Zebrafish (Danio rerio) is a well-established model for studying the nervous system. Findings in zebrafish often inform studies on human diseases of the nervous system and provide crucial insight into disease mechanisms. The functions of the nervous system often rely on communication between neurons. Signal transduction is achieved via release of signaling molecules in the form of neuropeptides or neurotransmitters at synapses. Snapshots of membrane dynamics of these processes are imaged by electron microscopy. Electron microscopy can reveal ultrastructure and thus synaptic processes. This is crucial both for mapping synaptic connections and for investigating synaptic functions. In addition, via volumetric electron microscopy, the overall architecture of the nervous system becomes accessible, where structure can inform function. Electron microscopy is thus of particular value for studying the nervous system. However, today a plethora of electron microscopy techniques and protocols exist. Which technique is most suitable highly depends on the research question and scope as well as on the type of tissue that is examined. This review gives an overview of the electron microcopy techniques used on the zebrafish nervous system. It aims to give researchers a guide on which techniques are suitable for their specific questions and capabilities as well as an overview of the capabilities of electron microscopy in neurobiological research in the zebrafish model.
Xian-Yang Zhong, Tao Yu, Wa Zhong, Jie-Yao Li, Zhong-Sheng Xia, Yu-Hong Yuan, Zhong Yu, Qi-Kui Chen. Lgr5 positive stem cells sorted from small intestines of diabetic mice differentiate into higher proportion of absorptive cells and Paneth cells in vitro. Development, Growth & Differentiation 2015, 57 (6), pp. 453–465 (https://onlinelibrary.wiley.com/doi/10.1111/dgd.12226).
The above article, published online on 30 June 2015 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal's Editor in Chief Naoto Ueno and John Wiley and Sons Australia, Ltd. following concerns raised by a third party about figures within the article. During the journal's investigation into the concerns raised, the authors were not able to gather comprehensive original data for the relevant figures several years after publication. Accordingly, the editors consider that the results in the published article are unreliable and do not sufficiently support the conclusions. The co-authors were not available to confirm the retraction.
Autism spectrum disorder (ASD) is one of the most common, heritable neuropsychiatric disorders in the world, affecting almost 1% of the population. The core symptoms used to diagnose ASD are decreased social interaction and increased repetitive behaviors. Despite the large number of affected individuals, the precise mechanisms that cause this disorder remain unclear. The identification of genes and environmental factors associated with ASD allows the study of the underlying mechanisms in animal models. Although ASD presents as a human disorder, based on recent advances in understanding their brain anatomy, physiology, behavior, and evolutionary conservation of neuronal cell types, I propose that zebrafish may provide novel insights into the etiology.
Temperature sex determination (TSD) in reptiles has been studied to elucidate the mechanisms by which temperature is transformed into a biological signal that determines the sex of the embryo. Temperature is thought to trigger signals that alter gene expression and hormone metabolism, which will determine the development of female or male gonads. In this review, we focus on collecting and discussing important and recent information on the role of maternal steroid hormones in sex determination in oviparous reptiles such as crocodiles, turtles, and lizards that possess TSD. In particular, we focus on maternal androgens and estrogens deposited in the egg yolk and their metabolites that could also influence the sex of offspring. Finally, we suggest guidelines for future research to help clarify the link between maternal steroid hormones and offspring sex.
Planarians show outstanding regenerative ability due to the proliferation of neoblasts. Hence the method to isolate planarian neoblasts is important to understand the regeneration process. In our previous study, we reported a method to isolate planarian neoblasts of Dugesia japonica using fluorescence-activated cell sorting (FACS). However, we have not yet succeeded in cultivating these cells even under in vivo conditions after transplantation into x-ray-irradiated planarians. This suggests that dissociated cells might enter apoptotic or necrotic states in the process of fluorescent dye staining and sorting. Here, we developed a new method to isolate viable neoblasts, which can proliferate in the x-ray-irradiated planarians. First, the toxicity of various fluorescence dyes was investigated. All nuclear fluorescent dyes such as Hoechst 33342, DRAQ5, and DyeCycle, showed, more or less, toxicity to mammalian culture cells. In contrast, cytoplasmic fluorescent dye for live cells, calcein AM, was less toxic on these cells. Next, we stained the dissociated planarian cells with only calcein AM, and then collected the x-ray-sensitive fraction. Although the purity of neoblasts was slightly lower than that of the original staining method (ca. 97% → ca. 89%), the sorted cells could actively proliferate when they were injected into x-ray-irradiated planarians. This simple staining and sorting method will provide new opportunities to isolate viable neoblasts and understand regenerating processes.
Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype–genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.
Most metazoans have a single copy of the T-box transcription factor gene Brachyury. This gene is expressed in cells of the blastopore of late blastulae and the archenteron invagination region of gastrulae. It appears to be crucial for gastrulation and mesoderm differentiation of embryos. Although this expression pattern is shared by most deuterostomes, Brachyury expression has not been reported in adult stages. Here we show that Brachyury of an indirect developer, the hemichordate acorn worm Ptychodera flava, is expressed not only in embryonic cells, but also in cells of the caudal tip (anus) region of adults. This spatially restricted expression, shown by whole-mount in situ hybridization, was confirmed by Iso-Seq RNA sequencing and single-cell RNA-seq (scRNA-seq) analysis. Iso-Seq analysis showed that gene expression occurs only in the caudal region of adults, but not in anterior regions, including the stomochord. scRNA-seq analysis showed a cluster that contained Brachyury-expressing cells comprising epidermis- and mesoderm-related cells, but which is unlikely to be associated with the nervous system or muscle. Although further investigation is required to examine the roles of Brachyury in adults, this study provides important clues for extending studies on Brachyury expression involved in development of the most posterior region of deuterostomes.
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.