Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.012
Chunlin You
<div><div>For graphs <span><math><mi>G</mi></math></span>, <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>, we write <span><math><mrow><mi>G</mi><mo>→</mo><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> if every red/blue edge coloring of <span><math><mi>G</mi></math></span> contains a red copy of <span><math><mi>F</mi></math></span> or a blue copy of <span><math><mi>H</mi></math></span>. The Ramsey number <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest number <span><math><mi>N</mi></math></span> such that the complete graph <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then every red/blue edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contains a red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalization of this result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> with at least <span><math><mrow><mi>r</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> vertices to guarantee <span><math><mrow><mi>G</mi><mo>→</mo><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Recently, Aragão et al. (2025) proposed the following conjecture: for all integers <span><math><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>t</mi></mrow></math></span> with <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, let <span><math><mi>G</mi></math></span> be a graph with <span><math><mi>n</mi></math></span> vertices such that <span><math><mrow><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>k</mi><mo><</mo><mi>n</mi><mo>≤</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfra
{"title":"A note on degree conditions for Ramsey goodness of paths","authors":"Chunlin You","doi":"10.1016/j.dam.2025.11.012","DOIUrl":"10.1016/j.dam.2025.11.012","url":null,"abstract":"<div><div>For graphs <span><math><mi>G</mi></math></span>, <span><math><mi>F</mi></math></span> and <span><math><mi>H</mi></math></span>, we write <span><math><mrow><mi>G</mi><mo>→</mo><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> if every red/blue edge coloring of <span><math><mi>G</mi></math></span> contains a red copy of <span><math><mi>F</mi></math></span> or a blue copy of <span><math><mi>H</mi></math></span>. The Ramsey number <span><math><mrow><mi>r</mi><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the smallest number <span><math><mi>N</mi></math></span> such that the complete graph <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>→</mo><mrow><mo>(</mo><mi>F</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. A classical result of Chvátal implies that if <span><math><mrow><mi>n</mi><mo>≥</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span>, then every red/blue edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> contains a red <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> or a blue <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>. We study a natural generalization of this result, determining the exact minimum degree condition for a graph <span><math><mi>G</mi></math></span> with at least <span><math><mrow><mi>r</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> vertices to guarantee <span><math><mrow><mi>G</mi><mo>→</mo><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. Recently, Aragão et al. (2025) proposed the following conjecture: for all integers <span><math><mrow><mi>r</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>t</mi></mrow></math></span> with <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, let <span><math><mi>G</mi></math></span> be a graph with <span><math><mi>n</mi></math></span> vertices such that <span><math><mrow><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>k</mi><mo><</mo><mi>n</mi><mo>≤</mo><mrow><mo>(</mo><mi>r</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi><mo>−</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfra","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 92-97"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.004
C.U. Angeliya , Arnab Char , T. Karthick
<div><div>A class of graphs <span><math><mi>G</mi></math></span> is said to be <em>near optimal colorable</em> if there exists a constant <span><math><mrow><mi>c</mi><mo>∈</mo><mi>N</mi></mrow></math></span> such that every graph <span><math><mrow><mi>G</mi><mo>∈</mo><mi>G</mi></mrow></math></span> satisfies <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>c</mi><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> respectively denote the chromatic number and clique number of <span><math><mi>G</mi></math></span>. The class of near optimal colorable graphs is an important subclass of the class of <span><math><mi>χ</mi></math></span>-bounded graphs which is well-studied in the literature. In this paper, we show that the class of (<span><math><mrow><mi>F</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs is near optimal colorable, where <span><math><mrow><mi>F</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mn>3</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>, also known as the <em>diamond</em>, is the graph obtained from the complete graph on four vertices by deleting one edge. This partially answers a question of Ju and Huang (2024) and is related to a question of Schiermeyer (unpublished). Furthermore, using these results with some earlier known results, we also provide an alternate proof to the fact that the <span>Chromatic Number</span> problem for the class of (<span><math><mrow><mi>F</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs is solvable in polynomial time, where <span><math><mrow><mi>F</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mn>3</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></mrow>
{"title":"On near optimal colorable graphs","authors":"C.U. Angeliya , Arnab Char , T. Karthick","doi":"10.1016/j.dam.2025.11.004","DOIUrl":"10.1016/j.dam.2025.11.004","url":null,"abstract":"<div><div>A class of graphs <span><math><mi>G</mi></math></span> is said to be <em>near optimal colorable</em> if there exists a constant <span><math><mrow><mi>c</mi><mo>∈</mo><mi>N</mi></mrow></math></span> such that every graph <span><math><mrow><mi>G</mi><mo>∈</mo><mi>G</mi></mrow></math></span> satisfies <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>c</mi><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> respectively denote the chromatic number and clique number of <span><math><mi>G</mi></math></span>. The class of near optimal colorable graphs is an important subclass of the class of <span><math><mi>χ</mi></math></span>-bounded graphs which is well-studied in the literature. In this paper, we show that the class of (<span><math><mrow><mi>F</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs is near optimal colorable, where <span><math><mrow><mi>F</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mn>3</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>, also known as the <em>diamond</em>, is the graph obtained from the complete graph on four vertices by deleting one edge. This partially answers a question of Ju and Huang (2024) and is related to a question of Schiermeyer (unpublished). Furthermore, using these results with some earlier known results, we also provide an alternate proof to the fact that the <span>Chromatic Number</span> problem for the class of (<span><math><mrow><mi>F</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs is solvable in polynomial time, where <span><math><mrow><mi>F</mi><mo>∈</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mn>3</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></mrow></mrow>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 214-231"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.022
Ruixia Wang, Lie Ma, Qiaoping Guo
In 2017, Adamus et al. studied the degree-sum condition of dominating and dominated pair of vertices for the existence of hamiltonian cycles in balanced bipartite digraphs, yielding the following result: Let be a balanced bipartite digraph of order with . If for every dominating or dominated pair of vertices , then is hamiltonian. In this paper, we introduce a new semi-degree condition for a balanced bipartite digraph to be hamiltonian. We replace the degree condition with and prove that is hamiltonian; moreover it is also bipancyclic. Using two examples, we show that these two degree conditions are independent. In addition, we also show that the lower bound is indeed sharp.
{"title":"Hamiltonicity and bipancyclicity of balanced bipartite digraphs","authors":"Ruixia Wang, Lie Ma, Qiaoping Guo","doi":"10.1016/j.dam.2025.11.022","DOIUrl":"10.1016/j.dam.2025.11.022","url":null,"abstract":"<div><div>In 2017, Adamus et al. studied the degree-sum condition of dominating and dominated pair of vertices for the existence of hamiltonian cycles in balanced bipartite digraphs, yielding the following result: Let <span><math><mi>D</mi></math></span> be a balanced bipartite digraph of order <span><math><mrow><mn>2</mn><mi>a</mi></mrow></math></span> with <span><math><mrow><mi>a</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. If <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn><mi>a</mi></mrow></math></span> for every dominating or dominated pair of vertices <span><math><mrow><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></mrow></math></span>, then <span><math><mi>D</mi></math></span> is hamiltonian. In this paper, we introduce a new semi-degree condition for a balanced bipartite digraph to be hamiltonian. We replace the degree condition <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>≥</mo><mn>3</mn><mi>a</mi></mrow></math></span> with <span><math><mrow><mo>min</mo><mrow><mo>{</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mi>d</mi></mrow><mrow><mo>−</mo></mrow></msup><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>}</mo></mrow><mo>≥</mo><mi>a</mi><mo>+</mo><mn>2</mn></mrow></math></span> and prove that <span><math><mi>D</mi></math></span> is hamiltonian; moreover it is also bipancyclic. Using two examples, we show that these two degree conditions are independent. In addition, we also show that the lower bound <span><math><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></math></span> is indeed sharp.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 120-128"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.020
Arun Kumar Das
We address the minimum charging station (Min-Station) placement problem for unlabeled robots. The input consists of a graph , with given starting and target positions and , respectively, for a set of robots. A robot moves one step by transitioning from one vertex to an adjacent vertex in and has a movement capacity of steps, meaning it can move up to steps without recharging from either its starting position or a charging station. Each target position must be occupied by exactly one robot to complete the motion, hence . The objective is to determine the minimum number of charging stations needed to ensure all target positions are reached. We prove that this problem is NP-hard, even for bounded degree graphs with a maximum degree of 6. However, on the positive side, we present linear and quadratic time algorithms for the Min-Station problem on paths and cycles.
{"title":"Charging station placement for limited energy robots","authors":"Arun Kumar Das","doi":"10.1016/j.dam.2025.11.020","DOIUrl":"10.1016/j.dam.2025.11.020","url":null,"abstract":"<div><div>We address the <em>minimum charging station (<span>Min-Station</span>) placement</em> problem for unlabeled robots. The input consists of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, with given starting and target positions <span><math><mrow><mi>S</mi><mo>⊂</mo><mi>V</mi></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>⊂</mo><mi>V</mi></mrow></math></span>, respectively, for a set of <span><math><mi>m</mi></math></span> robots. A robot moves one step by transitioning from one vertex to an adjacent vertex in <span><math><mi>G</mi></math></span> and has a movement capacity of <span><math><mi>r</mi></math></span> steps, meaning it can move up to <span><math><mi>r</mi></math></span> steps without recharging from either its starting position or a charging station. Each target position must be occupied by exactly one robot to complete the motion, hence <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>T</mi><mo>|</mo></mrow></mrow></math></span>. The objective is to determine the minimum number of charging stations needed to ensure all target positions are reached. We prove that this problem is NP-hard, even for bounded degree graphs with a maximum degree of 6. However, on the positive side, we present linear and quadratic time algorithms for the <span>Min-Station</span> problem on paths and cycles.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 129-136"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.015
Weimin Li , Jianping Li , Weihua He , Jianbin Zhang
The -spectral radius of a connected hypergraph is the largest eigenvalue of its eccentricity matrix. Let be the set of -uniform hypertrees with order and diameter . In this paper, we characterize the unique hypertree with the minimum -spectral radius among , which solves the problem prosed by Zhou and Zhu (Zhou and Zhu, 2024).
连通超图的ϵ-spectral半径是其偏心矩阵的最大特征值。设Tn,d为k个阶为n、直径为d的一致超树的集合。在本文中,我们刻画了在∈d≠3Tn,d中具有最小ϵ-spectral半径的唯一超树,解决了Zhou和Zhu (Zhou and Zhu, 2024)提出的问题。
{"title":"The ϵ-spectral radii of k-uniform hypertrees","authors":"Weimin Li , Jianping Li , Weihua He , Jianbin Zhang","doi":"10.1016/j.dam.2025.11.015","DOIUrl":"10.1016/j.dam.2025.11.015","url":null,"abstract":"<div><div>The <span><math><mi>ϵ</mi></math></span>-spectral radius of a connected hypergraph is the largest eigenvalue of its eccentricity matrix. Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></msub></math></span> be the set of <span><math><mi>k</mi></math></span>-uniform hypertrees with order <span><math><mi>n</mi></math></span> and diameter <span><math><mi>d</mi></math></span>. In this paper, we characterize the unique hypertree with the minimum <span><math><mi>ϵ</mi></math></span>-spectral radius among <span><math><mrow><msub><mrow><mo>⋃</mo></mrow><mrow><mi>d</mi><mo>≠</mo><mn>3</mn></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>d</mi></mrow></msub></mrow></math></span>, which solves the problem prosed by Zhou and Zhu (Zhou and Zhu, 2024).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 151-162"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.005
Alessandro Aloisio , Alfredo Navarra
Multi-Interface networks concern to achieve efficient communications while managing heterogeneous devices. The requirement to establish connections may occur in various contexts, including emergency situations where conventional connections are unavailable.
We investigate the so-called Coverage problem in budget-constrained Multi-Interface networks. The budget is the total amount of energy in the network, while the coverage means the model aims to activate every required communication among the available devices.
The network is modeled by an undirected graph, where vertices represent devices, and edges represent the desired communication links. Each device is endowed with a set of interfaces it can use to communicate with other devices. Activating an interface at the end of an edge yields a profit for the edge but also incurs an energy cost for both the related devices. The profits incentivize solutions that enhance the network’s quality in terms of bandwidth. The energy cost plays a crucial role in extending the network’s lifespan by optimizing battery usage. We propose a generalization of this model by introducing a function that assigns an upper bound on the number of interfaces that can be used on each device. Additionally, we use a -norm function to represent the cost across the network. Finally, we analyze different cases in which the profits and costs depend either solely on the interfaces or also on the vertices and edges.
Since the original problem has been proven to be NP-hard, we study our generalization from the perspective of parameterized complexity. We present several results for the modified problem, where the parameter is the well-known branchwidth, combined in various ways with the number of available interfaces, the maximum energy, , and an upper bound on the total profit. We then extend these results to treewidth, another classical parameter. Finally, we note that when the graph is complete, the problem is para-NP-hard if the profits also depend on the links and the parameter is the number of available interfaces.
{"title":"On budget-constrained coverage in Multi-Interface networks: Branchwidth and treewidth perspectives","authors":"Alessandro Aloisio , Alfredo Navarra","doi":"10.1016/j.dam.2025.11.005","DOIUrl":"10.1016/j.dam.2025.11.005","url":null,"abstract":"<div><div>Multi-Interface networks concern to achieve efficient communications while managing heterogeneous devices. The requirement to establish connections may occur in various contexts, including emergency situations where conventional connections are unavailable.</div><div>We investigate the so-called <em>Coverage</em> problem in budget-constrained Multi-Interface networks. The budget is the total amount of energy in the network, while the coverage means the model aims to activate every required communication among the available devices.</div><div>The network is modeled by an undirected graph, where vertices represent devices, and edges represent the desired communication links. Each device is endowed with a set of interfaces it can use to communicate with other devices. Activating an interface at the end of an edge yields a profit for the edge but also incurs an energy cost for both the related devices. The profits incentivize solutions that enhance the network’s quality in terms of bandwidth. The energy cost plays a crucial role in extending the network’s lifespan by optimizing battery usage. We propose a generalization of this model by introducing a function that assigns an upper bound on the number of interfaces that can be used on each device. Additionally, we use a <span><math><mi>p</mi></math></span>-norm function to represent the cost across the network. Finally, we analyze different cases in which the profits and costs depend either solely on the interfaces or also on the vertices and edges.</div><div>Since the original problem has been proven to be NP-hard, we study our generalization from the perspective of parameterized complexity. We present several results for the modified problem, where the parameter is the well-known branchwidth, combined in various ways with the number of available interfaces, the maximum energy, <span><math><mi>p</mi></math></span>, and an upper bound on the total profit. We then extend these results to treewidth, another classical parameter. Finally, we note that when the graph is complete, the problem is para-NP-hard if the profits also depend on the links and the parameter is the number of available interfaces.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 196-213"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.027
Paola T. Pantoja , Simone Dantas , Atílio G. Luiz
A graceful -coloring of a graph is a proper vertex coloring , , that induces a proper edge coloring defined by , where . The smallest positive integer for which a graph has a graceful -coloring is called the graceful chromatic number of and is denoted by . It is well known that any tree of maximum degree has graceful chromatic number . In this paper, we refine this bound by showing that, under certain restrictions, a tree with maximum degree has a graceful chromatic number of either or at most . Additionally, we identify two families of lobsters with maximum degree 3: one with a graceful chromatic number of 4 and another with a graceful chromatic number of 5, showing that both lower and upper bounds for this parameter are attained within this class of graphs. Furthermore, we develop a polynomial-time algorithm to determine whether a given tree with maximum degree three has a graceful chromatic number of 4. Finally, we present a proof that the Graceful 4-Coloring Problem is NP-complete.
{"title":"On graceful colorings in subcubic trees","authors":"Paola T. Pantoja , Simone Dantas , Atílio G. Luiz","doi":"10.1016/j.dam.2025.11.027","DOIUrl":"10.1016/j.dam.2025.11.027","url":null,"abstract":"<div><div>A graceful <span><math><mi>k</mi></math></span>-coloring of a graph <span><math><mi>G</mi></math></span> is a proper vertex coloring <span><math><mrow><mi>π</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span>, <span><math><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, that induces a proper edge coloring <span><math><mrow><msup><mrow><mi>π</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> defined by <span><math><mrow><msup><mrow><mi>π</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>u</mi><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>π</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>π</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. The smallest positive integer <span><math><mi>k</mi></math></span> for which a graph <span><math><mi>G</mi></math></span> has a graceful <span><math><mi>k</mi></math></span>-coloring is called the graceful chromatic number of <span><math><mi>G</mi></math></span> and is denoted by <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. It is well known that any tree <span><math><mi>T</mi></math></span> of maximum degree <span><math><mi>Δ</mi></math></span> has graceful chromatic number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>g</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>Δ</mi><mo>⌉</mo></mrow></mrow></math></span>. In this paper, we refine this bound by showing that, under certain restrictions, a tree with maximum degree <span><math><mi>Δ</mi></math></span> has a graceful chromatic number of either <span><math><mrow><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span> or at most <span><math><mrow><mi>Δ</mi><mo>+</mo><mn>2</mn></mrow></math></span>. Additionally, we identify two families of lobsters with maximum degree 3: one with a graceful chromatic number of 4 and another with a graceful chromatic number of 5, showing that both lower and upper bounds for this parameter are attained within this class of graphs. Furthermore, we develop a polynomial-time algorithm to determine whether a given tree <span><math><mi>T</mi></math></span> with maximum degree three has a graceful chromatic number of 4. Finally, we present a proof that the <span>Graceful 4-Coloring Problem</span> is NP-complete.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 98-111"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.030
Sangam Balchandar Reddy, Anjeneya Swami Kare
Given a graph , a minus dominating function is a labeling of vertices such that , for each vertex . The weight of is the sum of over all the vertices . The objective of Minus Domination problem is to compute a minus dominating function of minimum weight. The problem is known to be NP-complete even on split graphs and bipartite graphs. The parameterized complexity of the problem for the parameter treewidth is a long standing open question. In this paper, we answer this by proving that the problem is W[1]-hard for the parameter distance to disjoint paths, which is larger than treewidth and feedback vertex set number. Later, we show that no polynomial kernel exists for the parameter vertex cover number. For the parameter weight, we prove that the problem is W[2]-hard on bipartite graphs and W[1]-hard on circle graphs, respectively. On the positive front, we provide an FPT algorithm for the parameter feedback edge set number. In addition, we show that the problem is APX-hard on graphs with maximum degree 5.
{"title":"Structural parameterization of minus domination","authors":"Sangam Balchandar Reddy, Anjeneya Swami Kare","doi":"10.1016/j.dam.2025.11.030","DOIUrl":"10.1016/j.dam.2025.11.030","url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, a minus dominating function <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mrow><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> is a labeling of vertices such that <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>N</mi><mrow><mo>[</mo><mi>u</mi><mo>]</mo></mrow></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, for each vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span>. The weight of <span><math><mi>f</mi></math></span> is the sum of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> over all the vertices <span><math><mrow><mi>u</mi><mo>∈</mo><mi>V</mi></mrow></math></span>. The objective of <span>Minus Domination</span> problem is to compute a minus dominating function of minimum weight. The problem is known to be NP-complete even on split graphs and bipartite graphs. The parameterized complexity of the problem for the parameter treewidth is a long standing open question. In this paper, we answer this by proving that the problem is W[1]-hard for the parameter distance to disjoint paths, which is larger than treewidth and feedback vertex set number. Later, we show that no polynomial kernel exists for the parameter vertex cover number. For the parameter weight, we prove that the problem is W[2]-hard on bipartite graphs and W[1]-hard on circle graphs, respectively. On the positive front, we provide an FPT algorithm for the parameter feedback edge set number. In addition, we show that the problem is APX-hard on graphs with maximum degree 5.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 137-150"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.025
Erfei Yue
<div><div>In 1965, Bollobás (1965) proved that for a Bollobás set-pair system <span><math><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∣</mo><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>m</mi><mo>]</mo></mrow><mo>}</mo></mrow></math></span>, the maximum value of <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></math></span><sup>−1</sup> is 1. Hegedüs and Frankl (2024) recently extended the concept of Bollobás systems to <span><math><mi>d</mi></math></span>-tuples, conjecturing that for a Bollobás system of <span><math><mi>d</mi></math></span>-tuples, <span><math><mrow><mo>{</mo><mrow><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>∣</mo><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>m</mi><mo>]</mo></mrow><mo>}</mo></mrow></math></span>, the maximum value of <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow><mo>+</mo><mo>⋯</mo><mo>+</mo><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></math></span><sup>−1</sup> is also 1. This paper refutes this conjecture and establishes an upper bound for the sum. In the case <span><math><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math></span>, the derived upper bound is asymptotically tight. Furthermore, we sharpen an inequality for skew Bollobás systems of <span><math><mi>d</mi></math></span>-tuples in Hegedüs and Frankl (2024), Finally, we determine the maximum size of a uniform skew Bollobás system of <span><math><mi>d</mi></math></span>-tuples on both sets an
{"title":"On Bollobás-type theorems of d-tuples","authors":"Erfei Yue","doi":"10.1016/j.dam.2025.11.025","DOIUrl":"10.1016/j.dam.2025.11.025","url":null,"abstract":"<div><div>In 1965, Bollobás (1965) proved that for a Bollobás set-pair system <span><math><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∣</mo><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>m</mi><mo>]</mo></mrow><mo>}</mo></mrow></math></span>, the maximum value of <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></math></span><sup>−1</sup> is 1. Hegedüs and Frankl (2024) recently extended the concept of Bollobás systems to <span><math><mi>d</mi></math></span>-tuples, conjecturing that for a Bollobás system of <span><math><mi>d</mi></math></span>-tuples, <span><math><mrow><mo>{</mo><mrow><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>∣</mo><mi>i</mi><mo>∈</mo><mrow><mo>[</mo><mi>m</mi><mo>]</mo></mrow><mo>}</mo></mrow></math></span>, the maximum value of <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow><mo>+</mo><mo>⋯</mo><mo>+</mo><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow></mrow><mrow><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>|</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow><mrow><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow></mrow></msubsup><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced></mrow></math></span><sup>−1</sup> is also 1. This paper refutes this conjecture and establishes an upper bound for the sum. In the case <span><math><mrow><mi>d</mi><mo>=</mo><mn>3</mn></mrow></math></span>, the derived upper bound is asymptotically tight. Furthermore, we sharpen an inequality for skew Bollobás systems of <span><math><mi>d</mi></math></span>-tuples in Hegedüs and Frankl (2024), Finally, we determine the maximum size of a uniform skew Bollobás system of <span><math><mi>d</mi></math></span>-tuples on both sets an","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 163-172"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-18DOI: 10.1016/j.dam.2025.11.002
Fuyuan Yang , Qiang Sun , Chao Zhang
<div><div>Let <span><math><mrow><mi>Φ</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> be a vertex partition of vertex set <span><math><mi>V</mi></math></span> of a graph <span><math><mi>G</mi></math></span>. A set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is a dominating set of a graph <span><math><mi>G</mi></math></span> if every vertex in <span><math><mrow><mi>V</mi><mo>−</mo><mi>S</mi></mrow></math></span> is adjacent to a vertex in <span><math><mi>S</mi></math></span>. Furthermore, two disjoint sets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mi>V</mi></mrow></math></span> form a coalition in <span><math><mi>G</mi></math></span> if neither of them is a dominating set of <span><math><mi>G</mi></math></span> but their union <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> is a dominating set. Denote <span><math><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></math></span> by the cardinality of the vertex set <span><math><mi>V</mi></math></span>. A vertex partition <span><math><mi>Φ</mi></math></span> of <span><math><mi>V</mi></math></span> is a coalition partition of <span><math><mi>G</mi></math></span> if every set <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>Φ</mi></mrow></math></span> either is a dominating set consisting of a single vertex of degree <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>, or is not a dominating set, but for some <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>Φ</mi></mrow></math></span>, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> form a coalition. The coalition number <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the maximum cardinality of a coalition partition of <span><math><mi>G</mi></math></span>. In this paper, we characterize all graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span> and solve one of the open problems posed by Haynes et al. Moreover, we give shorter proofs of some theorems on the characterization of all graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>G</m
{"title":"Characterizations of graphs with equal vertex and coalition number","authors":"Fuyuan Yang , Qiang Sun , Chao Zhang","doi":"10.1016/j.dam.2025.11.002","DOIUrl":"10.1016/j.dam.2025.11.002","url":null,"abstract":"<div><div>Let <span><math><mrow><mi>Φ</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> be a vertex partition of vertex set <span><math><mi>V</mi></math></span> of a graph <span><math><mi>G</mi></math></span>. A set <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> is a dominating set of a graph <span><math><mi>G</mi></math></span> if every vertex in <span><math><mrow><mi>V</mi><mo>−</mo><mi>S</mi></mrow></math></span> is adjacent to a vertex in <span><math><mi>S</mi></math></span>. Furthermore, two disjoint sets <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mi>V</mi></mrow></math></span> form a coalition in <span><math><mi>G</mi></math></span> if neither of them is a dominating set of <span><math><mi>G</mi></math></span> but their union <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> is a dominating set. Denote <span><math><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></math></span> by the cardinality of the vertex set <span><math><mi>V</mi></math></span>. A vertex partition <span><math><mi>Φ</mi></math></span> of <span><math><mi>V</mi></math></span> is a coalition partition of <span><math><mi>G</mi></math></span> if every set <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>Φ</mi></mrow></math></span> either is a dominating set consisting of a single vertex of degree <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>, or is not a dominating set, but for some <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>Φ</mi></mrow></math></span>, <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> form a coalition. The coalition number <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the maximum cardinality of a coalition partition of <span><math><mi>G</mi></math></span>. In this paper, we characterize all graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow></mrow></math></span> and solve one of the open problems posed by Haynes et al. Moreover, we give shorter proofs of some theorems on the characterization of all graphs <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>G</m","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 112-119"},"PeriodicalIF":1.0,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145580210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}