首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
On (n,m)-chromatic numbers of graphs with bounded sparsity parameters 关于具有有界稀疏参数的图的(n,m)色度数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-05 DOI: 10.1016/j.dam.2024.07.029

An (n,m)-graph is characterized by n types of arcs and m types of edges. A homomorphism of an (n,m)-graph G to an (n,m)-graph H, is a vertex mapping that preserves adjacency, direction, and type. The (n,m)-chromatic number of G, denoted by χn,m(G), is the minimum value of |V(H)| such that there exists a homomorphism of G to H. The theory of homomorphisms of (n,m)-graphs have connections with graph theoretic concepts like harmonious coloring, nowhere-zero flows; with other mathematical topics like binary predicate logic, Coxeter groups; and has application to the Query Evaluation Problem (QEP) in graph database.

In this article, we show that the arboricity of G is bounded by a function of χn,m(G) but not the other way around. Additionally, we show that the acyclic chromatic number of G is bounded by a function of χn,m(G), a result already known in the reverse direction. Furthermore, we prove that the (n,m)-chromatic number for the family of graphs with maximum average degree less than 2+24(2n+m)1, including the subfamily of planar graphs with girth at least 8(2n+m), equals 2(2n+m)+1. This improves upon previous findings, which prove

一个(n,m)图的特征是有 n 种弧和 m 种边。(n,m)- 图 G 到 (n,m)- 图 H 的同构是一种保留邻接、方向和类型的顶点映射。G 的 (n,m)- 色度数(用 χn,m(G)表示)是|V(H)| 的最小值,即存在一个从 G 到 H 的同态。(n,m)-图的同态理论与和谐着色、无零流等图论概念有关,也与二元谓词逻辑、考克斯特群等其他数学主题有关,还应用于图数据库中的查询评估问题(QEP)。此外,我们还证明了 G 的非循环色度数是受χn,m(G) 的函数约束的,这一结果在反方向上早已为人所知。此外,我们还证明了最大平均度小于 2+24(2n+m)-1 的图族(包括周长至少为 8(2n+m) 的平面图亚族)的 (n,m)- 色度数等于 2(2n+m)+1。这改进了以前的发现,以前的发现证明了周长至少为 10(2n+m)-4 的平面图的 (n,m)- 色度数为 2(2n+m)+1。我们还证明了偏 2 树族 T2 的 (n,m)- 色度数的下界和上界都是 (2n+m) 的二次函数,当 (2n+m)=2 时下界很窄。我们证明了 14≤χ(0,3)(T2)≤15 和 14≤χ(1,1)(T2)≤21,这改进了已知下界和前一个上界。此外,就我们所知,我们首次提供了后一上限的理论证明。
{"title":"On (n,m)-chromatic numbers of graphs with bounded sparsity parameters","authors":"","doi":"10.1016/j.dam.2024.07.029","DOIUrl":"10.1016/j.dam.2024.07.029","url":null,"abstract":"<div><p>An <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-graph is characterized by <span><math><mi>n</mi></math></span> types of arcs and <span><math><mi>m</mi></math></span> types of edges. A homomorphism of an <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-graph <span><math><mi>G</mi></math></span> to an <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-graph <span><math><mi>H</mi></math></span>, is a vertex mapping that preserves adjacency, direction, and type. The <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-chromatic number of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum value of <span><math><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span> such that there exists a homomorphism of <span><math><mi>G</mi></math></span> to <span><math><mi>H</mi></math></span>. The theory of homomorphisms of <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-graphs have connections with graph theoretic concepts like harmonious coloring, nowhere-zero flows; with other mathematical topics like binary predicate logic, Coxeter groups; and has application to the Query Evaluation Problem (QEP) in graph database.</p><p>In this article, we show that the arboricity of <span><math><mi>G</mi></math></span> is bounded by a function of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> but not the other way around. Additionally, we show that the acyclic chromatic number of <span><math><mi>G</mi></math></span> is bounded by a function of <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, a result already known in the reverse direction. Furthermore, we prove that the <span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>-chromatic number for the family of graphs with maximum average degree less than <span><math><mrow><mn>2</mn><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>4</mn><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>, including the subfamily of planar graphs with girth at least <span><math><mrow><mn>8</mn><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>, equals <span><math><mrow><mn>2</mn><mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>. This improves upon previous findings, which prove","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The proper 2-connection number of several graph classes 几类图的适当 2 连接数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-05 DOI: 10.1016/j.dam.2024.07.038

A path in an edge-coloured graph is called properly coloured path, or more simply, proper path if every two consecutive edges receive distinct colours. An edge-coloured graph G is called properly k-connected if every two vertices are connected by at least k internally pairwise vertex-disjoint proper paths. The proper k-connection number of a k-connected graph G, denoted by pck(G), is the smallest number of colours that are needed in order to make G properly k-connected. In this paper, we study the proper 2-connection number pc2(G) of graphs. We prove a new upper bound for pc2(G) and determine several classes of graphs satisfying pc2(G)=2. Among these are all graphs satisfying the Chvátal and Erdős condition (α(G)κ(G)) with two exceptions). We also study the relationship between the proper 2-connection number pc2(G) and the proper connection number pc(G) of the Cartesian product of two connected graphs.

如果每两条连续的边都有不同的颜色,则边色图中的路径称为适当颜色路径,或者更简单地说,适当路径。如果每两个顶点至少有 k 条内部成对顶点相交的适当路径相连,则边缘着色图 G 称为适当 k 连接图。一个 k 连接图 G 的适当 k 连接数用 pck(G) 表示,它是使 G 适当 k 连接所需的最小颜色数。在本文中,我们将研究图的适当 2 连接数 pc2(G)。我们证明了 pc2(G) 的新上限,并确定了满足 pc2(G)=2 的几类图形。其中包括满足 Chvátal 和 Erdős 条件(α(G)≤κ(G))的所有图形(有两个例外)。我们还研究了两个连通图的笛卡尔积的适当 2 连接数 pc2(G) 和适当连接数 pc(G) 之间的关系。
{"title":"The proper 2-connection number of several graph classes","authors":"","doi":"10.1016/j.dam.2024.07.038","DOIUrl":"10.1016/j.dam.2024.07.038","url":null,"abstract":"<div><p>A path in an edge-coloured graph is called <em>properly coloured path</em>, or more simply, <em>proper path</em> if every two consecutive edges receive distinct colours. An edge-coloured graph <span><math><mi>G</mi></math></span> is called <em>properly</em> <span><math><mi>k</mi></math></span><em>-connected</em> if every two vertices are connected by at least <span><math><mi>k</mi></math></span> internally pairwise vertex-disjoint proper paths. The <em>proper</em> <span><math><mi>k</mi></math></span><em>-connection number</em> of a <span><math><mi>k</mi></math></span>-connected graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>p</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest number of colours that are needed in order to make <span><math><mi>G</mi></math></span> properly <span><math><mi>k</mi></math></span>-connected. In this paper, we study the proper 2-connection number <span><math><mrow><mi>p</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of graphs. We prove a new upper bound for <span><math><mrow><mi>p</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and determine several classes of graphs satisfying <span><math><mrow><mi>p</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn></mrow></math></span>. Among these are all graphs satisfying the Chvátal and Erdős condition (<span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>κ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>) with two exceptions). We also study the relationship between the proper 2-connection number <span><math><mrow><mi>p</mi><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and the proper connection number <span><math><mrow><mi>p</mi><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of the Cartesian product of two connected graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The weighted Mostar index of cacti 仙人掌的加权莫斯塔尔指数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-05 DOI: 10.1016/j.dam.2024.07.022

Let G be a connected graph. The weighted Mostar index of G is defined as w+Mo(G)=e=uvE(G)(du+dv)|nunv|,where du and dv denote the degrees of vertex u and vertex v, nu and nv are the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, respectively. In this paper, we determine the maximum value and the second maximum value of the weighted Mostar indices for cacti with order n and k cycles, and identify the extremal graphs with the maximum and the second maximum weighted Mostar indices.

设 G 为连通图。G 的加权 Mostar 指数定义为 w+Mo(G)=∑e=uv∈E(G)(du+dv)|nu-nv| 其中,du 和 dv 分别表示顶点 u 和顶点 v 的度数,nu 和 nv 分别表示 G 中靠近顶点 u 的顶点数比靠近顶点 v 的顶点数多,以及 G 中靠近顶点 v 的顶点数比靠近顶点 u 的顶点数多。本文确定了具有 n 阶和 k 个循环的仙人掌的加权莫斯塔尔指数的最大值和第二最大值,并确定了具有最大和第二最大加权莫斯塔尔指数的极值图。
{"title":"The weighted Mostar index of cacti","authors":"","doi":"10.1016/j.dam.2024.07.022","DOIUrl":"10.1016/j.dam.2024.07.022","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi></math></span> be a connected graph. The weighted Mostar index of <span><math><mi>G</mi></math></span> is defined as <span><span><span><math><mrow><msup><mrow><mi>w</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>M</mi><mi>o</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>e</mi><mo>=</mo><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>|</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>|</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> denote the degrees of vertex <span><math><mi>u</mi></math></span> and vertex <span><math><mi>v</mi></math></span>, <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>u</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>v</mi></mrow></msub></math></span> are the number of vertices of <span><math><mi>G</mi></math></span> lying closer to vertex <span><math><mi>u</mi></math></span> than to vertex <span><math><mi>v</mi></math></span> and the number of vertices of <span><math><mi>G</mi></math></span> lying closer to vertex <span><math><mi>v</mi></math></span> than to vertex <span><math><mi>u</mi></math></span>, respectively. In this paper, we determine the maximum value and the second maximum value of the weighted Mostar indices for cacti with order <span><math><mi>n</mi></math></span> and <span><math><mi>k</mi></math></span> cycles, and identify the extremal graphs with the maximum and the second maximum weighted Mostar indices.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A probabilistic algorithm for bounding the total restrained domination number of a K1,ℓ -free graph 约束无 K1,ℓ 图的总约束支配数的概率算法
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1016/j.dam.2024.07.009

Let G=(V,E) be a graph. A set SV is a total restrained dominating set if every vertex is adjacent to a vertex in S, and every vertex in VS is adjacent to a vertex in VS. The total restrained domination number of G, denoted γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we show that if G is a K1,-free graph with δ3 and δ5, then γtr(G)n1(2δ3)(2δ)δδ1+oδ(1).

设 G=(V,E) 是一个图。如果每个顶点都与 S 中的顶点相邻,且 V-S 中的每个顶点都与 V-S 中的顶点相邻,则集合 S⊆V 是一个总约束支配集。本文证明,如果 G 是一个无 K1,ℓ 图,且有δ≥ℓ≥3 和 δ≥5,那么 γtr(G)≤n1-(2δ-3)(2δ)δ-1+oδ(1)。
{"title":"A probabilistic algorithm for bounding the total restrained domination number of a K1,ℓ -free graph","authors":"","doi":"10.1016/j.dam.2024.07.009","DOIUrl":"10.1016/j.dam.2024.07.009","url":null,"abstract":"<div><p>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a graph. A set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is a total restrained dominating set if every vertex is adjacent to a vertex in <span><math><mrow><mi>S</mi><mo>,</mo></mrow></math></span> and every vertex in <span><math><mrow><mi>V</mi><mo>−</mo><mi>S</mi></mrow></math></span> is adjacent to a vertex in <span><math><mrow><mi>V</mi><mo>−</mo><mi>S</mi></mrow></math></span>. The total restrained domination number of <span><math><mi>G</mi></math></span>, denoted <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest cardinality of a total restrained dominating set of <span><math><mi>G</mi></math></span>. In this paper we show that if <span><math><mi>G</mi></math></span> is a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>ℓ</mi></mrow></msub></math></span>-free graph with <span><math><mrow><mi>δ</mi><mo>≥</mo><mi>ℓ</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>δ</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, then <span><span><span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>t</mi><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>n</mi><mfenced><mrow><mn>1</mn><mo>−</mo><mfrac><mrow><mrow><mo>(</mo><mn>2</mn><mi>δ</mi><mo>−</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>2</mn><mi>δ</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mi>δ</mi></mrow><mrow><mi>δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></msup></mrow></mfrac><mo>+</mo><msub><mrow><mi>o</mi></mrow><mrow><mi>δ</mi></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></mfenced><mo>.</mo></mrow></math></span></span></span></p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The diagnosability of interconnection networks 互联网络的可诊断性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1016/j.dam.2024.07.030

Diagnosability is a fundamental consideration when designing an interconnected network. The PMC and MM fault diagnosis models are the two most commonly used models. Both the g-good-neighbour diagnosability and g-extra diagnosability of an interconnection network have been two of the hot topics in the intersectional research areas of Graph theory and Computer Science, which become increasingly attractive for new solutions to real-world problems. However, there are still some problems in the transformation from the concepts of Computer Science to that of mathematics. In this paper, we systematically study such problems and give a strict proof from concepts to mathematical conclusions. In the terms of results, we not only give the relationship between g-good-neighbour diagnosabilities of the network under PMC model and MM model, but also between g-extra diagnosabilities of the network under PMC and MM models. To apply our results, we give an application on the enhanced hypercube in the end and derive a lemma explaining whether these are 3-cycles in enhanced hypercubes and how many common neighbours for two vertices of enhanced hypercubes under different values of k in the meantime.

在设计互连网络时,可诊断性是一个基本考虑因素。PMC 和 MM∗ 故障诊断模型是最常用的两种模型。互联网络的g-好邻居诊断性和g-额外诊断性一直是图论和计算机科学交叉研究领域的两个热点话题,对于解决现实问题的新方案越来越有吸引力。然而,从计算机科学概念到数学概念的转化仍存在一些问题。在本文中,我们系统地研究了这些问题,并给出了从概念到数学结论的严格证明。在结果方面,我们不仅给出了 PMC 模型和 MM∗ 模型下网络的 g-好邻居诊断率之间的关系,还给出了 PMC 模型和 MM∗ 模型下网络的 g-额外诊断率之间的关系。为了应用我们的结果,我们最后给出了在增强超立方体中的应用,并推导出一个 Lemma,解释了在增强超立方体中这些是否是 3 循环,以及在不同 k 值下增强超立方体的两个顶点有多少公共相邻关系。
{"title":"The diagnosability of interconnection networks","authors":"","doi":"10.1016/j.dam.2024.07.030","DOIUrl":"10.1016/j.dam.2024.07.030","url":null,"abstract":"<div><p>Diagnosability is a fundamental consideration when designing an interconnected network. The PMC and MM<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> fault diagnosis models are the two most commonly used models. Both the <span><math><mi>g</mi></math></span>-good-neighbour diagnosability and <span><math><mi>g</mi></math></span>-extra diagnosability of an interconnection network have been two of the hot topics in the intersectional research areas of Graph theory and Computer Science, which become increasingly attractive for new solutions to real-world problems. However, there are still some problems in the transformation from the concepts of Computer Science to that of mathematics. In this paper, we systematically study such problems and give a strict proof from concepts to mathematical conclusions. In the terms of results, we not only give the relationship between <span><math><mi>g</mi></math></span>-good-neighbour diagnosabilities of the network under PMC model and MM<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> model, but also between <span><math><mi>g</mi></math></span>-extra diagnosabilities of the network under PMC and MM<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> models. To apply our results, we give an application on the enhanced hypercube in the end and derive a lemma explaining whether these are 3-cycles in enhanced hypercubes and how many common neighbours for two vertices of enhanced hypercubes under different values of <span><math><mi>k</mi></math></span> in the meantime.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
About S-packing coloring of 3-irregular subcubic graphs 关于 3-irregular subcubic graph 的 S-packing 着色
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1016/j.dam.2024.07.041

For non-decreasing sequence of integers (a1,a2,,ak), an (a1,a2,,ak)-packing coloring of G is a partition of V(G) into k subsets V1,V2,,Vk such that the distance between any two vertices x,yVi is at least ai+1, 1ik. Yang and Wu (2023) proved that every 3-irregular subcubic graph is (1,1,3)-packing colorable. We introduce here a simpler and shorter proof of this result.

对于非递减整数序列 (a1,a2,...,ak),G 的 (a1,a2,...ak)-packing 着色是将 V(G) 划分为 k 个子集 V1,V2,...,Vk,使得任意两个顶点 x,y∈Vi 之间的距离至少为 ai+1,1≤i≤k。杨和吴(2023)证明了每个 3-irregular subcubic graph 都是 (1,1,3)-packing colorable 的。我们在此介绍一个更简单、更短的证明。
{"title":"About S-packing coloring of 3-irregular subcubic graphs","authors":"","doi":"10.1016/j.dam.2024.07.041","DOIUrl":"10.1016/j.dam.2024.07.041","url":null,"abstract":"<div><p>For non-decreasing sequence of integers <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span>, an <span><math><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span>-packing coloring of <span><math><mi>G</mi></math></span> is a partition of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> into <span><math><mi>k</mi></math></span> subsets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that the distance between any two vertices <span><math><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span> is at least <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow></math></span>. Yang and Wu (2023) proved that every 3-irregular subcubic graph is <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></math></span>-packing colorable. We introduce here a simpler and shorter proof of this result.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance distances and the Moon-type formula of a vertex-weighted complete split graph 顶点加权完全分裂图的阻力距离和月型公式
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-02 DOI: 10.1016/j.dam.2024.07.040

In 1964, Moon extended Cayley’s formula to a nice expression of the number of spanning trees in complete graphs containing any fixed spanning forest. After nearly 60 years, Dong and the first author discovered the second Moon-type formula: an explicit formula of the number of spanning trees in complete bipartite graphs containing any fixed spanning forest. Followed this direction, Li, Chen and Yan found the Moon-type formula for complete 3- and 4-partite graphs. These are the only families of graphs that have the corresponding Moon-type formulas. In this paper, we first determine resistance distances in the vertex-weighted complete split graph Sm,nω. Then we obtain the Moon-type formula for the vertex-weighted complete split graph Sm,nω, that is, the weighted spanning tree enumerator of Sm,nω containing any fixed spanning forest.

1964 年,Moon 将 Cayley 公式扩展为包含任意固定跨森林的完整图中跨树数的漂亮表达式。时隔近 60 年,Dong 和第一作者又发现了第二个月亮型公式:含有任意固定跨林的完整二方图中跨树数的明确公式。沿着这个方向,李、陈和严发现了完整三方图和四方图的月型公式。这些是唯一有相应月型公式的图族。在本文中,我们首先确定了顶点加权完全分裂图 Sm,nω 中的阻力距离。然后,我们得到顶点加权完全分裂图 Sm,nω 的 Moon- 型公式,即包含任意固定生成林的 Sm,nω 的加权生成树枚举器。
{"title":"Resistance distances and the Moon-type formula of a vertex-weighted complete split graph","authors":"","doi":"10.1016/j.dam.2024.07.040","DOIUrl":"10.1016/j.dam.2024.07.040","url":null,"abstract":"<div><p>In 1964, Moon extended Cayley’s formula to a nice expression of the number of spanning trees in complete graphs containing any fixed spanning forest. After nearly 60 years, Dong and the first author discovered the second Moon-type formula: an explicit formula of the number of spanning trees in complete bipartite graphs containing any fixed spanning forest. Followed this direction, Li, Chen and Yan found the Moon-type formula for complete 3- and 4-partite graphs. These are the only families of graphs that have the corresponding Moon-type formulas. In this paper, we first determine resistance distances in the vertex-weighted complete split graph <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math></span>. Then we obtain the Moon-type formula for the vertex-weighted complete split graph <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math></span>, that is, the weighted spanning tree enumerator of <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>ω</mi></mrow></msubsup></math></span> containing any fixed spanning forest.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of graphs with given total coalition numbers 给定总联盟数的图的特征描述
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.dam.2024.07.031

A set S of vertices in an isolate-free graph G is a total dominating set if every vertex of G is adjacent to some other vertex in S. A total coalition in G consists of two disjoint sets of vertices X and Y of G, neither of which is a total dominating set but whose union XY is a total dominating set of G. Such sets X and Y are said to form a total coalition. A total coalition partition in G is a vertex partition Ψ={V1,V2,,Vk} such that for all i[k], the set Vi forms a total coalition with another set Vj for some j, where j[k]{i}. The total coalition number Ct(G) in G equals the maximum order of a total coalition partition in G. It is known that if G is an isolate-free graph, then 2Ct(G)n. We characterize graphs with smallest possible total coalition number, that is, we characterize isolate-free graphs G satisfying Ct(G)=2. Moreover we characterize graphs G with δ(G)=1 satisfying Ct(G)=<
如果 G 中的每个顶点都与 S 中的其他顶点相邻,则无孤立图 G 中的顶点集 S 就是总支配集。G 中的总联盟由 G 的两个不相交的顶点集 X 和 Y 组成,这两个顶点集都不是总支配集,但它们的集合 X∪Y 是 G 的总支配集。G 中的总联盟分区是一个顶点分区 Ψ={V1,V2,...,Vk},对于所有 i∈[k],集合 Vi 与某个 j 的另一个集合 Vj 形成一个总联盟,其中 j∈[k]∖{i}。已知如果 G 是无孤立图,则 2≤Ct(G)≤n 。我们将描述联盟总数可能最小的图的特征,也就是说,我们将描述满足 Ct(G)=2 的无孤立图 G 的特征。此外,我们还描述了δ(G)=1 满足 Ct(G)=k 且所有 k≥3 的图 G 的特征。
{"title":"A characterization of graphs with given total coalition numbers","authors":"","doi":"10.1016/j.dam.2024.07.031","DOIUrl":"10.1016/j.dam.2024.07.031","url":null,"abstract":"<div><p>A set <span><math><mi>S</mi></math></span> of vertices in an isolate-free graph <span><math><mi>G</mi></math></span> is a total dominating set if every vertex of <span><math><mi>G</mi></math></span> is adjacent to some other vertex in <span><math><mi>S</mi></math></span>. A total coalition in <span><math><mi>G</mi></math></span> consists of two disjoint sets of vertices <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> of <span><math><mi>G</mi></math></span>, neither of which is a total dominating set but whose union <span><math><mrow><mi>X</mi><mo>∪</mo><mi>Y</mi></mrow></math></span> is a total dominating set of <span><math><mi>G</mi></math></span>. Such sets <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> are said to form a total coalition. A total coalition partition in <span><math><mi>G</mi></math></span> is a vertex partition <span><math><mrow><mi>Ψ</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> such that for all <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span>, the set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> forms a total coalition with another set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for some <span><math><mi>j</mi></math></span>, where <span><math><mrow><mi>j</mi><mo>∈</mo><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mi>i</mi><mo>}</mo></mrow></mrow></math></span>. The total coalition number <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><mi>G</mi></math></span> equals the maximum order of a total coalition partition in <span><math><mi>G</mi></math></span>. It is known that if <span><math><mi>G</mi></math></span> is an isolate-free graph, then <span><math><mrow><mn>2</mn><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>n</mi></mrow></math></span>. We characterize graphs with smallest possible total coalition number, that is, we characterize isolate-free graphs <span><math><mi>G</mi></math></span> satisfying <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn></mrow></math></span>. Moreover we characterize graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> satisfying <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=<","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability analysis of exchanged hypercubes based on the path connectivity 基于路径连通性的交换超立方体可靠性分析
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.dam.2024.07.032

Let G be a connected simple graph with vertex set V(G) and edge set E(G). For any subset η of V(G) with |η|2, let πG(η) denote the maximum number t of paths P1,P2,,Pt in G such that Pi contains η, V(Pi)V(Pj)=η and E(Pi)E(Pj)= for any distinct i,j{1,2,,t}. For an integer k with 2k|V(G)|, the k-path connectivity πk(G) of G, which can more accurately assess the reliability of networks, is defined as min{πG(η)|ηV(G) and |η|=k}. Since deciding whether πG(η

设 G 是连通的简单图,具有顶点集 V(G) 和边集 E(G)。对于 |η|≥2 的 V(G) 子集 η,让 πG(η) 表示 G 中路径 P1、P2、...、Pt 的最大数目 t,使得 Pi 包含 η,对于任何不同的 i,j∈{1,2,...,t},V(Pi)∩V(Pj)=η 和 E(Pi)∩E(Pj)=0̸。对于 2≤k≤|V(G)| 的整数 k,G 的 k 路径连通性 πk(G)可以更准确地评估网络的可靠性,其定义为 min{πG(η)|η⊆V(G)且 |η|=k}。由于判断一般图的πG(η)是否≥ℓ 在[Graphs Combin. 37(2021)2521-2533]中是 NP-complete,所以即使在 k=3 的情况下,关于 k 路径连通性的结果也很少。本文获得了交换超立方体 EH(s,t) 的 3 路径连通性的精确值,并证明 π3(EH(s,t))=3×min{s,t}+24,这改进了关于 3 树连通性的已知结果 [应用数学计算. 347(2019)342-353] 。作为推论,可以直接得到 n 维对立方体 Dn 的 3 路径连通性。
{"title":"Reliability analysis of exchanged hypercubes based on the path connectivity","authors":"","doi":"10.1016/j.dam.2024.07.032","DOIUrl":"10.1016/j.dam.2024.07.032","url":null,"abstract":"<div><p>Let <span><math><mi>G</mi></math></span> be a connected simple graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. For any subset <span><math><mi>η</mi></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mrow><mo>|</mo><mi>η</mi><mo>|</mo></mrow><mo>≥</mo><mn>2</mn></mrow></math></span>, let <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> denote the maximum number <span><math><mi>t</mi></math></span> of paths <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> in <span><math><mi>G</mi></math></span> such that <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> contains <span><math><mi>η</mi></math></span>, <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>η</mi></mrow></math></span> and <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> for any distinct <span><math><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span>. For an integer <span><math><mi>k</mi></math></span> with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, the <span><math><mi>k</mi></math></span>-path connectivity <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>, which can more accurately assess the reliability of networks, is defined as min<span><math><mrow><mtext>{</mtext><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow><mo>|</mo><mi>η</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>η</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mtext>}</mtext></mrow></math></span>. Since deciding whether <span><math><mrow><msub><mrow><mi>π</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>η</mi><m","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the 2-spanning cyclability of honeycomb toroidal graphs 论蜂巢环状图的 2 跨循环性
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-08-01 DOI: 10.1016/j.dam.2024.07.034

A graph X is 2-spanning cyclable if for any pair of distinct vertices u and v there is a 2-factor of X consisting of two cycles such that u and v belong to distinct cycles. In this paper we examine the 2-spanning cyclability of honeycomb toroidal graphs.

如果对于任意一对不同的顶点 u 和 v,X 的 2 因子由两个循环组成,且 u 和 v 属于不同的循环,则图 X 具有 2 跨循环性。本文将研究蜂巢环状图的 2 跨循环性。
{"title":"On the 2-spanning cyclability of honeycomb toroidal graphs","authors":"","doi":"10.1016/j.dam.2024.07.034","DOIUrl":"10.1016/j.dam.2024.07.034","url":null,"abstract":"<div><p>A graph <span><math><mi>X</mi></math></span> is 2-spanning cyclable if for any pair of distinct vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> there is a 2-factor of <span><math><mi>X</mi></math></span> consisting of two cycles such that <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span> belong to distinct cycles. In this paper we examine the 2-spanning cyclability of honeycomb toroidal graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003263/pdfft?md5=9489af26c5006d6f2a9d0d2d766189f8&pid=1-s2.0-S0166218X24003263-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1