S的大小,使得S−S也是每个S∈S的G的解析集。他们发现了一个上界ftdim(G)≤dim(G)(1+2·5dim(G)−1),其中dim(G)表示G的标准度量维度。不知道是否存在一类图,其中ftdim(G)以dim(G)为指数增长,直到最近Knor等人(2024)发现ftdim(G)=dim(G)+2dim(G)−1对于任何可能的dim(G)值。通过证明对于每一个连通图G, ftdim(G)≤dim(G)(1+3dim(G)−1),我们改进了容错度量维的上界,并且我们找到了一个无限族的连通图Jk,使得对于每一个正整数k, dim(Jk)=k和ftdim(Jk)≥3k−1−k−1。我们的结果表明limk→∞maxG:dim(G)=klog3(ftdim(G))k=1。此外,我们考虑容错边缘度量维数ftedim(G),并将其与边缘度量维数edim(G)进行定界,表明limk→∞maxG:edim(G)=klog2(ftedim(G))k=1。我们还得到了邻接维数和k截断度量维数容错的尖锐极值界。此外,我们还得到了其他一些关于度量维数及其变体的极值问题的尖锐界。特别地,我们证明了关于边度量维的极值问题与极值集理论中Erdős和Kleitman(1974)的开放问题之间的等价性。
{"title":"Fault tolerance for metric dimension and its variants","authors":"Jesse Geneson ,&nbsp;Shen-Fu Tsai","doi":"10.1016/j.dam.2026.01.009","DOIUrl":"10.1016/j.dam.2026.01.009","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Hernando et al. (2008) introduced the fault-tolerant metric dimension &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which is the size of the smallest resolving set &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is also a resolving set of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. They found an upper bound &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the standard metric dimension of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It was unknown whether there exists a family of graphs where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; grows exponentially in terms of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, until recently when Knor et al. (2024) found a family with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for any possible value of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We improve the upper bound on fault-tolerant metric dimension by showing that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, we find an infinite family of connected graphs &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mat","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 339-354"},"PeriodicalIF":1.0,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pendant-tree connectivity of some regular graphs 一些正则图的垂坠树连通性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-16 DOI: 10.1016/j.dam.2026.01.005
Shu-Li Zhao, Bao-Cheng Zhang
<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph, <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>, a tree <span><math><mi>T</mi></math></span> in <span><math><mi>G</mi></math></span> is called a pendant <span><math><mi>S</mi></math></span>-tree if <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and the degree of each vertex in <span><math><mi>S</mi></math></span> is equal to one. Two pendant <span><math><mi>S</mi></math></span>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are called internally disjoint if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. For an integer <span><math><mi>k</mi></math></span> with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>, the pendant-tree <span><math><mi>k</mi></math></span>-connectivity of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>{</mo></mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mrow><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> denotes the maximum number <span><math><mi>r</mi></math></span> of internally disjoint pendant <span><math><mi>S</mi></math></span>-trees in <span><math><mi>G</mi></math></span>. The pendant-tree <span><math><mi>k</mi></math></span>-connectivity is a generalization of traditional connectivity. In this paper, we mainly investigate the pendant-tree 4-connectivity of the regular graph with given properties, denoted by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which was introduced in Zhao and Hao (2019). As applications of the main result, the pendant-tree 4
设G为连通图,且S⊥V(G)、b|、b|≥2,则S⊥V(T)中的树T,且S中的每个顶点的度数均等于1,称为垂S树。如果E(T1)∩E(T2)=0,且V(T1)∩V(T2)=S,则两个悬垂S树T1和T2称为内不相交。对于2≤k≤n的整数k,图G的挂树k-连通性定义为τk(G)=min{τG(S)|S≤V(G), |S|=k},其中τG(S)表示G中内部不相交的挂树S-树的最大个数r。挂树k-连通性是传统连通性的推广。在本文中,我们主要研究具有给定属性的正则图的挂坠树4-连通性,表示为Hn,该方法在Zhao和Hao(2019)中引入。作为主要结果的应用,直接得到了双射连接图Bn和完全图CTn所生成的Cayley图的垂树4连通性,得到了Hager给出的τ4(G)的上界。
{"title":"The pendant-tree connectivity of some regular graphs","authors":"Shu-Li Zhao,&nbsp;Bao-Cheng Zhang","doi":"10.1016/j.dam.2026.01.005","DOIUrl":"10.1016/j.dam.2026.01.005","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a connected graph, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, a tree &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is called a pendant &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-tree if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and the degree of each vertex in &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is equal to one. Two pendant &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-trees &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are called internally disjoint if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;0̸&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. For an integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the pendant-tree &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-connectivity of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is defined as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the maximum number &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of internally disjoint pendant &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-trees in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The pendant-tree &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-connectivity is a generalization of traditional connectivity. In this paper, we mainly investigate the pendant-tree 4-connectivity of the regular graph with given properties, denoted by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, which was introduced in Zhao and Hao (2019). As applications of the main result, the pendant-tree 4","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 352-360"},"PeriodicalIF":1.0,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Myerson value for games with weighted signed networks 带有加权签名网络的博弈的Myerson值
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-15 DOI: 10.1016/j.dam.2026.01.002
Yushuang Mou , Qiang Sun , Chao Zhang
Weighted signed networks capture both positive and negative relationships between individuals, with link weights representing the intensity of these relationships. We model cooperation in such networks as a cooperative game restricted by a weighted signed network. To address the distribution problem in these games, we introduce the weighted signed Myerson value (WS-Myerson value), which is grounded in structural balance theory and incorporates the minimum cost required to achieve balance within the network. We prove that the WS-Myerson value is uniquely determined by the axioms of component efficiency, fairness for conflict players, and marginality.
加权签名网络捕获了个体之间的积极和消极关系,链接权重代表了这些关系的强度。我们将这种网络中的合作建模为受加权签名网络约束的合作博弈。为了解决这些博弈中的分配问题,我们引入了加权签名Myerson值(WS-Myerson值),该值以结构平衡理论为基础,并结合了在网络内实现平衡所需的最小成本。我们证明了WS-Myerson值是由组件效率、冲突参与者公平和边际性公理唯一决定的。
{"title":"The Myerson value for games with weighted signed networks","authors":"Yushuang Mou ,&nbsp;Qiang Sun ,&nbsp;Chao Zhang","doi":"10.1016/j.dam.2026.01.002","DOIUrl":"10.1016/j.dam.2026.01.002","url":null,"abstract":"<div><div>Weighted signed networks capture both positive and negative relationships between individuals, with link weights representing the intensity of these relationships. We model cooperation in such networks as a cooperative game restricted by a weighted signed network. To address the distribution problem in these games, we introduce the weighted signed Myerson value (WS-Myerson value), which is grounded in structural balance theory and incorporates the minimum cost required to achieve balance within the network. We prove that the WS-Myerson value is uniquely determined by the axioms of component efficiency, fairness for conflict players, and marginality.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 400-410"},"PeriodicalIF":1.0,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145976747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voting profiles admitting all candidates as knockout winners 投票资料显示所有候选人都是淘汰赛赢家
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-14 DOI: 10.1016/j.dam.2025.12.068
Bernard De Baets , Emilio De Santis
A set of 2n candidates is presented to a commission. At every round, each member of this commission votes by pairwise comparison, and one-half of the candidates is deleted from the tournament, the remaining ones proceeding to the next round until the nth round (the final one) in which the final winner is declared. The candidates are arranged on a board in a given order, which is maintained among the remaining candidates at all rounds. A study of the size of the commission is carried out in order to obtain the desired result of any candidate being a possible winner. For 2n candidates with n3, we identify a voting profile with 4n3 voters such that any candidate could win simply by choosing a proper initial order of the candidates. Moreover, in the setting of a random number of voters, we obtain the same results, with high probability, when the expected number of voters is large.
一组2n名候选人被提交给委员会。在每一轮比赛中,该委员会的每个成员都以两两比较的方式投票,一半的候选人被淘汰出局,剩下的人进入下一轮比赛,直到第n轮(最后一轮)宣布最终获胜者。候选人按照给定的顺序排列在棋盘上,在所有回合中都保留在剩余的候选人中。对委员会的规模进行研究,以获得任何候选人可能获胜的预期结果。对于n≥3的2n个候选人,我们确定了一个有4n−3个选民的投票配置文件,这样任何候选人都可以通过选择合适的候选人初始顺序来获胜。此外,在选民人数随机的情况下,当期望选民人数较大时,我们得到的结果是相同的,而且概率很大。
{"title":"Voting profiles admitting all candidates as knockout winners","authors":"Bernard De Baets ,&nbsp;Emilio De Santis","doi":"10.1016/j.dam.2025.12.068","DOIUrl":"10.1016/j.dam.2025.12.068","url":null,"abstract":"<div><div>A set of <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> candidates is presented to a commission. At every round, each member of this commission votes by pairwise comparison, and one-half of the candidates is deleted from the tournament, the remaining ones proceeding to the next round until the <span><math><mi>n</mi></math></span>th round (the final one) in which the final winner is declared. The candidates are arranged on a board in a given order, which is maintained among the remaining candidates at all rounds. A study of the size of the commission is carried out in order to obtain the desired result of any candidate being a possible winner. For <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></math></span> candidates with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, we identify a voting profile with <span><math><mrow><mn>4</mn><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span> voters such that any candidate could win simply by choosing a proper initial order of the candidates. Moreover, in the setting of a random number of voters, we obtain the same results, with high probability, when the expected number of voters is large.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 340-351"},"PeriodicalIF":1.0,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tutte polynomials of single interior pericondensed hexagonal systems 单内周密六边形系统的Tutte多项式
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-13 DOI: 10.1016/j.dam.2025.12.054
Deqing Xu , Bo Deng , HongJian Lai
The Tutte polynomial of a graph is a fundamental invariant that effectively reflects certain characteristics and properties of the graph, which is also a very important tool for studying other graph parameters. By assigning values to the two variables in the Tutte polynomial, one can obtain combinatorial interpretations of various graph parameters such as the number of spanning trees. It is well known that the computation of the Tutte polynomial of a graph is NP-hard. In this research, a matrix–vector multiplication algorithm with the computational complexity O(logN) is given to compute the Tutte polynomial for a pericondensed system with N hexagons. And the matrix–vector multiplication is used to derive the precise formulation of the Tutte polynomials for single interior pericondensed hexagonal systems, which are applied to explore their spanning trees, chromatic polynomial and flow polynomial.
图的Tutte多项式是有效反映图的某些特征和性质的基本不变量,也是研究图的其他参数的重要工具。通过为Tutte多项式中的两个变量赋值,可以获得各种图参数(如生成树的数量)的组合解释。众所周知,图的Tutte多项式的计算是np困难的。本文给出了一种计算复杂度为O(logN)的矩阵向量乘法算法,用于计算N个六边形的周密集系统的Tutte多项式。利用矩阵-向量乘法导出了单个内周密六边形系统的Tutte多项式的精确表达式,并将其应用于研究其生成树、色多项式和流多项式。
{"title":"Tutte polynomials of single interior pericondensed hexagonal systems","authors":"Deqing Xu ,&nbsp;Bo Deng ,&nbsp;HongJian Lai","doi":"10.1016/j.dam.2025.12.054","DOIUrl":"10.1016/j.dam.2025.12.054","url":null,"abstract":"<div><div>The Tutte polynomial of a graph is a fundamental invariant that effectively reflects certain characteristics and properties of the graph, which is also a very important tool for studying other graph parameters. By assigning values to the two variables in the Tutte polynomial, one can obtain combinatorial interpretations of various graph parameters such as the number of spanning trees. It is well known that the computation of the Tutte polynomial of a graph is NP-hard. In this research, a matrix–vector multiplication algorithm with the computational complexity <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> is given to compute the Tutte polynomial for a pericondensed system with <span><math><mi>N</mi></math></span> hexagons. And the matrix–vector multiplication is used to derive the precise formulation of the Tutte polynomials for single interior pericondensed hexagonal systems, which are applied to explore their spanning trees, chromatic polynomial and flow polynomial.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 326-339"},"PeriodicalIF":1.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pushing Cops and Robber on graphs of maximum degree four 把警察和强盗推到最高四度的图上
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-13 DOI: 10.1016/j.dam.2025.12.067
Harmender Gahlawat
Cops and Robber is a game played on graphs where a set of cops aim to capture the position of a single robber. The main parameter of interest in this game is the cop number, which is the minimum number of cops that are sufficient to guarantee the capture of the robber.
In a directed graph G, the push operation on a vertex v reverses the orientation of all arcs incident to v. We consider a variation of the classical Cops and Robber on oriented graphs, where in its turn, each cop can either move to an out-neighbor of its current vertex or push some vertex of the graph, whereas, the robber can move to an out-neighbor in its turn. [Das et al., CALDAM, 2023] introduced this variant and established that if G is an orientation of a subcubic graph, then one cop with push ability has a winning strategy. We extend these results to establish that if G is an orientation of a 3-degenerate graph, or of a graph with maximum degree 4, then one cop with push ability has a winning strategy. Moreover, we establish that if G can be made to be a directed acyclic graph, then one cop with push ability has a winning strategy.
《Cops and robbers》是一款基于图表的游戏,其中一组警察的目标是抓住一名抢劫犯的位置。在这个游戏中最重要的参数是警察数量,即能够保证抓住抢劫犯的最少警察数量。在有向图G - l - l中,顶点v上的推操作反转了所有与v相关的弧线的方向。我们考虑有向图上经典cop和抢劫者的一种变体,其中每个cop可以移动到其当前顶点的外邻居或推图的某个顶点,而抢劫者可以移动到其外邻居。[Das et al., CALDAM, 2023]引入了这种变体,并建立了如果G / l是亚立方图的一个方向,那么具有推送能力的一方具有获胜策略。我们扩展了这些结果来证明如果G - l是一个3-简并图的一个方向,或者是一个最大度为4的图的一个方向,那么一个具有推能力的cop有一个获胜策略。此外,我们还证明了如果G / l可以构成一个有向无环图,那么一个具有推能力的cop有一个获胜策略。
{"title":"Pushing Cops and Robber on graphs of maximum degree four","authors":"Harmender Gahlawat","doi":"10.1016/j.dam.2025.12.067","DOIUrl":"10.1016/j.dam.2025.12.067","url":null,"abstract":"<div><div><span>Cops and Robber</span> is a game played on graphs where a set of <em>cops</em> aim to <em>capture</em> the position of a single <em>robber</em>. The main parameter of interest in this game is the <em>cop number</em>, which is the minimum number of cops that are sufficient to guarantee the capture of the robber.</div><div>In a directed graph <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>, the <em>push</em> operation on a vertex <span><math><mi>v</mi></math></span> reverses the orientation of all arcs incident to <span><math><mi>v</mi></math></span>. We consider a variation of the classical <span>Cops and Robber</span> on oriented graphs, where in its turn, each cop can either move to an out-neighbor of its current vertex or push some vertex of the graph, whereas, the robber can move to an out-neighbor in its turn. [Das et al., CALDAM, 2023] introduced this variant and established that if <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is an orientation of a subcubic graph, then one cop with push ability has a winning strategy. We extend these results to establish that if <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is an orientation of a 3-degenerate graph, or of a graph with maximum degree 4, then one cop with push ability has a winning strategy. Moreover, we establish that if <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> can be made to be a directed acyclic graph, then one cop with push ability has a winning strategy.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 327-338"},"PeriodicalIF":1.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-inclusive g-extra diagnosability of interconnection networks under MM* model MM*模型下互联网络的非包容性g-extra可诊断性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-13 DOI: 10.1016/j.dam.2025.12.069
Weixing Zheng , Shuming Zhou , Eddie Cheng
With the popularization and deepening of applications on high-performance computing platforms, which are often built upon large-scale multiprocessor systems, system-level diagnosis has become essential to ensure system reliability and fault tolerability. Classical diagnosability and various conditional diagnosabilities are vital metrics to evaluate a system’s capability to accurately identify faulty processors. However, the upper bounds of these metrics commonly rely on the conventional assumptions of inclusiveness between faulty sets—one situation that rarely holds in practical scenarios. To overcome this deficiency, the non-inclusive diagnosability has been introduced and explored under various diagnostic models. Despite significant progress, the study of non-inclusive g-extra diagnosability under the MM* model remains up in the air. This work addresses this gap by determining the non-inclusive 2-extra diagnosability of general interconnection networks under the MM* model. As applications, we derive the non-inclusive 2-extra diagnosabilities of several well-known networks, including hypercube, k-ary n-cube, and bubble sort graph. In addition, we propose a novel diagnosis algorithm, NFDAM, for non-inclusive g-extra diagnosis, which runs in polynomial time with a complexity of O(|V(G)|(Δ(G))3), where Δ(G) denotes the maximum degree of graph G. Simulation results demonstrate the effectiveness of the proposed algorithm in fault identification.
随着高性能计算平台应用的普及和深入,系统级诊断对于保证系统的可靠性和容错性至关重要。高性能计算平台通常建立在大型多处理器系统之上。经典可诊断性和各种条件可诊断性是评估系统准确识别故障处理器能力的重要指标。然而,这些指标的上限通常依赖于错误集之间的包容性的传统假设——这种情况在实际场景中很少成立。为了克服这一缺陷,在各种诊断模型下引入了非包容性可诊断性。尽管取得了重大进展,但在MM*模型下对非包容性g-extra可诊断性的研究仍然悬而未决。本工作通过确定MM*模型下一般互连网络的非包容性2-额外可诊断性来解决这一差距。作为应用,我们推导了几个著名网络的非包含2-额外可诊断性,包括超立方体、k-ary n-立方体和冒泡排序图。此外,我们提出了一种新的非包含G -extra诊断算法NFDAM,该算法运行时间为多项式,复杂度为O(|V(G)|⋅(Δ(G))3),其中Δ(G)表示图G的最大程度,仿真结果表明了该算法在故障识别中的有效性。
{"title":"Non-inclusive g-extra diagnosability of interconnection networks under MM* model","authors":"Weixing Zheng ,&nbsp;Shuming Zhou ,&nbsp;Eddie Cheng","doi":"10.1016/j.dam.2025.12.069","DOIUrl":"10.1016/j.dam.2025.12.069","url":null,"abstract":"<div><div>With the popularization and deepening of applications on high-performance computing platforms, which are often built upon large-scale multiprocessor systems, system-level diagnosis has become essential to ensure system reliability and fault tolerability. Classical diagnosability and various conditional diagnosabilities are vital metrics to evaluate a system’s capability to accurately identify faulty processors. However, the upper bounds of these metrics commonly rely on the conventional assumptions of inclusiveness between faulty sets—one situation that rarely holds in practical scenarios. To overcome this deficiency, the non-inclusive diagnosability has been introduced and explored under various diagnostic models. Despite significant progress, the study of non-inclusive <span><math><mi>g</mi></math></span>-extra diagnosability under the MM* model remains up in the air. This work addresses this gap by determining the non-inclusive 2-extra diagnosability of general interconnection networks under the MM* model. As applications, we derive the non-inclusive 2-extra diagnosabilities of several well-known networks, including hypercube, <span><math><mi>k</mi></math></span>-ary <span><math><mi>n</mi></math></span>-cube, and bubble sort graph. In addition, we propose a novel diagnosis algorithm, NFDAM, for non-inclusive <span><math><mi>g</mi></math></span>-extra diagnosis, which runs in polynomial time with a complexity of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo><mi>⋅</mi><msup><mrow><mrow><mo>(</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the maximum degree of graph <span><math><mi>G</mi></math></span>. Simulation results demonstrate the effectiveness of the proposed algorithm in fault identification.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 315-326"},"PeriodicalIF":1.0,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1