Pub Date : 2025-12-08DOI: 10.1016/j.dam.2025.12.003
Yanhong Zhang , Lei Zhang , Haizhen Ren
Let be a connected graph. A spanning subgraph of is called a path-factor if each component of is a path. Let be an integer. A -factor of is its spanning subgraph such that each component is a path of order at least . The generalized distance matrix of is defined as , where . Inspired by the work of Cioabǎ et al. (2009), Suil (2021) and Zhou et al. (2024), we mainly study the existence of a -factor in based on the generalized distance spectral radius () since the research on the path-factors is incomplete about the distance spectrum. We provide the lower bounds of the generalized distance spectral radius to guarantee the existence of a -factor in a connected graph with order . Furthermore, we verify a graph to show that the bound on generalized distance spectral radius is optimal. These improve the related existing results of Zhou et al. on the existence of a -factor.
设G是连通图。如果生成子图F (G)的每个分量都是一条路径,则称之为路径因子。设k≥2为整数。G的P≥k因子是它的生成子图,使得每个分量都是至少k阶的路径。定义G的广义距离矩阵Dα(G)为Dα(G)=α tr (G)+(1−α)D(G),其中0≤α≤1。由于距离谱的路径因子研究尚不完整,受cioabjii et al.(2009)、Suil(2021)和Zhou et al.(2024)等人工作的启发,我们主要基于广义距离谱半径(∂(G))研究G中P≥2因子的存在性。在n≥4阶连通图G中,给出了广义距离谱半径的下界,以保证P≥2因子的存在。进一步,我们验证了一个图,证明了广义距离谱半径的界是最优的。这些改进了Zhou等人已有的关于P≥2因子存在性的相关结果。
{"title":"The path-factors and generalized distance spectral radius of graphs","authors":"Yanhong Zhang , Lei Zhang , Haizhen Ren","doi":"10.1016/j.dam.2025.12.003","DOIUrl":"10.1016/j.dam.2025.12.003","url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a connected graph. A spanning subgraph <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> is called a path-factor if each component of <span><math><mi>F</mi></math></span> is a path. Let <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> be an integer. A <span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub></math></span>-factor of <span><math><mi>G</mi></math></span> is its spanning subgraph such that each component is a path of order at least <span><math><mi>k</mi></math></span>. The generalized distance matrix <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>T</mi><mi>r</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. Inspired by the work of Cioabǎ et al. (2009), Suil (2021) and Zhou et al. (2024), we mainly study the existence of a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></math></span>-factor in <span><math><mi>G</mi></math></span> based on the generalized distance spectral radius (<span><math><mrow><mi>∂</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>) since the research on the path-factors is incomplete about the distance spectrum. We provide the lower bounds of the generalized distance spectral radius to guarantee the existence of a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></math></span>-factor in a connected graph <span><math><mi>G</mi></math></span> with order <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>. Furthermore, we verify a graph to show that the bound on generalized distance spectral radius is optimal. These improve the related existing results of Zhou et al. on the existence of a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></math></span>-factor.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 234-240"},"PeriodicalIF":1.0,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145737328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-05DOI: 10.1016/j.dam.2025.11.049
Stefan Dobrev , Rastislav Královič , Dana Pardubská
In this paper we initiate the study of agent-based busy beaver problem: Consider a synchronous system consisting of an infinite discrete line and a group of distinct (each with its own algorithm) agents, each being an -state automaton that can see only the states (and IDs) of the co-located agents. Assuming that all agents start co-located, what is length of the longest terminating computation these agents can perform?
We give asymptotically optimal answer of for , show that the answer is not a computable function for , give a deterministic construction for achieving at least steps, and show that 3 agents can simulate a Turing machine. We also show that any -state Turing machine can be simulated by a team of oblivious agents.
As an application of our results, we show how to solve the following variant of the Treasure Hunt problem: There is no guarantee that the treasure is present. The