Pub Date : 2025-03-05DOI: 10.1016/j.dam.2025.02.039
E.M.M. Coelho , H. Coelho , L. Faria , M.P. Ferreira , S. Klein
<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, the size of the largest clique <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is always less than or equal to the chromatic number <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>. The oriented coloring of an oriented graph <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> assigns colors to the vertices of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>, such that the arcs connecting vertices in different color classes always have the same direction and the smallest number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> of colors in an oriented coloring is the oriented chromatic number of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>. Oriented colorings have fundamental implications for homomorphisms of oriented graphs and significant applications in distributed processing and task scheduling. In 2004, Klostermeyer and MacGillivray defined the concept of an “analogue of clique” for oriented coloring in which a subgraph <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover></math></span> of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is an absolute oriented clique if the oriented distance between a pair of vertices of <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover></math></span> in <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover></math></span> is at most 2. The authors defined the absolute oriented clique number of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> as the number of vertices <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> in a maximum absolute oriented clique <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></move
{"title":"On the absolute and relative oriented clique problems’ time complexity","authors":"E.M.M. Coelho , H. Coelho , L. Faria , M.P. Ferreira , S. Klein","doi":"10.1016/j.dam.2025.02.039","DOIUrl":"10.1016/j.dam.2025.02.039","url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, the size of the largest clique <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is always less than or equal to the chromatic number <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>. The oriented coloring of an oriented graph <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> assigns colors to the vertices of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>, such that the arcs connecting vertices in different color classes always have the same direction and the smallest number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> of colors in an oriented coloring is the oriented chromatic number of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span>. Oriented colorings have fundamental implications for homomorphisms of oriented graphs and significant applications in distributed processing and task scheduling. In 2004, Klostermeyer and MacGillivray defined the concept of an “analogue of clique” for oriented coloring in which a subgraph <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover></math></span> of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> is an absolute oriented clique if the oriented distance between a pair of vertices of <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover></math></span> in <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover></math></span> is at most 2. The authors defined the absolute oriented clique number of <span><math><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover></math></span> as the number of vertices <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>⃗</mo></mover><mo>)</mo></mrow></mrow></math></span> in a maximum absolute oriented clique <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>o</mi></mrow></msub></mrow><mo>⃗</mo></move","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 53-65"},"PeriodicalIF":1.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-04DOI: 10.1016/j.dam.2025.02.034
Litao Guo , Wantao Ning
We define a new class of graphs called enhanced folded hypercube-like networks . We also investigate the reliability of this class of graphs in terms of the (edge) connectivity and super (edge) connectivity.
{"title":"Connectivity and super connectivity of enhanced folded hypercube-like networks","authors":"Litao Guo , Wantao Ning","doi":"10.1016/j.dam.2025.02.034","DOIUrl":"10.1016/j.dam.2025.02.034","url":null,"abstract":"<div><div>We define a new class of graphs called enhanced folded hypercube-like networks <span><math><mrow><mi>E</mi><mi>F</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. We also investigate the reliability of this class of graphs in terms of the (edge) connectivity and super (edge) connectivity.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 14-19"},"PeriodicalIF":1.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-04DOI: 10.1016/j.dam.2025.02.033
Shaofei Du, Tianlei Zhou
It was shown by Kutnar and Šparl in 2009 that every connected vertex-transitive graph of order , where is a prime, contains a Hamilton path. In this paper, it will be shown that every such graph contains a Hamilton cycle, except for the Petersen graph by replacing each vertex by a triangle.
{"title":"Hamilton cycles in vertex-transitive graphs of order 6p","authors":"Shaofei Du, Tianlei Zhou","doi":"10.1016/j.dam.2025.02.033","DOIUrl":"10.1016/j.dam.2025.02.033","url":null,"abstract":"<div><div>It was shown by Kutnar and Šparl in 2009 that every connected vertex-transitive graph of order <span><math><mrow><mn>6</mn><mi>p</mi></mrow></math></span>, where <span><math><mi>p</mi></math></span> is a prime, contains a Hamilton path. In this paper, it will be shown that every such graph contains a Hamilton cycle, except for the Petersen graph by replacing each vertex by a triangle.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"368 ","pages":"Pages 165-175"},"PeriodicalIF":1.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-04DOI: 10.1016/j.dam.2025.02.026
Suchismita Mishra
In this paper, we discuss the complete structure of the (bull, diamond)-free graphs. As an application of that, we give the characterization of the partitionable (bull, diamond)-free graphs. Moreover, we show that such a partition for a partitionable (bull, diamond)-free graph can be found in polynomial time. Additionally, we show that the cop number of a (bull, diamond)-free graph containing a triangle is at most two less than its diameter. Furthermore, the cop number of a connected (, bull, diamond)-free graph with a triangle, is at most , for any natural number . We also discuss a couple of applications of the structural theorem of the (bull, diamond)-free graphs in the conclusions.
{"title":"Structure of (bull, diamond)-free graphs and its applications","authors":"Suchismita Mishra","doi":"10.1016/j.dam.2025.02.026","DOIUrl":"10.1016/j.dam.2025.02.026","url":null,"abstract":"<div><div>In this paper, we discuss the complete structure of the (bull, diamond)-free graphs. As an application of that, we give the characterization of the partitionable (bull, diamond)-free graphs. Moreover, we show that such a partition for a partitionable (bull, diamond)-free graph can be found in polynomial time. Additionally, we show that the cop number of a (bull, diamond)-free graph containing a triangle is at most two less than its diameter. Furthermore, the cop number of a connected (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, bull, diamond)-free graph with a triangle, is at most <span><math><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></math></span>, for any natural number <span><math><mrow><mi>n</mi><mo>></mo><mn>3</mn></mrow></math></span>. We also discuss a couple of applications of the structural theorem of the (bull, diamond)-free graphs in the conclusions.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"368 ","pages":"Pages 176-183"},"PeriodicalIF":1.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-03DOI: 10.1016/j.dam.2025.02.041
Priyamvada
An odd coloring of a graph is an assignment of colors to the vertices of such that is a proper vertex coloring and for every non-isolated vertex , there is a color that occurs an odd number of times within its open neighborhood. The minimum number of colors required by any odd coloring of is called the odd chromatic number of and is denoted by . In this paper, we give tight upper bounds on the odd chromatic number of various standard graph products and operations, including the lexicographic product, corona product, edge corona product and Mycielskian of a graph. Moreover, we give tight lower bounds on the odd chromatic number of corona product and edge corona product of graphs.
{"title":"Tight bounds on odd chromatic number of some standard graph products","authors":"Priyamvada","doi":"10.1016/j.dam.2025.02.041","DOIUrl":"10.1016/j.dam.2025.02.041","url":null,"abstract":"<div><div>An <em>odd coloring</em> of a graph <span><math><mi>G</mi></math></span> is an assignment <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of colors to the vertices of <span><math><mi>G</mi></math></span> such that <span><math><mi>f</mi></math></span> is a proper vertex coloring and for every non-isolated vertex <span><math><mi>v</mi></math></span>, there is a color that occurs an odd number of times within its open neighborhood. The minimum number of colors required by any odd coloring of <span><math><mi>G</mi></math></span> is called the <em>odd chromatic number</em> of <span><math><mi>G</mi></math></span> and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>o</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we give tight upper bounds on the odd chromatic number of various standard graph products and operations, including the lexicographic product, corona product, edge corona product and Mycielskian of a graph. Moreover, we give tight lower bounds on the odd chromatic number of corona product and edge corona product of graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 1-13"},"PeriodicalIF":1.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}