首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
New results on edge-coloring and total-coloring of split graphs 关于分裂图的边着色和总着色的新结果
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-21 DOI: 10.1016/j.dam.2024.09.008
Fernanda Couto , Diego Amaro Ferraz , Sulamita Klein

A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. A connected graph G is said to be t-admissible if admits a special spanning tree in which the distance between any two adjacent vertices is at most t. Given a graph G, determining the smallest t for which G is t-admissible, i.e., the stretch index of G, denoted by σ(G), is the goal of the t-admissibility problem. Split graphs are 3-admissible and can be partitioned into three subclasses: split graphs with σ=1,2 or 3. In this work we consider such a partition while dealing with the problem of coloring a split graph. Vizing proved that any graph can have its edges colored with Δ or Δ+1 colors, and thus can be classified as Class 1 or Class 2, respectively. When both, edges and vertices, are simultaneously colored, it is conjectured that any graph can be colored with Δ+1 or Δ+2 colors, and thus can be classified as Type 1 or Type 2. Both variants are still open for split graphs. In this paper, using the partition of split graphs presented above, we consider the edge coloring problem and the total coloring problem for split graphs with σ=2. For this class, we characterize Class 2 and Type 2 graphs and we provide polynomial-time algorithms to color any Class 1 or Type 1 graph.

分裂图是指顶点集可以划分为一个群集和一个独立集的图。给定一个图 G,确定 G 是 t-admissible 的最小 t,即 G 的伸展指数(用 σ(G)表示),是 t-admissibility 问题的目标。分裂图是 3-admissible 的,可以划分为三个子类:σ=1、2 或 3 的分裂图。在这项工作中,我们在处理分裂图着色问题时考虑了这种划分。Vizing 证明,任何图的边都可以用 Δ 或 Δ+1 种颜色着色,因此可以分别归为第 1 类或第 2 类。当边和顶点同时着色时,可以推测任何图形都可以用 Δ+1 或 Δ+2 种颜色着色,因此可以分为第 1 类或第 2 类。对于分裂图,这两种变体都还没有定论。在本文中,我们利用上面介绍的分裂图分区,考虑了 σ=2 的分裂图的边着色问题和总着色问题。对于这一类图,我们描述了第 2 类图和第 2 类图的特征,并提供了对任何第 1 类图或第 1 类图着色的多项式时间算法。
{"title":"New results on edge-coloring and total-coloring of split graphs","authors":"Fernanda Couto ,&nbsp;Diego Amaro Ferraz ,&nbsp;Sulamita Klein","doi":"10.1016/j.dam.2024.09.008","DOIUrl":"10.1016/j.dam.2024.09.008","url":null,"abstract":"<div><p>A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. A connected graph <span><math><mi>G</mi></math></span> is said to be <span><math><mi>t</mi></math></span>-admissible if admits a special spanning tree in which the distance between any two adjacent vertices is at most <span><math><mi>t</mi></math></span>. Given a graph <span><math><mi>G</mi></math></span>, determining the smallest <span><math><mi>t</mi></math></span> for which <span><math><mi>G</mi></math></span> is <span><math><mi>t</mi></math></span>-admissible, i.e., the stretch index of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the goal of the <span><math><mi>t</mi></math></span>-<span>a</span>dmissibility problem. Split graphs are 3-admissible and can be partitioned into three subclasses: split graphs with <span><math><mrow><mi>σ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></math></span> or 3. In this work we consider such a partition while dealing with the problem of coloring a split graph. Vizing proved that any graph can have its edges colored with <span><math><mi>Δ</mi></math></span> or <span><math><mrow><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span> colors, and thus can be classified as <em>Class 1</em> or <em>Class 2</em>, respectively. When both, edges and vertices, are simultaneously colored, it is conjectured that any graph can be colored with <span><math><mrow><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span> or <span><math><mrow><mi>Δ</mi><mo>+</mo><mn>2</mn></mrow></math></span> colors, and thus can be classified as <em>Type 1</em> or <em>Type 2</em>. Both variants are still open for split graphs. In this paper, using the partition of split graphs presented above, we consider the <span>e</span>dge coloring problem and the <span>t</span>otal coloring problem for split graphs with <span><math><mrow><mi>σ</mi><mo>=</mo><mn>2</mn></mrow></math></span>. For this class, we characterize Class 2 and Type 2 graphs and we provide polynomial-time algorithms to color any Class 1 or Type 1 graph.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 297-306"},"PeriodicalIF":1.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super graphs on groups, II 群上的超级图形,II
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-20 DOI: 10.1016/j.dam.2024.09.012
G. Arunkumar , Peter J. Cameron , Rajat Kanti Nath

In an earlier paper, the authors considered three types of graphs, and three equivalence relations, defined on a group, viz. the power graph, enhanced power graph, and commuting graph, and the relations of equality, conjugacy, and same order; for each choice of a graph type A and an equivalence relation B, there is a graph, the B superA graph defined on G. The resulting nine graphs (of which eight were shown to be in general distinct) form a two-dimensional hierarchy. In the present paper, we consider these graphs further. We prove universality properties for the conjugacy supergraphs of various types, adding the nilpotent, solvable and enhanced power graphs to the commuting graphs considered in the rest of the paper, and also examine their relation to the invariably generating graph of the group. We also show that supergraphs can be expressed as graph compositions, in the sense of Schwenk, and use this representation to calculate their Wiener index. We illustrate these by computing Wiener index of equality supercommuting and conjugacy supercommuting graphs for dihedral and dicyclic groups.

在早先的一篇论文中,作者考虑了定义在一个群上的三类图和三种等价关系,即幂图,增强幂图和交换图,以及相等、共轭和同阶关系;每选择一种图类型 A 和一种等价关系 B,就有一个图,即定义在 G 上的 B superA 图。在本文中,我们将进一步研究这些图。我们证明了各种类型共轭超图的普遍性,在本文其余部分所考虑的换元图的基础上增加了零势图、可解图和增强幂图,还研究了它们与群的不变生成图的关系。我们还证明,超图可以用施文克意义上的图合成来表示,并用这种表示法计算它们的维纳指数。我们通过计算二面群和二环群的相等超容图和共轭超容图的维纳指数来说明这一点。
{"title":"Super graphs on groups, II","authors":"G. Arunkumar ,&nbsp;Peter J. Cameron ,&nbsp;Rajat Kanti Nath","doi":"10.1016/j.dam.2024.09.012","DOIUrl":"10.1016/j.dam.2024.09.012","url":null,"abstract":"<div><p>In an earlier paper, the authors considered three types of graphs, and three equivalence relations, defined on a group, viz. the power graph, enhanced power graph, and commuting graph, and the relations of equality, conjugacy, and same order; for each choice of a graph type <span><math><mi>A</mi></math></span> and an equivalence relation <span><math><mi>B</mi></math></span>, there is a graph, the <span><math><mi>B</mi></math></span> <em>super</em><span><math><mi>A</mi></math></span> <em>graph</em> defined on <span><math><mi>G</mi></math></span>. The resulting nine graphs (of which eight were shown to be in general distinct) form a two-dimensional hierarchy. In the present paper, we consider these graphs further. We prove universality properties for the conjugacy supergraphs of various types, adding the nilpotent, solvable and enhanced power graphs to the commuting graphs considered in the rest of the paper, and also examine their relation to the invariably generating graph of the group. We also show that supergraphs can be expressed as graph compositions, in the sense of Schwenk, and use this representation to calculate their Wiener index. We illustrate these by computing Wiener index of equality supercommuting and conjugacy supercommuting graphs for dihedral and dicyclic groups.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 371-382"},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142270813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation ratio of the min-degree greedy algorithm for Maximum Independent Set on interval and chordal graphs 区间图和和弦图上最大独立集最小度贪婪算法的近似率
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-20 DOI: 10.1016/j.dam.2024.09.009
Steven Chaplick, Martin Frohn, Steven Kelk, Johann Lottermoser, Matúš Mihalák

In this article we prove that the minimum-degree greedy algorithm, with adversarial tie-breaking, is a (2/3)-approximation for the Maximum Independent Set problem on interval graphs. We show that this is tight, even on unit interval graphs of maximum degree 3. We show that on chordal graphs, the greedy algorithm is a (1/2)-approximation and that this is again tight. These results contrast with the known (tight) approximation ratio of 3Δ+2 of the greedy algorithm for general graphs of maximum degree Δ.

在这篇文章中,我们证明了最小度贪婪算法与对抗性平局打破是区间图上最大独立集问题的 (2/3)- 近似。我们证明,即使在最大度数为 3 的单位区间图上,这一算法也是严密的。 我们还证明,在和弦图上,贪婪算法是 (1/2)- 近似算法,而且这一算法也是严密的。这些结果与已知的贪婪算法对最大度数为 Δ 的一般图的 3Δ+2 的(紧密)近似率形成了鲜明对比。
{"title":"Approximation ratio of the min-degree greedy algorithm for Maximum Independent Set on interval and chordal graphs","authors":"Steven Chaplick,&nbsp;Martin Frohn,&nbsp;Steven Kelk,&nbsp;Johann Lottermoser,&nbsp;Matúš Mihalák","doi":"10.1016/j.dam.2024.09.009","DOIUrl":"10.1016/j.dam.2024.09.009","url":null,"abstract":"<div><p>In this article we prove that the minimum-degree greedy algorithm, with adversarial tie-breaking, is a <span><math><mrow><mo>(</mo><mn>2</mn><mo>/</mo><mn>3</mn><mo>)</mo></mrow></math></span>-approximation for the <span>Maximum Independent Set</span> problem on interval graphs. We show that this is tight, even on unit interval graphs of maximum degree 3. We show that on chordal graphs, the greedy algorithm is a <span><math><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></mrow></math></span>-approximation and that this is again tight. These results contrast with the known (tight) approximation ratio of <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mi>Δ</mi><mo>+</mo><mn>2</mn></mrow></mfrac></math></span> of the greedy algorithm for general graphs of maximum degree <span><math><mi>Δ</mi></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 275-281"},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003986/pdfft?md5=3034910c4aa5dd66c10a2331bea125fc&pid=1-s2.0-S0166218X24003986-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognizing unit multiple interval graphs is hard 认识单位多重区间图很难
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-20 DOI: 10.1016/j.dam.2024.09.011
Virginia Ardévol Martínez , Romeo Rizzi , Florian Sikora , Stéphane Vialette

Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s to deal with situations arising naturally in scheduling and allocation. A d-interval is the union of d disjoint intervals on the real line, and a graph is a d-interval graph if it is the intersection graph of d-intervals. In particular, it is a unit d-interval graph if it admits a d-interval representation where every interval has unit length.

Whereas it has been known for a long time that recognizing 2-interval graphs and other related classes such as 2-track interval graphs is NP-complete, the complexity of recognizing unit 2-interval graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval graphs is also NP-complete. Our proof technique uses a completely different approach from the other hardness results of recognizing related classes. Furthermore, we extend the result for unit d-interval graphs for any d2, which does not follow directly in graph recognition problems — as an example, it took almost 20 years to close the gap between d=2 and d>2 for the recognition of d-track interval graphs. Our result has several implications, including that for every d2, recognizing (x,,x)d-interval graphs and depth r unit d-interval graphs is NP-complete for every x11 and every r4.

多区间图是 20 世纪 70 年代引入的对区间图的著名概括,用于处理调度和分配中自然出现的情况。d 个区间是实线上 d 个互不相交的区间的联合,如果一个图是 d 个区间的交集图,那么它就是一个 d 个区间图。特别是,如果一个图可以用 d 个区间表示,其中每个区间的长度都是单位,那么它就是一个单位 d 个区间图。长期以来,人们都知道识别 2 个区间图和其他相关类别(如 2 轨区间图)是 NP-完全的,但识别单位 2 个区间图的复杂性仍然是个未知数。在这里,我们通过证明单位 2 间隔图的识别也是 NP-完全来解决这个问题。我们的证明技术采用了一种完全不同于其他识别相关类的硬度结果的方法。此外,我们还扩展了对任意 d≥2 的单位 d 间隔图的结果,这在图识别问题中并不直接适用--例如,在识别 d 轨道间隔图时,我们花了近 20 年时间才缩小了 d=2 和 d>2 之间的差距。我们的结果有几个意义,包括对于每一个 d≥2,对于每一个 x≥11 和每一个 r≥4,识别(x,...,x)d-区间图和深度 r 单位 d-区间图都是 NP-完全的。
{"title":"Recognizing unit multiple interval graphs is hard","authors":"Virginia Ardévol Martínez ,&nbsp;Romeo Rizzi ,&nbsp;Florian Sikora ,&nbsp;Stéphane Vialette","doi":"10.1016/j.dam.2024.09.011","DOIUrl":"10.1016/j.dam.2024.09.011","url":null,"abstract":"<div><p>Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s to deal with situations arising naturally in scheduling and allocation. A <span><math><mi>d</mi></math></span>-interval is the union of <span><math><mi>d</mi></math></span> disjoint intervals on the real line, and a graph is a <span><math><mi>d</mi></math></span>-interval graph if it is the intersection graph of <span><math><mi>d</mi></math></span>-intervals. In particular, it is a unit <span><math><mi>d</mi></math></span>-interval graph if it admits a <span><math><mi>d</mi></math></span>-interval representation where every interval has unit length.</p><p>Whereas it has been known for a long time that recognizing 2-interval graphs and other related classes such as 2-track interval graphs is <span><math><mi>NP</mi></math></span>-complete, the complexity of recognizing unit 2-interval graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval graphs is also <span><math><mi>NP</mi></math></span>-complete. Our proof technique uses a completely different approach from the other hardness results of recognizing related classes. Furthermore, we extend the result for unit <span><math><mi>d</mi></math></span>-interval graphs for any <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, which does not follow directly in graph recognition problems — as an example, it took almost 20 years to close the gap between <span><math><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>d</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> for the recognition of <span><math><mi>d</mi></math></span>-track interval graphs. Our result has several implications, including that for every <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, recognizing <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mo>…</mo><mo>,</mo><mi>x</mi><mo>)</mo></mrow></math></span>\u0000<span><math><mi>d</mi></math></span>-interval graphs and depth <span><math><mi>r</mi></math></span> unit <span><math><mi>d</mi></math></span>-interval graphs is <span><math><mi>NP</mi></math></span>-complete for every <span><math><mrow><mi>x</mi><mo>≥</mo><mn>11</mn></mrow></math></span> and every <span><math><mrow><mi>r</mi><mo>≥</mo><mn>4</mn></mrow></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 258-274"},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24004013/pdfft?md5=435fad9c65782c974becdf669baa5302&pid=1-s2.0-S0166218X24004013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizations of graph classes via convex geometries: A survey 通过凸几何学描述图类的特征:调查
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-19 DOI: 10.1016/j.dam.2024.09.010
Mitre C. Dourado , Marisa Gutierrez , Fábio Protti , Rudini Sampaio , Silvia Tondato

Graph convexity has been used as an important tool to better understand the structure of classes of graphs. Many studies are devoted to determine if a graph equipped with a convexity is a convex geometry. In this work, we survey results on characterizations of well-known classes of graphs via convex geometries. We also give some contributions to this subject.

图凸性一直被用作更好地理解图类结构的重要工具。许多研究都致力于确定具有凸性的图是否是凸几何。在这项工作中,我们将概述通过凸几何对知名图类进行表征的结果。我们还对这一主题做出了一些贡献。
{"title":"Characterizations of graph classes via convex geometries: A survey","authors":"Mitre C. Dourado ,&nbsp;Marisa Gutierrez ,&nbsp;Fábio Protti ,&nbsp;Rudini Sampaio ,&nbsp;Silvia Tondato","doi":"10.1016/j.dam.2024.09.010","DOIUrl":"10.1016/j.dam.2024.09.010","url":null,"abstract":"<div><p>Graph convexity has been used as an important tool to better understand the structure of classes of graphs. Many studies are devoted to determine if a graph equipped with a convexity is a <em>convex geometry</em>. In this work, we survey results on characterizations of well-known classes of graphs via convex geometries. We also give some contributions to this subject.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 246-257"},"PeriodicalIF":1.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On nonrepetitive colorings of paths and cycles 论路径和循环的非重复着色
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-18 DOI: 10.1016/j.dam.2024.08.018
Fábio Botler , Wanderson Lomenha , João Pedro de Souza
<div><p>We say that a sequence <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub></mrow></math></span> of integers is <em>repetitive</em> if <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span>. A <em>walk</em> in a graph <span><math><mi>G</mi></math></span> is a sequence <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> of vertices of <span><math><mi>G</mi></math></span> in which <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>. Given a <span><math><mi>k</mi></math></span>-coloring <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, we say that <span><math><mi>c</mi></math></span> is <em>walk-nonrepetitive</em> (resp. <em>stroll-nonrepetitive</em>) if for every <span><math><mrow><mi>t</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and every walk <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub></mrow></math></span> the sequence <span><math><mrow><mi>c</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⋯</mo><mi>c</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is not repetitive unless <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for every <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo>}</mo></mrow></mrow></math></span> (resp. unless <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mi>t</mi></mrow></msub></mrow></math></span> for some <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo>
如果每 i∈{1,...,t},ai=ai+t,我们就说整数序列 a1⋯a2t 是重复的。图 G 中的行走是 G 的顶点序列 v1⋯vr,其中每 i∈{1,...,r-1},vivi+1∈E(G)。给定 V(G) 的 k 个着色 c:V(G)→{1,...,k} ,如果 c 是漫步非重复的(resp.对于每个 t∈N 和每个行走 v1⋯v2t 序列 c(v1)⋯c(v2t)都不重复,除非对于每个 i∈{1,...,t},vi=vi+t(或者,除非对于某些 i∈{1,...,t},vi=vi+t)。G 的漫步(或漫步)色度数 σ(G)(或 ρ(G))是 G 具有漫步非重复(或漫步非重复)k 着色的最小 k。让 Cn 和 Pn 分别表示有 n 个顶点的循环和路径。本文提出了三个结果,回答了 Barát 和 Wood 在 2008 年提出的问题:(i) 只要 n≥4 且 n∉{5,7},σ(Cn)=4;(ii) 如果 3≤n≤21 ρ(Pn)=3,否则 ρ(Pn)=4;(iii) 只要 n∉{3,4,6,8},ρ(Cn)=4,否则 ρ(Cn)=3。特别是,(ii) 改进了 Ochem 和 Tao 分别于 2021 年和 2023 年得到的 n 定界。
{"title":"On nonrepetitive colorings of paths and cycles","authors":"Fábio Botler ,&nbsp;Wanderson Lomenha ,&nbsp;João Pedro de Souza","doi":"10.1016/j.dam.2024.08.018","DOIUrl":"10.1016/j.dam.2024.08.018","url":null,"abstract":"&lt;div&gt;&lt;p&gt;We say that a sequence &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of integers is &lt;em&gt;repetitive&lt;/em&gt; if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. A &lt;em&gt;walk&lt;/em&gt; in a graph &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a sequence &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of vertices of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; in which &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Given a &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-coloring &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we say that &lt;span&gt;&lt;math&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;em&gt;walk-nonrepetitive&lt;/em&gt; (resp. &lt;em&gt;stroll-nonrepetitive&lt;/em&gt;) if for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and every walk &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; the sequence &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is not repetitive unless &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for every &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (resp. unless &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 221-228"},"PeriodicalIF":1.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on geometric–arithmetic, arithmetic–geometric and Randić indices of graphs 图形的几何指数、算术指数和兰迪克指数研究
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-18 DOI: 10.1016/j.dam.2024.09.007
Kinkar Chandra Das , Da-yeon Huh , Jayanta Bera , Sourav Mondal

Topological indices are mathematical descriptors used in the field of chemistry to characterize the topological structure of chemical compounds. The Randić index (R), the geometric–arithmetic index (GA), and the arithmetic–geometric index (AG) represent three widely recognized topological indices. In most scenarios, the properties of AG and GA exhibit opposing tendencies. Furthermore, it is observed that, AG(G)>R(G) and GA(G)>R(G) for any given graph G. Our focus is thus directed towards investigating the gaps between AG and R, as well as GA and R. We find that the invariants AGR and GAR correlate well with some molecular properties. Numerous upper and lower bounds for the quantities AGR and GAR are computed for general graphs, bipartite graphs, chemical graphs, trees, and chemical trees, in terms of graph order, with an emphasis on characterizing extremal graphs.

拓扑指数是化学领域用来描述化合物拓扑结构的数学描述符。兰迪克指数(R)、几何-算术指数(GA)和算术-几何指数(AG)是三种广为认可的拓扑指数。在大多数情况下,AG 和 GA 的属性表现出相反的趋势。此外,我们还观察到,对于任何给定的图 G,AG(G)>R(G)和 GA(G)>R(G)。因此,我们的重点是研究 AG 和 R 以及 GA 和 R 之间的差距。我们根据图的阶数计算了一般图、二叉图、化学图、树和化学树的 AG-R 和 GA-R 量的大量上界和下界,重点是极值图的特征。
{"title":"Study on geometric–arithmetic, arithmetic–geometric and Randić indices of graphs","authors":"Kinkar Chandra Das ,&nbsp;Da-yeon Huh ,&nbsp;Jayanta Bera ,&nbsp;Sourav Mondal","doi":"10.1016/j.dam.2024.09.007","DOIUrl":"10.1016/j.dam.2024.09.007","url":null,"abstract":"<div><p>Topological indices are mathematical descriptors used in the field of chemistry to characterize the topological structure of chemical compounds. The Randić index (<span><math><mi>R</mi></math></span>), the geometric–arithmetic index (<span><math><mrow><mi>G</mi><mi>A</mi></mrow></math></span>), and the arithmetic–geometric index (<span><math><mrow><mi>A</mi><mi>G</mi></mrow></math></span>) represent three widely recognized topological indices. In most scenarios, the properties of <span><math><mrow><mi>A</mi><mi>G</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi></mrow></math></span> exhibit opposing tendencies. Furthermore, it is observed that, <span><math><mrow><mi>A</mi><mi>G</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for any given graph <span><math><mi>G</mi></math></span>. Our focus is thus directed towards investigating the gaps between <span><math><mrow><mi>A</mi><mi>G</mi></mrow></math></span> and <span><math><mi>R</mi></math></span>, as well as <span><math><mrow><mi>G</mi><mi>A</mi></mrow></math></span> and <span><math><mi>R</mi></math></span>. We find that the invariants <span><math><mrow><mi>A</mi><mi>G</mi><mo>−</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi><mo>−</mo><mi>R</mi></mrow></math></span> correlate well with some molecular properties. Numerous upper and lower bounds for the quantities <span><math><mrow><mi>A</mi><mi>G</mi><mo>−</mo><mi>R</mi></mrow></math></span> and <span><math><mrow><mi>G</mi><mi>A</mi><mo>−</mo><mi>R</mi></mrow></math></span> are computed for general graphs, bipartite graphs, chemical graphs, trees, and chemical trees, in terms of graph order, with an emphasis on characterizing extremal graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 229-245"},"PeriodicalIF":1.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Aα-index of graphs with given order and dissociation number 关于给定阶数和解离数的图形的 Aα 指数
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-13 DOI: 10.1016/j.dam.2024.09.002
Zihan Zhou , Shuchao Li

Given a graph G, a subset of vertices is called a maximum dissociation set of G if it induces a subgraph with vertex degree at most 1, and the subset has maximum cardinality. The cardinality of a maximum dissociation set is called the dissociation number of G. The adjacency matrix and the degree diagonal matrix of G are denoted by A(G) and D(G), respectively. In 2017, Nikiforov proposed the Aα-matrix: Aα(G)=αD(G)+(1α)A(G), where α[0,1]. The largest eigenvalue of this novel matrix is called the Aα-index of G. In this paper, we firstly determine the connected graph (resp. bipartite graph, tree) having the largest Aα-index over all connected graphs (resp. bipartite graphs, trees) with fixed order and dissociation number. Secondly, we describe the structure of all the n-vertex graphs having the minimum Aα-index with dissociation number τ, where τ23n. Finally, we identify all the connected n-vertex graphs with dissociation number τ{2,23n,n1,n2} having the minimum Aα-index.

给定一个图 G,如果顶点子集能诱导出顶点度最多为 1 的子图,且该子集具有最大心数,则该顶点子集称为 G 的最大解离集。G 的邻接矩阵和度对角矩阵分别用 A(G) 和 D(G) 表示。2017 年,尼基福罗夫提出了 Aα 矩阵:Aα(G)=αD(G)+(1-α)A(G),其中α∈[0,1]。在本文中,我们首先确定了在所有具有固定阶数和解离数的连通图(即二元图、树)中具有最大 Aα-index 的连通图(即二元图、树)。其次,我们描述了具有最小 Aα 指数且解离数为 τ 的所有 n 顶点图的结构,其中 τ⩾⌈23n⌉.最后,我们确定了所有具有解离数 τ∈{2,⌈23n⌉,n-1,n-2} 的 n 个连接顶点图,这些图具有最小 Aα 指数。
{"title":"On the Aα-index of graphs with given order and dissociation number","authors":"Zihan Zhou ,&nbsp;Shuchao Li","doi":"10.1016/j.dam.2024.09.002","DOIUrl":"10.1016/j.dam.2024.09.002","url":null,"abstract":"<div><p>Given a graph <span><math><mrow><mi>G</mi><mo>,</mo></mrow></math></span> a subset of vertices is called a maximum dissociation set of <span><math><mi>G</mi></math></span> if it induces a subgraph with vertex degree at most 1, and the subset has maximum cardinality. The cardinality of a maximum dissociation set is called the dissociation number of <span><math><mi>G</mi></math></span>. The adjacency matrix and the degree diagonal matrix of <span><math><mi>G</mi></math></span> are denoted by <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> respectively. In 2017, Nikiforov proposed the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix: <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>.</mo></mrow></math></span> The largest eigenvalue of this novel matrix is called the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-index of <span><math><mrow><mi>G</mi><mo>.</mo></mrow></math></span> In this paper, we firstly determine the connected graph (resp. bipartite graph, tree) having the largest <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-index over all connected graphs (resp. bipartite graphs, trees) with fixed order and dissociation number. Secondly, we describe the structure of all the <span><math><mi>n</mi></math></span>-vertex graphs having the minimum <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-index with dissociation number <span><math><mi>τ</mi></math></span>, where <span><math><mrow><mi>τ</mi><mo>⩾</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>⌉</mo></mrow><mo>.</mo></mrow></math></span> Finally, we identify all the connected <span><math><mi>n</mi></math></span>-vertex graphs with dissociation number <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>n</mi><mo>⌉</mo></mrow><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span> having the minimum <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-index.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 167-180"},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient algorithm for group testing with runlength constraints 具有运行长度限制的分组测试高效算法
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-13 DOI: 10.1016/j.dam.2024.09.001
Marco Dalai , Stefano Della Fiore , Adele A. Rescigno , Ugo Vaccaro

In this paper, we provide an efficient algorithm to construct almost optimal (k,n,d)-superimposed codes with runlength constraints. A (k,n,d)-superimposed code of length t is a t×n binary matrix such that any two 1’s in each column are separated by a run of at least d 0’s, and such that for any column c and any other k1 columns, there exists a row where c has 1 and all the remaining k1 columns have 0. These combinatorial structures were introduced by Agarwal et al. (2020), in the context of Non-Adaptive Group Testing algorithms with runlength constraints.

By using Moser and Tardos’ constructive version of the Lovász Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity Θ(tn2) for the construction of (k,n,d)-superimposed codes of length t=O(dklogn+k2logn). We also show that the length of our codes is shorter, for n sufficiently large, than that of the codes whose existence was proved in Agarwal et al. (2020).

在本文中,我们提供了一种高效算法,用于构建具有运行长度限制的几乎最优的(k,n,d)叠加码。长度为 t 的(k,n,d)叠加码是一个 t×n 二进制矩阵,每列中的任意两个 1 之间至少有 d 个 0 隔开,并且对于任意列 c 和任意其他 k-1 列,存在一行 c 为 1,其余 k-1 列均为 0。(通过使用 Moser 和 Tardos 的构造版 Lovász Local Lemma,我们提供了一种复杂度为 Θ(tn2)的高效随机拉斯维加斯算法,用于构建长度为 t=O(dklogn+k2logn) 的 (k,n,d) 叠加码。)我们还证明,在 n 足够大的情况下,我们的代码长度比 Agarwal 等人 (2020) 中证明存在的代码长度更短。
{"title":"An efficient algorithm for group testing with runlength constraints","authors":"Marco Dalai ,&nbsp;Stefano Della Fiore ,&nbsp;Adele A. Rescigno ,&nbsp;Ugo Vaccaro","doi":"10.1016/j.dam.2024.09.001","DOIUrl":"10.1016/j.dam.2024.09.001","url":null,"abstract":"<div><p>In this paper, we provide an efficient algorithm to construct almost optimal <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed codes with runlength constraints. A <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed code of length <span><math><mi>t</mi></math></span> is a <span><math><mrow><mi>t</mi><mo>×</mo><mi>n</mi></mrow></math></span> binary matrix such that any two 1’s in each column are separated by a run of at least <span><math><mi>d</mi></math></span> 0’s, and such that for any column <span><math><mi>c</mi></math></span> and any other <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> columns, there exists a row where <span><math><mi>c</mi></math></span> has 1 and all the remaining <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> columns have 0. These combinatorial structures were introduced by Agarwal et al. (2020), in the context of Non-Adaptive Group Testing algorithms with runlength constraints.</p><p>By using Moser and Tardos’ constructive version of the Lovász Local Lemma, we provide an efficient randomized Las Vegas algorithm of complexity <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>t</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> for the construction of <span><math><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span>-superimposed codes of length <span><math><mrow><mi>t</mi><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mi>d</mi><mi>k</mi><mo>log</mo><mi>n</mi><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. We also show that the length of our codes is shorter, for <span><math><mi>n</mi></math></span> sufficiently large, than that of the codes whose existence was proved in Agarwal et al. (2020).</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 181-187"},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A spectral condition for a graph to have strong parity factors 图形具有强奇偶因子的谱条件
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-09-13 DOI: 10.1016/j.dam.2024.09.003
Sizhong Zhou , Tao Zhang , Qiuxiang Bian

A graph G has the strong parity property if for every subset XV(G) with |X| even, G has a spanning subgraph F satisfying δ(F)1, dF(u)1 (mod 2) for any uX, and dF(v)0 (mod 2) for any vV(G)X. In this paper, we give a spectral radius condition to guarantee that a connected graph has the strong parity property.

如果对于 |X| 偶数的每个子集 X⊆V(G),G 有一个跨子图 F,满足 δ(F)≥1,对于任意 u∈X 的 dF(u)≡1(mod 2),以及对于任意 v∈V(G)∖X 的 dF(v)≡0(mod 2),则图 G 具有强奇偶性。本文给出了一个谱半径条件,以保证连通图具有强奇偶性。
{"title":"A spectral condition for a graph to have strong parity factors","authors":"Sizhong Zhou ,&nbsp;Tao Zhang ,&nbsp;Qiuxiang Bian","doi":"10.1016/j.dam.2024.09.003","DOIUrl":"10.1016/j.dam.2024.09.003","url":null,"abstract":"<div><p>A graph <span><math><mi>G</mi></math></span> has the strong parity property if for every subset <span><math><mrow><mi>X</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></math></span> even, <span><math><mi>G</mi></math></span> has a spanning subgraph <span><math><mi>F</mi></math></span> satisfying <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≡</mo><mn>1</mn></mrow></math></span> (mod 2) for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>X</mi></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≡</mo><mn>0</mn></mrow></math></span> (mod 2) for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∖</mo><mi>X</mi></mrow></math></span>. In this paper, we give a spectral radius condition to guarantee that a connected graph has the strong parity property.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 188-195"},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1