Oviposition is induced upon mating in most insects. Spawning is a physiological process that is fundamental for the reproduction of Scylla paramamosain. However, the molecular mechanisms underlying the spawning process in this species are poorly understood. Herein, comprehensive ovary transcriptomic analysis was conducted at the germinal vesicle breakdown stage (GVBD), spawning stage, 0.5 h post-spawning stage, and 24 h post-spawning stage of S. paramamosain for gene discovery. A total of 67,230 unigenes were generated, and 27,975 (41.61%) unigenes were annotated. Meanwhile, the differentially expressed genes (DEGs) between the different groups were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was subsequently conducted. These results suggested that octopamine (OA) and tyramine (TA) could induce oviposition, while dopamine (DA) and serotonin (5-hydroxytryptamine [5-HT]) inhibit oviposition. The 20-hydroxyecdysone (20E) and methyl farnesoate (MF) signal pathways might be positively associated with oviposition. Furthermore, numerous transcripts that encode neuropeptides and their G-protein-coupled receptors (GPCRs), such as CNMamide, RYamide, ecdysis-triggering hormone (ETH), GPA2/GPB5 receptor, and Moody receptor, appear to be differentially expressed during the spawning process. Eleven unigenes were selected for qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our work is the first spawning-related investigation of S. paramamosain focusing on the ovary at the whole transcriptome level. These findings assist in improving our understanding of spawning regulation in S. paramamosain and provide information for oviposition studies in other crustaceans.
{"title":"Comparative transcriptomic characterization of the ovary in the spawning process of the mud crab Scylla paramamosain","authors":"Shisheng Tu, Guohong Yu, Fuqiang Ge, Rui Xu, Zhongwen Jin, Xi Xie, Dongfa Zhu","doi":"10.1111/dgd.12921","DOIUrl":"10.1111/dgd.12921","url":null,"abstract":"<p>Oviposition is induced upon mating in most insects. Spawning is a physiological process that is fundamental for the reproduction of <i>Scylla paramamosain</i>. However, the molecular mechanisms underlying the spawning process in this species are poorly understood. Herein, comprehensive ovary transcriptomic analysis was conducted at the germinal vesicle breakdown stage (GVBD), spawning stage, 0.5 h post-spawning stage, and 24 h post-spawning stage of <i>S. paramamosain</i> for gene discovery. A total of 67,230 unigenes were generated, and 27,975 (41.61%) unigenes were annotated. Meanwhile, the differentially expressed genes (DEGs) between the different groups were identified, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was subsequently conducted. These results suggested that octopamine (OA) and tyramine (TA) could induce oviposition, while dopamine (DA) and serotonin (5-hydroxytryptamine [5-HT]) inhibit oviposition. The 20-hydroxyecdysone (20E) and methyl farnesoate (MF) signal pathways might be positively associated with oviposition. Furthermore, numerous transcripts that encode neuropeptides and their G-protein-coupled receptors (GPCRs), such as CNMamide, RYamide, ecdysis-triggering hormone (ETH), GPA2/GPB5 receptor, and Moody receptor, appear to be differentially expressed during the spawning process. Eleven unigenes were selected for qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our work is the first spawning-related investigation of <i>S. paramamosain</i> focusing on the ovary at the whole transcriptome level. These findings assist in improving our understanding of spawning regulation in <i>S. paramamosain</i> and provide information for oviposition studies in other crustaceans.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 4","pages":"274-284"},"PeriodicalIF":2.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Goto, T., & Shibuya, H. (2023). <i>maea</i> affects head formation through β-catenin degradation during early <i>Xenopus laevis</i> development. <i>Development, Growth & Differentiation</i>, 65(1), 29–36. https://doi.org/10.1111/dgd.12828</p><p>In this article, the German letter “Eszett: ß” was used where the Greek letter “beta: β” should have been used in all cases.</p><p>The following points need to be corrected:</p><p>In the title,</p><p>“<i>maea</i> affects head formation through β-catenin degradation during early <i>Xenopus laevis</i> development”</p><p>In the Abstract,</p><p>“β-Catenin protein stability is a key factor in canonical Wnt signaling.”</p><p>“Several E3 ubiquitin ligases contribute to β-catenin degradation through the ubiquitin/proteasome system.”</p><p>“The expression levels of the Wnt target genes <i>nodal homolog 3</i>, <i>gene 1</i> (<i>nodal3.1</i>), and <i>siamois homeodomain 1</i> (<i>sia1</i>), which were induced by injection with <i>β-catenin</i> mRNA, were reduced by maea.S mRNA co-injection. maea.S overexpression at the anterior dorsal region enlarged head structures, whereas Maea knockdown interfered with head formation in <i>Xenopus</i> embryos.”</p><p>“Maea.S decreased and ubiquitinated β-catenin protein.”</p><p>“β-catenin-4KRs protein, which mutated the four lysine (K) residues known as ubiquitinated sites to arginine (R) residues, was also ubiquitinated and degraded by Maea.S.”</p><p>In the KEYWORDS,</p><p>“degradation, maea, β-catenin, ubiquitination, <i>Xenopus laevis</i>”</p><p>In the INTRODUCTION (first paragraph),</p><p>“The key aspect of Wnt signalling is β-catenin protein stability. Disheveled segment polarity protein (Dvl) is recruited at the cell membrane and prevents β-catenin degradation under the Wnt-on state.”</p><p>“Under the Wnt-off state, Axin1, adenomatous polyposis coli (Apc), casein kinase 1 alpha 1 (Csnk1α1), and glycogen synthase kinase 3 beta (Gsk3β) form the destruction complex to phosphorylate β-catenin protein (Liu et al., 2002).”</p><p>“Phosphorylated β-catenin is ubiquitinated by E3 ubiquitin ligases, such as beta-transducin repeat-containing E3 ubiquitin-protein ligase (Btrc), and is then degraded by the proteasome system.”</p><p>In the INTRODUCTION (third paragraph),</p><p>“There are four lysine residues known as ubiquitinated sites in β-catenin protein. Both lysine residues 19 and 49 are ubiquitinated by Btrc (Winer et al., 2006) and jade family PHD finger 1 (Jade1) (Chitalia et al., 2008).”</p><p>“Additionally, Siah E3 ubiquitin-protein ligase 1 (Siah1) ubiquitinates β-catenin at lysine residues 666 and 671 (Dimitrova et al., 2010).”</p><p>“HECT, UBA, and WWE domain containing E3 ubiquitin protein ligase 1 (Huwe1) and SNF2 histone linker PHD RING helicase, E3 ubiquitin protein ligase (Shprh) are also related to β-catenin protein degradation, but the sites they ubiquitinate have not been identified (Dominguez-Brauer et al., 2017; Qu et al., 2016).”</p><p>In the INTRODUCTIO
{"title":"Correction to “maea affects head formation through β-catenin degradation during early Xenopus laevis development”","authors":"","doi":"10.1111/dgd.12920","DOIUrl":"10.1111/dgd.12920","url":null,"abstract":"<p>Goto, T., & Shibuya, H. (2023). <i>maea</i> affects head formation through β-catenin degradation during early <i>Xenopus laevis</i> development. <i>Development, Growth & Differentiation</i>, 65(1), 29–36. https://doi.org/10.1111/dgd.12828</p><p>In this article, the German letter “Eszett: ß” was used where the Greek letter “beta: β” should have been used in all cases.</p><p>The following points need to be corrected:</p><p>In the title,</p><p>“<i>maea</i> affects head formation through β-catenin degradation during early <i>Xenopus laevis</i> development”</p><p>In the Abstract,</p><p>“β-Catenin protein stability is a key factor in canonical Wnt signaling.”</p><p>“Several E3 ubiquitin ligases contribute to β-catenin degradation through the ubiquitin/proteasome system.”</p><p>“The expression levels of the Wnt target genes <i>nodal homolog 3</i>, <i>gene 1</i> (<i>nodal3.1</i>), and <i>siamois homeodomain 1</i> (<i>sia1</i>), which were induced by injection with <i>β-catenin</i> mRNA, were reduced by maea.S mRNA co-injection. maea.S overexpression at the anterior dorsal region enlarged head structures, whereas Maea knockdown interfered with head formation in <i>Xenopus</i> embryos.”</p><p>“Maea.S decreased and ubiquitinated β-catenin protein.”</p><p>“β-catenin-4KRs protein, which mutated the four lysine (K) residues known as ubiquitinated sites to arginine (R) residues, was also ubiquitinated and degraded by Maea.S.”</p><p>In the KEYWORDS,</p><p>“degradation, maea, β-catenin, ubiquitination, <i>Xenopus laevis</i>”</p><p>In the INTRODUCTION (first paragraph),</p><p>“The key aspect of Wnt signalling is β-catenin protein stability. Disheveled segment polarity protein (Dvl) is recruited at the cell membrane and prevents β-catenin degradation under the Wnt-on state.”</p><p>“Under the Wnt-off state, Axin1, adenomatous polyposis coli (Apc), casein kinase 1 alpha 1 (Csnk1α1), and glycogen synthase kinase 3 beta (Gsk3β) form the destruction complex to phosphorylate β-catenin protein (Liu et al., 2002).”</p><p>“Phosphorylated β-catenin is ubiquitinated by E3 ubiquitin ligases, such as beta-transducin repeat-containing E3 ubiquitin-protein ligase (Btrc), and is then degraded by the proteasome system.”</p><p>In the INTRODUCTION (third paragraph),</p><p>“There are four lysine residues known as ubiquitinated sites in β-catenin protein. Both lysine residues 19 and 49 are ubiquitinated by Btrc (Winer et al., 2006) and jade family PHD finger 1 (Jade1) (Chitalia et al., 2008).”</p><p>“Additionally, Siah E3 ubiquitin-protein ligase 1 (Siah1) ubiquitinates β-catenin at lysine residues 666 and 671 (Dimitrova et al., 2010).”</p><p>“HECT, UBA, and WWE domain containing E3 ubiquitin protein ligase 1 (Huwe1) and SNF2 histone linker PHD RING helicase, E3 ubiquitin protein ligase (Shprh) are also related to β-catenin protein degradation, but the sites they ubiquitinate have not been identified (Dominguez-Brauer et al., 2017; Qu et al., 2016).”</p><p>In the INTRODUCTIO","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"266-270"},"PeriodicalIF":2.5,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, we comprehensively searched for fish-specific genes in gnathostomes that contribute to development of the fin, a fish-specific trait. Many previous reports suggested that animal group-specific genes are often important for group-specific traits. Clarifying the roles of fish-specific genes in fin development of gnathostomes, for example, can help elucidate the mechanisms underlying the formation of this trait. We first identified 91 fish-specific genes in gnathostomes by comparing the gene repertoire in 16 fish and 35 tetrapod species. RNA-seq analysis narrowed down the 91 candidates to 33 genes that were expressed in the developing pectoral fin. We analyzed the functions of approximately half of the candidate genes by loss-of-function analysis in zebrafish. We found that some of the fish-specific and fin development-related genes, including fgf24 and and1/and2, play roles in fin development. In particular, the newly identified fish-specific gene qkia is expressed in the developing fin muscle and contributes to muscle morphogenesis in the pectoral fin as well as body trunk. These results indicate that the strategy of identifying animal group-specific genes is functional and useful. The methods applied here could be used in future studies to identify trait-associated genes in other animal groups.
{"title":"Genomic screening of fish-specific genes in gnathostomes and their functions in fin development","authors":"Hidehiro Kudoh, Sayuri Yonei-Tamura, Gembu Abe, Junichi Iwakiri, Masahiro Uesaka, Takashi Makino, Koji Tamura","doi":"10.1111/dgd.12918","DOIUrl":"10.1111/dgd.12918","url":null,"abstract":"<p>In this study, we comprehensively searched for fish-specific genes in gnathostomes that contribute to development of the fin, a fish-specific trait. Many previous reports suggested that animal group-specific genes are often important for group-specific traits. Clarifying the roles of fish-specific genes in fin development of gnathostomes, for example, can help elucidate the mechanisms underlying the formation of this trait. We first identified 91 fish-specific genes in gnathostomes by comparing the gene repertoire in 16 fish and 35 tetrapod species. RNA-seq analysis narrowed down the 91 candidates to 33 genes that were expressed in the developing pectoral fin. We analyzed the functions of approximately half of the candidate genes by loss-of-function analysis in zebrafish. We found that some of the fish-specific and fin development-related genes, including <i>fgf24</i> and <i>and1</i>/<i>and2</i>, play roles in fin development. In particular, the newly identified fish-specific gene <i>qkia</i> is expressed in the developing fin muscle and contributes to muscle morphogenesis in the pectoral fin as well as body trunk. These results indicate that the strategy of identifying animal group-specific genes is functional and useful. The methods applied here could be used in future studies to identify trait-associated genes in other animal groups.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"235-247"},"PeriodicalIF":2.5,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.
{"title":"Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues","authors":"Kiyo Sakagami, Takeshi Igawa, Kaori Saikawa, Yusuke Sakaguchi, Nusrat Hossain, Chiho Kato, Kazuhito Kinemori, Nanoka Suzuki, Makoto Suzuki, Akane Kawaguchi, Haruki Ochi, Yuki Tajika, Hajime Ogino","doi":"10.1111/dgd.12919","DOIUrl":"10.1111/dgd.12919","url":null,"abstract":"<p><i>Xenopus</i> is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of <i>Xenopus</i> embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole <i>Xenopus</i> embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the <i>lacZ</i> gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in <i>Xenopus</i> embryos.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"256-265"},"PeriodicalIF":2.5,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vision is formed by the transmission of light stimuli to the brain through axons extending from photoreceptor cells. Damage to these axons leads to loss of vision. Despite research on neural circuit regeneration through transplantation, achieving precise axon projection remains challenging. To achieve optic nerve regeneration by transplantation, we employed the Drosophila visual system. We previously established a transplantation method for Drosophila utilizing photoreceptor precursor cells extracted from the eye disc. However, little axonal elongation of transplanted cells into the brain, the lamina, was observed. We verified axonal elongation to the lamina by modifying the selection process for transplanted cells. Moreover, we focused on N-cadherin (Ncad), a cell adhesion factor, and Twinstar (Tsr), which has been shown to promote actin reorganization and induce axon elongation in damaged nerves. Overexpression of Ncad and tsr promoted axon elongation to the lamina, along with presynaptic structure formation in the elongating axons. Furthermore, overexpression of Neurexin-1 (Nrx-1), encoding a protein identified as a synaptic organizer, was found to not only promote presynapse formation but also enhance axon elongation. By introducing Ncad, tsr, and Nrx-1, we not only successfully achieved axonal projection of transplanted cells to the brain beyond the retina, but also confirmed the projection of transplanted cells into a deeper ganglion, the medulla. The present study offers valuable insights to realize regeneration through transplantation in a more complex nervous system.
视觉是由光刺激通过从感光细胞延伸出来的轴突传递到大脑而形成的。这些轴突受损会导致视力丧失。尽管对通过移植实现神经回路再生进行了研究,但实现轴突的精确投射仍具有挑战性。为了通过移植实现视神经再生,我们采用了果蝇视觉系统。此前,我们利用从眼盘提取的感光前体细胞建立了果蝇的移植方法。然而,我们几乎没有观察到移植细胞的轴突伸长到大脑(薄层)。我们通过修改移植细胞的筛选过程,验证了轴突伸长到脑膜的情况。此外,我们还重点研究了细胞粘附因子N-cadherin(Ncad)和Twinstar(Tsr),后者已被证明能促进肌动蛋白重组并诱导受损神经的轴突延伸。过量表达 Ncad 和 tsr 能促进轴突向薄层延伸,并在延伸的轴突中形成突触前结构。此外,研究还发现,过量表达编码突触组织者蛋白的 Neurexin-1 (Nrx-1) 不仅能促进突触前结构的形成,还能增强轴突的伸长。通过引入Ncad、tsr和Nrx-1,我们不仅成功地实现了移植细胞向视网膜以外的大脑的轴突投射,而且证实了移植细胞向更深的神经节--延髓的投射。本研究为在更复杂的神经系统中通过移植实现再生提供了宝贵的见解。
{"title":"Cell adhesion and actin dynamics factors promote axonal extension and synapse formation in transplanted Drosophila photoreceptor cells","authors":"Riku Iwanaga, Nagisa Yahagi, Satoko Hakeda-Suzuki, Takashi Suzuki","doi":"10.1111/dgd.12916","DOIUrl":"10.1111/dgd.12916","url":null,"abstract":"<p>Vision is formed by the transmission of light stimuli to the brain through axons extending from photoreceptor cells. Damage to these axons leads to loss of vision. Despite research on neural circuit regeneration through transplantation, achieving precise axon projection remains challenging. To achieve optic nerve regeneration by transplantation, we employed the <i>Drosophila</i> visual system. We previously established a transplantation method for <i>Drosophila</i> utilizing photoreceptor precursor cells extracted from the eye disc. However, little axonal elongation of transplanted cells into the brain, the lamina, was observed. We verified axonal elongation to the lamina by modifying the selection process for transplanted cells. Moreover, we focused on N-cadherin (Ncad), a cell adhesion factor, and Twinstar (Tsr), which has been shown to promote actin reorganization and induce axon elongation in damaged nerves. Overexpression of <i>Ncad</i> and <i>tsr</i> promoted axon elongation to the lamina, along with presynaptic structure formation in the elongating axons. Furthermore, overexpression of <i>Neurexin-1</i> (<i>Nrx-1</i>), encoding a protein identified as a synaptic organizer, was found to not only promote presynapse formation but also enhance axon elongation. By introducing <i>Ncad</i>, <i>tsr</i>, and <i>Nrx-1</i>, we not only successfully achieved axonal projection of transplanted cells to the brain beyond the retina, but also confirmed the projection of transplanted cells into a deeper ganglion, the medulla. The present study offers valuable insights to realize regeneration through transplantation in a more complex nervous system.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"205-218"},"PeriodicalIF":2.5,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.
{"title":"Evolutionarily conserved roles of foxg1a in the developing subpallium of zebrafish embryos","authors":"Koto Umeda, Kaiho Tanaka, Gazlima Chowdhury, Kouhei Nasu, Yuri Kuroyanagi, Kyo Yamasu","doi":"10.1111/dgd.12917","DOIUrl":"10.1111/dgd.12917","url":null,"abstract":"<p>The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by <i>foxg1a</i> in subpallium development using zebrafish as a model. The expression gradient of <i>foxg1a</i> within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a <i>foxg1a</i> mutant line and observed the resultant phenotypes. Morphological assessment revealed that <i>foxg1a</i> mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of <i>fgf8a</i>, <i>vax2</i>, and <i>six3b</i> was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the <i>foxg1a</i> mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of <i>foxg1a</i> in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of <i>foxg1a</i> in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of <i>foxg1</i> in the development of the subpallium in vertebrate embryos.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"219-234"},"PeriodicalIF":2.5,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12917","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Newts can regenerate functional elbow joints after amputation at the joint level. Previous studies have suggested the potential contribution of cells from residual tendon tissues to joint cartilage regeneration. A serum-free tissue culture system for tendons was established to explore cell dynamics during joint regeneration. Culturing isolated tendons in this system, stimulated by regeneration-related factors, such as fibroblast growth factor (FGF) and platelet-derived growth factor, led to robust cell migration and proliferation. Moreover, cells proliferating in an FGF-rich environment differentiated into Sox9-positive chondrocytes upon BMP7 introduction. These findings suggest that FGF-stimulated cells from tendons may aid in joint cartilage regeneration during functional elbow joint regeneration in newts.
{"title":"FGF-stimulated tendon cells embrace a chondrogenic fate with BMP7 in newt tissue culture","authors":"Nao Sugiura, Kiyokazu Agata","doi":"10.1111/dgd.12913","DOIUrl":"10.1111/dgd.12913","url":null,"abstract":"<p>Newts can regenerate functional elbow joints after amputation at the joint level. Previous studies have suggested the potential contribution of cells from residual tendon tissues to joint cartilage regeneration. A serum-free tissue culture system for tendons was established to explore cell dynamics during joint regeneration. Culturing isolated tendons in this system, stimulated by regeneration-related factors, such as fibroblast growth factor (FGF) and platelet-derived growth factor, led to robust cell migration and proliferation. Moreover, cells proliferating in an FGF-rich environment differentiated into Sox9-positive chondrocytes upon BMP7 introduction. These findings suggest that FGF-stimulated cells from tendons may aid in joint cartilage regeneration during functional elbow joint regeneration in newts.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"182-193"},"PeriodicalIF":2.5,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139718034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of N-deacetylase/N-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and N-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not N-sulfation, of HS chains in Xenopus embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that N-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in Xenopus embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.
{"title":"Dissection of N-deacetylase and N-sulfotransferase activities of NDST1 and their effects on Wnt8 distribution and signaling in Xenopus embryos","authors":"Minako Suzuki, Shinji Takada, Yusuke Mii","doi":"10.1111/dgd.12915","DOIUrl":"10.1111/dgd.12915","url":null,"abstract":"<p>Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of <i>N</i>-deacetylase/<i>N</i>-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and <i>N</i>-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not <i>N</i>-sulfation, of HS chains in <i>Xenopus</i> embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that <i>N</i>-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in <i>Xenopus</i> embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"248-255"},"PeriodicalIF":2.5,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Generally, in vertebrates, the first step toward fertilization is the ovulation of mature oocytes, followed by their binding to sperm cells outside of the ovary. Exceptionally, the oocytes of poeciliid fish are fertilized by sperm cells within the follicle, and the developmental embryo is subsequently released into the ovarian lumen before delivery. In the present study, we aimed to identify the factor(s) responsible for intrafollicular fertilization in a viviparous teleost species, Poecilia reticulata (guppy). Sperm tracking analysis in this regard indicated that in this species, sperm cells reached immature oocytes including the germinal vesicle, and the insemination assay indicated that the immature oocytes robustly adhered to the sperm cells; similar binding was not observed in Danio rerio (zebrafish) and Oryzias latipes (medaka). We also identified the Ly6/uPAR protein bouncer as the factor responsible for the observed sperm binding activity of the immature oocytes in this species. The recombinant bouncer peptide acted as an inhibitory decoy for the sperm–oocyte binding in guppy. On the other hand, ectopic expression of guppy bouncer in zebrafish oocytes resulted in interspecific sperm–oocyte binding. These results argue that bouncer is responsible for sperm–immature oocyte binding. Our findings highlight the unique reproductive strategies of guppy fish and enhance our understanding of the diverse reproductive mechanisms in vertebrates.
{"title":"Membrane molecule bouncer regulates sperm binding activity in immature oocytes in the viviparous teleost species Poecilia reticulata (guppy)","authors":"Junki Yoshida, Yuki Tajika, Kazuko Uchida, Makoto Kuwahara, Kaori Sano, Takayuki Suzuki, Eiichi Hondo, Atsuo Iida","doi":"10.1111/dgd.12914","DOIUrl":"10.1111/dgd.12914","url":null,"abstract":"<p>Generally, in vertebrates, the first step toward fertilization is the ovulation of mature oocytes, followed by their binding to sperm cells outside of the ovary. Exceptionally, the oocytes of poeciliid fish are fertilized by sperm cells within the follicle, and the developmental embryo is subsequently released into the ovarian lumen before delivery. In the present study, we aimed to identify the factor(s) responsible for intrafollicular fertilization in a viviparous teleost species, <i>Poecilia reticulata</i> (guppy). Sperm tracking analysis in this regard indicated that in this species, sperm cells reached immature oocytes including the germinal vesicle, and the insemination assay indicated that the immature oocytes robustly adhered to the sperm cells; similar binding was not observed in <i>Danio rerio</i> (zebrafish) and <i>Oryzias latipes</i> (medaka). We also identified the Ly6/uPAR protein bouncer as the factor responsible for the observed sperm binding activity of the immature oocytes in this species. The recombinant bouncer peptide acted as an inhibitory decoy for the sperm–oocyte binding in guppy. On the other hand, ectopic expression of guppy <i>bouncer</i> in zebrafish oocytes resulted in interspecific sperm–oocyte binding. These results argue that bouncer is responsible for sperm–immature oocyte binding. Our findings highlight the unique reproductive strategies of guppy fish and enhance our understanding of the diverse reproductive mechanisms in vertebrates.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 3","pages":"194-204"},"PeriodicalIF":2.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Lin Hsu, Yu-Chi Lin, Meng-Ju Lin, Yi-Wen Wang, Shyh-Jye Lee
Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.
{"title":"Macrophages enhance regeneration of lateral line neuromast derived from interneuromast cells through TGF-β in zebrafish","authors":"Wei-Lin Hsu, Yu-Chi Lin, Meng-Ju Lin, Yi-Wen Wang, Shyh-Jye Lee","doi":"10.1111/dgd.12911","DOIUrl":"10.1111/dgd.12911","url":null,"abstract":"<p>Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"66 2","pages":"133-144"},"PeriodicalIF":2.5,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}