首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
Editorial: 10th International Conference on Algorithms and Discrete Applied Mathematics (CALDAM 2024) 第10届算法与离散应用数学国际会议(CALDAM 2024)
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-21 DOI: 10.1016/j.dam.2026.01.030
Subrahmanyam Kalyanasundaram, Anil Maheshwari
{"title":"Editorial: 10th International Conference on Algorithms and Discrete Applied Mathematics (CALDAM 2024)","authors":"Subrahmanyam Kalyanasundaram, Anil Maheshwari","doi":"10.1016/j.dam.2026.01.030","DOIUrl":"10.1016/j.dam.2026.01.030","url":null,"abstract":"","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Page 417"},"PeriodicalIF":1.0,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146173388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalization of the Chvátal–Erdős theorem Chvátal-Erdős定理的推广
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-21 DOI: 10.1016/j.dam.2026.01.029
Kun Cheng
A well-known result of Chvátal and Erdős from 1972 states that a graph with connectivity not less than its independence number plus one is hamiltonian-connected. A graph G is called an [s,t]-graph if any induced subgraph of G of order s has size at least t. We prove that every k-connected [k+1,2]-graph is hamiltonian-connected except kK1Gk, where k2 and Gk is an arbitrary graph of order k. This generalizes the Chvátal–Erdős theorem.
1972年Chvátal和Erdős的一个著名结果表明,连通性不小于其独立数加1的图是哈密顿连通的。如果G的s阶诱导子图的大小至少为t,则图G称为[s,t]-图。我们证明除kK1≥2且Gk是k阶任意图外,所有k连通的[k+1,2]-图都是哈密顿连通的,这推广了Chvátal-Erdős定理。
{"title":"A generalization of the Chvátal–Erdős theorem","authors":"Kun Cheng","doi":"10.1016/j.dam.2026.01.029","DOIUrl":"10.1016/j.dam.2026.01.029","url":null,"abstract":"<div><div>A well-known result of Chvátal and Erdős from 1972 states that a graph with connectivity not less than its independence number plus one is hamiltonian-connected. A graph <span><math><mi>G</mi></math></span> is called an <span><math><mrow><mo>[</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>]</mo></mrow></math></span>-graph if any induced subgraph of <span><math><mi>G</mi></math></span> of order <span><math><mi>s</mi></math></span> has size at least <span><math><mrow><mi>t</mi><mo>.</mo></mrow></math></span> We prove that every <span><math><mi>k</mi></math></span>-connected <span><math><mrow><mo>[</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></math></span>-graph is hamiltonian-connected except <span><math><mrow><mi>k</mi><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is an arbitrary graph of order <span><math><mi>k</mi></math></span>. This generalizes the Chvátal–Erdős theorem.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"385 ","pages":"Pages 65-71"},"PeriodicalIF":1.0,"publicationDate":"2026-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146039495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disjunctive domination in maximal outerplanar graphs 极大外平面图的析取支配
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-19 DOI: 10.1016/j.dam.2025.12.056
Michael A. Henning , Paras Vinubhai Maniya , Dinabandhu Pradhan
A disjunctive dominating set of a graph G is a set DV(G) such that every vertex in V(G)D has a neighbor in D or has at least two vertices in D at distance 2 from it. The disjunctive domination number of G, denoted by γ2d(G), is the minimum cardinality among all disjunctive dominating sets of G. In this paper, we show that if G is a maximal outerplanar graph of order n7 with k vertices of degree 2, then γ2d(G)29(n+k), and this bound is sharp.
图G的一个析取支配集是一个集D⊥V(G),使得V(G) × D中的每个顶点在D中有一个邻居,或者在距离为2的距离上至少有两个顶点在D中。G的析取支配数,用γ2d(G)表示,是G的所有析取支配集中最小的cardinality。本文证明了如果G是一个n≥7阶的极大外平面图,有k个顶点为2度,则γ2d(G)≤⌊29(n+k)⌋,且该界是尖锐的。
{"title":"Disjunctive domination in maximal outerplanar graphs","authors":"Michael A. Henning ,&nbsp;Paras Vinubhai Maniya ,&nbsp;Dinabandhu Pradhan","doi":"10.1016/j.dam.2025.12.056","DOIUrl":"10.1016/j.dam.2025.12.056","url":null,"abstract":"<div><div>A disjunctive dominating set of a graph <span><math><mi>G</mi></math></span> is a set <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> such that every vertex in <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∖</mo><mi>D</mi></mrow></math></span> has a neighbor in <span><math><mi>D</mi></math></span> or has at least two vertices in <span><math><mi>D</mi></math></span> at distance 2 from it. The disjunctive domination number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum cardinality among all disjunctive dominating sets of <span><math><mi>G</mi></math></span>. In this paper, we show that if <span><math><mi>G</mi></math></span> is a maximal outerplanar graph of order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>7</mn></mrow></math></span> with <span><math><mi>k</mi></math></span> vertices of degree 2, then <span><math><mrow><msubsup><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>d</mi></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>9</mn></mrow></mfrac><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>k</mi><mo>)</mo></mrow><mo>⌋</mo></mrow></mrow></math></span>, and this bound is sharp.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"385 ","pages":"Pages 24-61"},"PeriodicalIF":1.0,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146039493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing reliability of 3-ary n-cubes based on the h-extra r-component edge-connectivity 基于h-额外r分量边连通性的3元n-立方体可靠性评估
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-19 DOI: 10.1016/j.dam.2026.01.004
Chuanye Zheng, Liqiong Xu
<div><div>As multiprocessor systems scale up in size and complexity to meet increasing computational demands, link or processor failures are inevitable. Thus reliability of multiprocessor systems needs to be considered. Restricting the surviving components within multiprocessor systems can enhance the evaluation of their reliability. Recently, Yang et al. introduced a new parameter called <span><math><mi>h</mi></math></span>-extra <span><math><mi>r</mi></math></span>-component edge-connectivity, which requires that for a connected graph <span><math><mi>G</mi></math></span> and an edge-cut <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span>, there exist at least <span><math><mi>r</mi></math></span> components surviving in <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> and the order of each component is not less than <span><math><mi>h</mi></math></span>. In this paper, we consider the <span><math><mi>h</mi></math></span>-extra <span><math><mi>r</mi></math></span>-component edge-connectivity of the 3-ary <span><math><mi>n</mi></math></span>-cube <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> and determine that <span><math><mrow><mi>c</mi><msubsup><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mn>6</mn><mi>n</mi><mi>h</mi><mo>−</mo><mn>3</mn><mi>e</mi><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>)</mo></mrow><mo>−</mo><mn>3</mn><mi>h</mi></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mn>1</mn><mo>≤</mo><mi>h</mi><mo>≤</mo><mi>δ</mi><mi>⋅</mi><msup><mrow><mn>3</mn></mrow><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> where <span><math><mrow><mi>δ</mi><mo>=</mo><mn>1</mn></mrow></math></span> if <span><math><mi>n</mi></math></span> is odd and <span><math><mrow><mi>δ</mi><mo>=</mo><mn>2</mn></mrow></math></span> if <span><math><mi>n</mi></math></span> is even, <span><math><mrow><mi>c</mi><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>r</mi></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>k</mi></mrow></msup></mrow></msubsup><mrow><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>)</mo></mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>k</mi></mrow></msup><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>e</mi><msub><mrow><mi>x</mi></mrow><m
随着多处理器系统的规模和复杂性不断扩大,以满足不断增长的计算需求,链路或处理器故障是不可避免的。因此,需要考虑多处理器系统的可靠性。限制多处理机系统中幸存部件的数量可以提高对系统可靠性的评估。最近,杨等人提出了一个新的参数称为h-extra r-component edge,这要求一个连通图G和edge-cut F (G,存在至少r G−F幸存的组件,每个组件的顺序不小于h。在本文中,我们考虑h-extra r-component edge的3-ary n立方体Qn3和确定cλ4 h (Qn3) = 6 nh−3 exh (Qn3)−3 h n≥5和1 h≤≤δ⋅3⌈n2⌉−−1δ= 1如果n是奇怪和δ= 2如果n是偶数,cλr3k (Qn3) = (r−1)(2 n−2 k) 3 k 12 exr−−1 (Qn3)⋅3 k 1≤(r−1)3 k≤δ⋅3⌈n2⌉−1和cλ43 k (Qn3) = (2 n−2 k−1)3 k + 1 0≤k≤n−2。
{"title":"Assessing reliability of 3-ary n-cubes based on the h-extra r-component edge-connectivity","authors":"Chuanye Zheng,&nbsp;Liqiong Xu","doi":"10.1016/j.dam.2026.01.004","DOIUrl":"10.1016/j.dam.2026.01.004","url":null,"abstract":"&lt;div&gt;&lt;div&gt;As multiprocessor systems scale up in size and complexity to meet increasing computational demands, link or processor failures are inevitable. Thus reliability of multiprocessor systems needs to be considered. Restricting the surviving components within multiprocessor systems can enhance the evaluation of their reliability. Recently, Yang et al. introduced a new parameter called &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-extra &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-component edge-connectivity, which requires that for a connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and an edge-cut &lt;span&gt;&lt;math&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, there exist at least &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; components surviving in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and the order of each component is not less than &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we consider the &lt;span&gt;&lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-extra &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-component edge-connectivity of the 3-ary &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-cube &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; and determine that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is odd and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is even, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;m","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 361-371"},"PeriodicalIF":1.0,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146024235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Welfare loss in connected resource allocation 关联资源配置中的福利损失
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-19 DOI: 10.1016/j.dam.2026.01.007
Xiaohui Bei , Alexander Lam , Xinhang Lu , Warut Suksompong
We study the allocation of indivisible items that form an undirected graph and investigate the worst-case welfare loss when requiring that each agent must receive a connected subgraph. Our focus is on both egalitarian and utilitarian welfare. Specifically, we introduce the concept of egalitarian (resp., utilitarian) price of connectivity, which captures the worst-case ratio between the optimal egalitarian (resp., utilitarian) welfare among all allocations and that among connected allocations. We provide tight or asymptotically tight bounds on the price of connectivity for several large classes of graphs in the case of two agents—including graphs with vertex connectivity 1 or 2 and complete bipartite graphs—as well as for paths, stars, and cycles in the general case where the number of agents can be arbitrary.
我们研究了组成无向图的不可分割项目的分配,并研究了当要求每个智能体必须接收一个连通子图时的最坏情况下的福利损失。我们的重点是平等主义和功利主义的福利。具体来说,我们引入了平等主义(平等主义)的概念。(如功利主义)的连接价格,它捕捉了最优平均主义(如功利主义)与最坏情况之间的比率。所有分配中的福利和相关分配中的福利。我们为几个大型图类在两个智能体的情况下的连通性价格提供了紧密或渐进的紧密边界——包括顶点连通性为1或2的图和完全二部图——以及在智能体数量可以任意的一般情况下的路径、星形和循环。
{"title":"Welfare loss in connected resource allocation","authors":"Xiaohui Bei ,&nbsp;Alexander Lam ,&nbsp;Xinhang Lu ,&nbsp;Warut Suksompong","doi":"10.1016/j.dam.2026.01.007","DOIUrl":"10.1016/j.dam.2026.01.007","url":null,"abstract":"<div><div>We study the allocation of indivisible items that form an undirected graph and investigate the worst-case welfare loss when requiring that each agent must receive a connected subgraph. Our focus is on both egalitarian and utilitarian welfare. Specifically, we introduce the concept of <em>egalitarian (resp., utilitarian) price of connectivity</em>, which captures the worst-case ratio between the optimal egalitarian (resp., utilitarian) welfare among all allocations and that among connected allocations. We provide tight or asymptotically tight bounds on the price of connectivity for several large classes of graphs in the case of two agents—including graphs with vertex connectivity 1 or 2 and complete bipartite graphs—as well as for paths, stars, and cycles in the general case where the number of agents can be arbitrary.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"385 ","pages":"Pages 1-23"},"PeriodicalIF":1.0,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145993603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing circle graphs with binomial partial Petrial polynomials 用二项式偏皮特多项式表征圆图
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-19 DOI: 10.1016/j.dam.2026.01.012
Ruiqing Feng, Qi Yan, Xuan Zheng
The partial Petrial polynomial was first introduced by Gross, Mansour, and Tucker as a generating function that enumerates the Euler genera of all possible partial Petrials on a ribbon graph. Yan and Li later extended this polynomial invariant to circle graphs by utilizing the correspondence between circle graphs and bouquets. Their explicit computation demonstrated that paths produce binomial polynomials, specifically those containing exactly two non-zero terms. This discovery led them to pose a fundamental characterization problem: identify all connected circle graphs whose partial Petrial polynomial is binomial. In this paper, we solve this open problem in terms of local complementation and prove that for connected circle graphs, the binomial property holds precisely when the graph is a path.
偏Petrial多项式最初是由Gross, Mansour和Tucker作为一个生成函数引入的,它枚举了带状图上所有可能的偏Petrial的欧拉属。Yan和Li后来利用圆图和花束之间的对应关系,将这个多项式不变量推广到圆图。他们明确的计算表明,路径产生二项式多项式,特别是那些恰好包含两个非零项的多项式。这一发现使他们提出了一个基本的表征问题:确定所有部分Petrial多项式为二项的连通圆图。本文用局部补的方法解决了这个开放问题,并证明了对于连通圆图,当图是一条路径时,二项式性质是准确成立的。
{"title":"Characterizing circle graphs with binomial partial Petrial polynomials","authors":"Ruiqing Feng,&nbsp;Qi Yan,&nbsp;Xuan Zheng","doi":"10.1016/j.dam.2026.01.012","DOIUrl":"10.1016/j.dam.2026.01.012","url":null,"abstract":"<div><div>The partial Petrial polynomial was first introduced by Gross, Mansour, and Tucker as a generating function that enumerates the Euler genera of all possible partial Petrials on a ribbon graph. Yan and Li later extended this polynomial invariant to circle graphs by utilizing the correspondence between circle graphs and bouquets. Their explicit computation demonstrated that paths produce binomial polynomials, specifically those containing exactly two non-zero terms. This discovery led them to pose a fundamental characterization problem: identify all connected circle graphs whose partial Petrial polynomial is binomial. In this paper, we solve this open problem in terms of local complementation and prove that for connected circle graphs, the binomial property holds precisely when the graph is a path.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 411-416"},"PeriodicalIF":1.0,"publicationDate":"2026-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hypergraph orientation problem with vertex constraints 具有顶点约束的超图定向问题
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-17 DOI: 10.1016/j.dam.2026.01.003
Alberto José Ferrari , Valeria Leoni , Graciela Nasini , Gabriel Valiente
In computational biology and bioinformatics, hypergraphs model metabolic pathways and networks representing compounds as vertices and reactions as hyperedges. In a previous work we considered the problem of assigning a direction to the hyperedges of a hypergraph minimizing the number of source and sink vertices. We proved that this problem is NP-hard and that it is polynomial-time solvable on graphs.
In a more general setting, a compound can be a source or a sink in a particular metabolic pathway but, in the context of a metabolic network, it may become both a sink of one pathway and a source of another pathway (an internal vertex). Therefore, in the present work we address a more general form of the hypergraph orientation problem in which some vertices are constrained to be a source, a sink, or an internal vertex. We prove that it remains polynomial-time solvable on graphs by giving a linear-time algorithm. We propose a polynomial-size ILP formulation of the problem, which, applied to the biochemical reactions stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, shows that metabolic pathways and networks, and random hypergraphs with thousands of vertices and hyperedges, can be oriented in a few seconds on a personal computer.
在计算生物学和生物信息学中,超图模拟代谢途径和网络,将化合物表示为顶点,将反应表示为超边。在之前的工作中,我们考虑了为超图的超边分配方向的问题,最小化了源顶点和汇聚顶点的数量。我们证明了这个问题是np困难的,并且在图上是多项式时间可解的。在更一般的情况下,化合物可以是特定代谢途径的源或汇,但在代谢网络的背景下,它可以成为一个途径的汇和另一个途径的源(内部顶点)。因此,在目前的工作中,我们解决了超图定向问题的一个更一般的形式,其中一些顶点被约束为源、汇或内部顶点。通过给出一个线性时间算法,证明了它在图上仍然是多项式时间可解的。我们提出了一个多项式大小的问题ILP公式,该公式应用于存储在京都基因与基因组百科全书(KEGG)数据库中的生化反应,表明代谢途径和网络以及具有数千个顶点和超边的随机超图可以在几秒钟内在个人计算机上定向。
{"title":"The hypergraph orientation problem with vertex constraints","authors":"Alberto José Ferrari ,&nbsp;Valeria Leoni ,&nbsp;Graciela Nasini ,&nbsp;Gabriel Valiente","doi":"10.1016/j.dam.2026.01.003","DOIUrl":"10.1016/j.dam.2026.01.003","url":null,"abstract":"<div><div>In computational biology and bioinformatics, hypergraphs model metabolic pathways and networks representing compounds as vertices and reactions as hyperedges. In a previous work we considered the problem of assigning a direction to the hyperedges of a hypergraph minimizing the number of source and sink vertices. We proved that this problem is NP-hard and that it is polynomial-time solvable on graphs.</div><div>In a more general setting, a compound can be a source or a sink in a particular metabolic pathway but, in the context of a metabolic network, it may become both a sink of one pathway and a source of another pathway (an internal vertex). Therefore, in the present work we address a more general form of the hypergraph orientation problem in which some vertices are constrained to be a source, a sink, or an internal vertex. We prove that it remains polynomial-time solvable on graphs by giving a linear-time algorithm. We propose a polynomial-size ILP formulation of the problem, which, applied to the biochemical reactions stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, shows that metabolic pathways and networks, and random hypergraphs with thousands of vertices and hyperedges, can be oriented in a few seconds on a personal computer.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 355-366"},"PeriodicalIF":1.0,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fault tolerance for metric dimension and its variants 公制尺寸及其变体的容错
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-16 DOI: 10.1016/j.dam.2026.01.009
Jesse Geneson , Shen-Fu Tsai
<div><div>Hernando et al. (2008) introduced the fault-tolerant metric dimension <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is the size of the smallest resolving set <span><math><mi>S</mi></math></span> of a graph <span><math><mi>G</mi></math></span> such that <span><math><mrow><mi>S</mi><mo>−</mo><mfenced><mrow><mi>s</mi></mrow></mfenced></mrow></math></span> is also a resolving set of <span><math><mi>G</mi></math></span> for every <span><math><mrow><mi>s</mi><mo>∈</mo><mi>S</mi></mrow></math></span>. They found an upper bound <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>⋅</mi><msup><mrow><mn>5</mn></mrow><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the standard metric dimension of <span><math><mi>G</mi></math></span>. It was unknown whether there exists a family of graphs where <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> grows exponentially in terms of <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, until recently when Knor et al. (2024) found a family with <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for any possible value of <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. We improve the upper bound on fault-tolerant metric dimension by showing that <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mn>3</mn></mrow><mrow><mo>dim</mo><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for every connected graph <span><math><mi>G</mi></math></span>. Moreover, we find an infinite family of connected graphs <span><math><msub><mrow><mi>J</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that <span><math><mrow><mo>dim</mo><mrow><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> and <span><math><mrow><mtext>ftdim</mtext><mrow><mo>(</mo><msub><mrow><mi>J</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mn>3</mn></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mat
Hernando et al.(2008)引入了容错度量维度ftdim(G),它是图G的最小解析集S的大小,使得S−S也是每个S∈S的G的解析集。他们发现了一个上界ftdim(G)≤dim(G)(1+2·5dim(G)−1),其中dim(G)表示G的标准度量维度。不知道是否存在一类图,其中ftdim(G)以dim(G)为指数增长,直到最近Knor等人(2024)发现ftdim(G)=dim(G)+2dim(G)−1对于任何可能的dim(G)值。通过证明对于每一个连通图G, ftdim(G)≤dim(G)(1+3dim(G)−1),我们改进了容错度量维的上界,并且我们找到了一个无限族的连通图Jk,使得对于每一个正整数k, dim(Jk)=k和ftdim(Jk)≥3k−1−k−1。我们的结果表明limk→∞maxG:dim(G)=klog3(ftdim(G))k=1。此外,我们考虑容错边缘度量维数ftedim(G),并将其与边缘度量维数edim(G)进行定界,表明limk→∞maxG:edim(G)=klog2(ftedim(G))k=1。我们还得到了邻接维数和k截断度量维数容错的尖锐极值界。此外,我们还得到了其他一些关于度量维数及其变体的极值问题的尖锐界。特别地,我们证明了关于边度量维的极值问题与极值集理论中Erdős和Kleitman(1974)的开放问题之间的等价性。
{"title":"Fault tolerance for metric dimension and its variants","authors":"Jesse Geneson ,&nbsp;Shen-Fu Tsai","doi":"10.1016/j.dam.2026.01.009","DOIUrl":"10.1016/j.dam.2026.01.009","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Hernando et al. (2008) introduced the fault-tolerant metric dimension &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, which is the size of the smallest resolving set &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is also a resolving set of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. They found an upper bound &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the standard metric dimension of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. It was unknown whether there exists a family of graphs where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; grows exponentially in terms of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, until recently when Knor et al. (2024) found a family with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for any possible value of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We improve the upper bound on fault-tolerant metric dimension by showing that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every connected graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, we find an infinite family of connected graphs &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;dim&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;ftdim&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mat","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"383 ","pages":"Pages 339-354"},"PeriodicalIF":1.0,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145977711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pendant-tree connectivity of some regular graphs 一些正则图的垂坠树连通性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-16 DOI: 10.1016/j.dam.2026.01.005
Shu-Li Zhao, Bao-Cheng Zhang
<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph, <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>, a tree <span><math><mi>T</mi></math></span> in <span><math><mi>G</mi></math></span> is called a pendant <span><math><mi>S</mi></math></span>-tree if <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> and the degree of each vertex in <span><math><mi>S</mi></math></span> is equal to one. Two pendant <span><math><mi>S</mi></math></span>-trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are called internally disjoint if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. For an integer <span><math><mi>k</mi></math></span> with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi></mrow></math></span>, the pendant-tree <span><math><mi>k</mi></math></span>-connectivity of a graph <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>m</mi><mi>i</mi><mi>n</mi><mrow><mo>{</mo></mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>k</mi><mrow><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></mrow></math></span> denotes the maximum number <span><math><mi>r</mi></math></span> of internally disjoint pendant <span><math><mi>S</mi></math></span>-trees in <span><math><mi>G</mi></math></span>. The pendant-tree <span><math><mi>k</mi></math></span>-connectivity is a generalization of traditional connectivity. In this paper, we mainly investigate the pendant-tree 4-connectivity of the regular graph with given properties, denoted by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which was introduced in Zhao and Hao (2019). As applications of the main result, the pendant-tree 4
设G为连通图,且S⊥V(G)、b|、b|≥2,则S⊥V(T)中的树T,且S中的每个顶点的度数均等于1,称为垂S树。如果E(T1)∩E(T2)=0,且V(T1)∩V(T2)=S,则两个悬垂S树T1和T2称为内不相交。对于2≤k≤n的整数k,图G的挂树k-连通性定义为τk(G)=min{τG(S)|S≤V(G), |S|=k},其中τG(S)表示G中内部不相交的挂树S-树的最大个数r。挂树k-连通性是传统连通性的推广。在本文中,我们主要研究具有给定属性的正则图的挂坠树4-连通性,表示为Hn,该方法在Zhao和Hao(2019)中引入。作为主要结果的应用,直接得到了双射连接图Bn和完全图CTn所生成的Cayley图的垂树4连通性,得到了Hager给出的τ4(G)的上界。
{"title":"The pendant-tree connectivity of some regular graphs","authors":"Shu-Li Zhao,&nbsp;Bao-Cheng Zhang","doi":"10.1016/j.dam.2026.01.005","DOIUrl":"10.1016/j.dam.2026.01.005","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a connected graph, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, a tree &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is called a pendant &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-tree if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and the degree of each vertex in &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is equal to one. Two pendant &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-trees &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; are called internally disjoint if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;0̸&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. For an integer &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the pendant-tree &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-connectivity of a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is defined as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the maximum number &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; of internally disjoint pendant &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-trees in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The pendant-tree &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-connectivity is a generalization of traditional connectivity. In this paper, we mainly investigate the pendant-tree 4-connectivity of the regular graph with given properties, denoted by &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, which was introduced in Zhao and Hao (2019). As applications of the main result, the pendant-tree 4","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"384 ","pages":"Pages 352-360"},"PeriodicalIF":1.0,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Myerson value for games with weighted signed networks 带有加权签名网络的博弈的Myerson值
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2026-01-15 DOI: 10.1016/j.dam.2026.01.002
Yushuang Mou , Qiang Sun , Chao Zhang
Weighted signed networks capture both positive and negative relationships between individuals, with link weights representing the intensity of these relationships. We model cooperation in such networks as a cooperative game restricted by a weighted signed network. To address the distribution problem in these games, we introduce the weighted signed Myerson value (WS-Myerson value), which is grounded in structural balance theory and incorporates the minimum cost required to achieve balance within the network. We prove that the WS-Myerson value is uniquely determined by the axioms of component efficiency, fairness for conflict players, and marginality.
加权签名网络捕获了个体之间的积极和消极关系,链接权重代表了这些关系的强度。我们将这种网络中的合作建模为受加权签名网络约束的合作博弈。为了解决这些博弈中的分配问题,我们引入了加权签名Myerson值(WS-Myerson值),该值以结构平衡理论为基础,并结合了在网络内实现平衡所需的最小成本。我们证明了WS-Myerson值是由组件效率、冲突参与者公平和边际性公理唯一决定的。
{"title":"The Myerson value for games with weighted signed networks","authors":"Yushuang Mou ,&nbsp;Qiang Sun ,&nbsp;Chao Zhang","doi":"10.1016/j.dam.2026.01.002","DOIUrl":"10.1016/j.dam.2026.01.002","url":null,"abstract":"<div><div>Weighted signed networks capture both positive and negative relationships between individuals, with link weights representing the intensity of these relationships. We model cooperation in such networks as a cooperative game restricted by a weighted signed network. To address the distribution problem in these games, we introduce the weighted signed Myerson value (WS-Myerson value), which is grounded in structural balance theory and incorporates the minimum cost required to achieve balance within the network. We prove that the WS-Myerson value is uniquely determined by the axioms of component efficiency, fairness for conflict players, and marginality.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 400-410"},"PeriodicalIF":1.0,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145976747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1