Riona Ishii, Mana Yoshida, Nanoka Suzuki, Hajime Ogino, Makoto Suzuki
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
{"title":"X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration","authors":"Riona Ishii, Mana Yoshida, Nanoka Suzuki, Hajime Ogino, Makoto Suzuki","doi":"10.1111/dgd.12881","DOIUrl":"10.1111/dgd.12881","url":null,"abstract":"<p><i>Xenopus</i> tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of <i>Xenopus</i> tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in <i>Xenopus</i> tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using <i>Xenopus</i> tadpoles.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 6","pages":"300-310"},"PeriodicalIF":2.5,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10057749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The enteric nervous system (ENS) regulates gut functions independently from the central nervous system (CNS) by its highly autonomic neural circuit that integrates diverse neuronal subtypes. Although several transcription factors are shown to be necessary for the generation of some enteric neuron subtypes, the mechanisms underlying neuronal subtype specification in the ENS remain elusive. In this study, we examined the biological function of Polycomb group RING finger protein 1 (PCGF1), one of the epigenetic modifiers, in the development and differentiation of the ENS by disrupting the Pcgf1 gene selectively in the autonomic-lineage cells. Although ENS precursor migration and enteric neurogenesis were largely unaffected, neuronal differentiation was impaired in the Pcgf1-deficient mice, with the numbers of neurons expressing somatostatin (Sst+) decreased in multiple gut regions. Notably, the decrease in Sst+ neurons was associated with the corresponding increase in calbindin+ neurons in the proximal colon. These findings suggest that neuronal subtype conversion may occur in the absence of PCGF1, and that epigenetic mechanism is primarily involved in specification of some enteric neuron subtypes.
{"title":"Pcgf1 gene disruption reveals primary involvement of epigenetic mechanism in neuronal subtype specification in the enteric nervous system","authors":"Bayu Pratama Putra, Keisuke Ito, Carla Cirillo, Mukhamad Sunardi, Haruhiko Koseki, Toshihiro Uesaka, Hideki Enomoto","doi":"10.1111/dgd.12880","DOIUrl":"10.1111/dgd.12880","url":null,"abstract":"<p>The enteric nervous system (ENS) regulates gut functions independently from the central nervous system (CNS) by its highly autonomic neural circuit that integrates diverse neuronal subtypes. Although several transcription factors are shown to be necessary for the generation of some enteric neuron subtypes, the mechanisms underlying neuronal subtype specification in the ENS remain elusive. In this study, we examined the biological function of Polycomb group RING finger protein 1 (PCGF1), one of the epigenetic modifiers, in the development and differentiation of the ENS by disrupting the <i>Pcgf1</i> gene selectively in the autonomic-lineage cells. Although ENS precursor migration and enteric neurogenesis were largely unaffected, neuronal differentiation was impaired in the <i>Pcgf1</i>-deficient mice, with the numbers of neurons expressing somatostatin (Sst<sup>+</sup>) decreased in multiple gut regions. Notably, the decrease in Sst<sup>+</sup> neurons was associated with the corresponding increase in calbindin<sup>+</sup> neurons in the proximal colon. These findings suggest that neuronal subtype conversion may occur in the absence of PCGF1, and that epigenetic mechanism is primarily involved in specification of some enteric neuron subtypes.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 8","pages":"461-469"},"PeriodicalIF":2.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10372347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spinal motor neurons (SMNs) are the primary target of degeneration in amyotrophic lateral sclerosis (ALS). Degenerating motor neurons accumulate cytoplasmic TAR DNA-binding protein 43 (TDP-43) aggregates in most ALS cases. This SMN pathology can occur without mutation in the coding sequence of the TDP-43-encoding gene, TARDBP. Whether and how wild-type TDP-43 drives pathological changes in SMNs in vivo remains largely unexplored. In this study, we develop a two-photon calcium imaging setup in which tactile-evoked neural responses of motor neurons in the brainstem and spinal cord can be monitored using the calcium indicator GCaMP. We devise a piezo-assisted tactile stimulator that reproducibly evokes a brainstem descending neuron upon tactile stimulation of the head. A direct comparison between caudal primary motor neurons (CaPs) with or without TDP-43 overexpression in contiguous spinal segments demonstrates that CaPs overexpressing TDP-43 display attenuated Ca2+ transients during fictive escape locomotion evoked by the tactile stimulation. These results show that excessive amounts of TDP-43 protein reduce the neuronal excitability of SMNs and potentially contribute to asymptomatic pathological lesions of SMNs and movement disorders in patients with ALS.
{"title":"Dysregulated TDP-43 proteostasis perturbs excitability of spinal motor neurons during brainstem-mediated fictive locomotion in zebrafish","authors":"Kazuhide Asakawa, Hiroshi Handa, Koichi Kawakami","doi":"10.1111/dgd.12879","DOIUrl":"10.1111/dgd.12879","url":null,"abstract":"<p>Spinal motor neurons (SMNs) are the primary target of degeneration in amyotrophic lateral sclerosis (ALS). Degenerating motor neurons accumulate cytoplasmic TAR DNA-binding protein 43 (TDP-43) aggregates in most ALS cases. This SMN pathology can occur without mutation in the coding sequence of the TDP-43-encoding gene, <i>TARDBP</i>. Whether and how wild-type TDP-43 drives pathological changes in SMNs in vivo remains largely unexplored. In this study, we develop a two-photon calcium imaging setup in which tactile-evoked neural responses of motor neurons in the brainstem and spinal cord can be monitored using the calcium indicator GCaMP. We devise a piezo-assisted tactile stimulator that reproducibly evokes a brainstem descending neuron upon tactile stimulation of the head. A direct comparison between caudal primary motor neurons (CaPs) with or without TDP-43 overexpression in contiguous spinal segments demonstrates that CaPs overexpressing TDP-43 display attenuated Ca<sup>2+</sup> transients during fictive escape locomotion evoked by the tactile stimulation. These results show that excessive amounts of TDP-43 protein reduce the neuronal excitability of SMNs and potentially contribute to asymptomatic pathological lesions of SMNs and movement disorders in patients with ALS.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 8","pages":"446-452"},"PeriodicalIF":2.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12879","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9841340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The osr2 is expressed in the anterior part, while foxP4 in its distal part. Also, we reported the expression pattern of pdgfra for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.
{"title":"Intestinal expression patterns of transcription factors and markers for interstitial cells in the larval zebrafish","authors":"Masataka Nikaido, Ayaka Shirai, Yumiko Mizumaki, Shuji Shigenobu, Naoto Ueno, Kohei Hatta","doi":"10.1111/dgd.12878","DOIUrl":"10.1111/dgd.12878","url":null,"abstract":"<p>For the digestion of food, it is important for the gut to be differentiated regionally and to have proper motor control. However, the number of transcription factors that regulate its development is still limited. Meanwhile, the interstitial cells of the gastrointestinal (GI) tract are necessary for intestinal motility in addition to the enteric nervous system. There are anoctamine1 (Ano1)-positive and platelet-derived growth factor receptor α (Pdgfra)-positive interstitial cells in mammal, but Pdgfra-positive cells have not been reported in the zebrafish. To identify new transcription factors involved in GI tract development, we used RNA sequencing comparing between larval and adult gut. We isolated 40 transcription factors that were more highly expressed in the larval gut. We demonstrated expression patterns of the 13 genes, 7 of which were newly found to be expressed in the zebrafish larval gut. Six of the 13 genes encode nuclear receptors. The <i>osr2</i> is expressed in the anterior part, while <i>foxP4</i> in its distal part. Also, we reported the expression pattern of <i>pdgfra</i> for the first time in the larval zebrafish gut. Our data provide fundamental knowledge for studying vertebrate gut regionalization and motility by live imaging using zebrafish.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 7","pages":"418-428"},"PeriodicalIF":2.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10260420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Yang, Yong Zhu, Xin Li, Zuiming Jiang, Wenting Dai
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. RNF216 variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin–proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of RNF216−/− mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of RNF216−/− mice and WT mice by RNA sequencing. We found that deletion of RNF216 led to decreased activities of the prolactin signaling pathway, neuroactive ligand–receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.
{"title":"RNF216 affects the stability of STAU2 in the hypothalamus","authors":"Han Yang, Yong Zhu, Xin Li, Zuiming Jiang, Wenting Dai","doi":"10.1111/dgd.12877","DOIUrl":"10.1111/dgd.12877","url":null,"abstract":"<p>Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disease characterized by gonadal failure due to deficiency in gonadotropin-releasing hormone (GnRH) synthesis, secretion, or action. <i>RNF216</i> variants have been recently identified in patients with IHH. Ring finger protein 216 (RNF216), as a ubiquitin E3 ligase, catalyzes the ubiquitination of target proteins with high specificity, which consequently modulates the stability, localization, and interaction of the target protein. In this study, we found that RNF216 interacted with Staufen2 (STAU2) and affected the stability of STAU2 through the ubiquitin–proteasome pathway. STAU2, as a double-stranded RNA-binding protein enriched in the nervous system, plays a role in RNA transport, RNA stability, translation, anchoring, and synaptic plasticity. Further, we revealed that STAU2 levels in the hypothalamus of <i>RNF216</i><sup>−/−</sup> mice were increased compared with wild-type (WT) mice. The change in STAU2 protein homeostasis may affect a series of RNA cargoes. Therefore, we analyzed the changes in RNA levels in the hypothalamus of <i>RNF216</i><sup>−/−</sup> mice and WT mice by RNA sequencing. We found that deletion of <i>RNF216</i> led to decreased activities of the prolactin signaling pathway, neuroactive ligand–receptor interaction, GnRH signaling pathway, and ovarian steroidogenesis. The weakening of these signal pathways is likely to affect the secretion of GnRH, thereby affecting the development of gonads. Therefore, our study suggests that STAU2 may be a potential therapeutic target for IHH. Further experiments are needed to demonstrate the association between the weakening of these signaling pathways and the RNA-binding protein STAU2.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 7","pages":"408-417"},"PeriodicalIF":2.5,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9941352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heloysa Araujo-Silva, Augusto Monteiro de Souza, João Paulo Medeiros Mamede, Silvia Regina Batistuzzo de Medeiros, Ana Carolina Luchiari
Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (ache, bdnf, gaba1, gad1b, th1, and tph1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in tph1 mRNA expression in bold fish, while bdnf mRNA expression was increased in shy fish. Nicotine increased ache, bdnf, and tph1 mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.
{"title":"Individual differences in response to alcohol and nicotine in zebrafish: Gene expression and behavior","authors":"Heloysa Araujo-Silva, Augusto Monteiro de Souza, João Paulo Medeiros Mamede, Silvia Regina Batistuzzo de Medeiros, Ana Carolina Luchiari","doi":"10.1111/dgd.12876","DOIUrl":"10.1111/dgd.12876","url":null,"abstract":"<p>Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (<i>ache</i>, <i>bdnf, gaba1</i>, <i>gad1b</i>, <i>th1</i>, and <i>tph</i>1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in <i>tph1</i> mRNA expression in bold fish, while <i>bdnf</i> mRNA expression was increased in shy fish. Nicotine increased <i>ache</i>, <i>bdnf</i>, and <i>tph1</i> mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 8","pages":"434-445"},"PeriodicalIF":2.5,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9883388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CCCTC-binding factor (CTCF), an insulator protein with 11 zinc fingers, is enriched at the boundaries of topologically associated domains (TADs) in eukaryotic genomes. In this study, we isolated and analyzed the cDNAs encoding HpCTCF, the CTCF homolog in the sea urchin Hemicentrotus pulcherrimus, to investigate its expression patterns and functions during the early development of sea urchin. HpCTCF contains nine zinc fingers corresponding to fingers 2–10 of the vertebrate CTCF. Expression pattern analysis revealed that HpCTCF mRNA was detected at all developmental stages and in the entire embryo. Upon expressing the HpCTCF-GFP fusion protein in early embryos, we observed its uniform distribution within interphase nuclei. However, during mitosis, it disappeared from the chromosomes and subsequently reassembled on the chromosome during telophase. Moreover, the morpholino-mediated knockdown of HpCTCF resulted in mitotic arrest during the morula to blastula stage. Most of the arrested chromosomes were not phospholylated at serine 10 of histone H3, indicating that mitosis was arrested at the telophase by HpCTCF depletion. Furthermore, impaired sister chromatid segregation was observed using time-lapse imaging of HpCTCF-knockdown embryos. Thus, HpCTCF is essential for mitotic progression during the early development of sea urchins, especially during the telophase-to-interphase transition. However, the normal development of pluteus larvae in CRISPR-mediated HpCTCF-knockout embryos suggests that disruption of zygotic HpCTCF expression has little effect on embryonic and larval development.
{"title":"The crucial role of CTCF in mitotic progression during early development of sea urchin","authors":"Kaichi Watanabe, Megumi Fujita, Kazuko Okamoto, Hajime Yoshioka, Miki Moriwaki, Hideki Tagashira, Akinori Awazu, Takashi Yamamoto, Naoaki Sakamoto","doi":"10.1111/dgd.12875","DOIUrl":"10.1111/dgd.12875","url":null,"abstract":"<p>CCCTC-binding factor (CTCF), an insulator protein with 11 zinc fingers, is enriched at the boundaries of topologically associated domains (TADs) in eukaryotic genomes. In this study, we isolated and analyzed the cDNAs encoding HpCTCF, the CTCF homolog in the sea urchin <i>Hemicentrotus pulcherrimus</i>, to investigate its expression patterns and functions during the early development of sea urchin. HpCTCF contains nine zinc fingers corresponding to fingers 2–10 of the vertebrate CTCF. Expression pattern analysis revealed that <i>HpCTCF</i> mRNA was detected at all developmental stages and in the entire embryo. Upon expressing the HpCTCF-GFP fusion protein in early embryos, we observed its uniform distribution within interphase nuclei. However, during mitosis, it disappeared from the chromosomes and subsequently reassembled on the chromosome during telophase. Moreover, the morpholino-mediated knockdown of <i>HpCTCF</i> resulted in mitotic arrest during the morula to blastula stage. Most of the arrested chromosomes were not phospholylated at serine 10 of histone H3, indicating that mitosis was arrested at the telophase by HpCTCF depletion. Furthermore, impaired sister chromatid segregation was observed using time-lapse imaging of <i>HpCTCF</i>-knockdown embryos. Thus, HpCTCF is essential for mitotic progression during the early development of sea urchins, especially during the telophase-to-interphase transition. However, the normal development of pluteus larvae in CRISPR-mediated <i>HpCTCF</i>-knockout embryos suggests that disruption of zygotic HpCTCF expression has little effect on embryonic and larval development.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 7","pages":"395-407"},"PeriodicalIF":2.5,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9847509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Spiralians, one of the major clades of bilaterians, share a unique development known as spiralian development, characterized by the formation of tiers of cells called quartets, which exhibit different developmental potentials along the animal–vegetal axis. Recently, spiralian-specific TALE-type homeobox genes (SPILE) have been identified, some of which show zygotic and staggered expression patterns along the animal–vegetal axis and function in quartet specification in mollusks. However, it is unclear which maternal molecular components control the zygotic expression of these transcription factors. In this study, we focused on SPILE-E, a maternal transcription factor, and investigated its expression and function in mollusks. We found that the maternal and ubiquitous expression of SPILE-E in the cleavage stages is conserved in molluskan species, including limpets, mussels, and chitons. We knocked down SPILE-E in limpets and revealed that the expression of transcription factors specifically expressed in the first quartet (1q2; foxj1b) and second quartet (2q; SPILE-B) was abolished, whereas the macromere-quartet marker (SPILE-C) was ectopically expressed in 1q2 in SPILE-E morphants. Moreover, we showed that the expression of SPILE-A, which upregulates SPILE-B but represses SPILE-C expression, decreased in SPILE-E morphants. Consistent with changes in the expression pattern of the above transcription factors, SPILE-E-morphant larvae exhibited patchy or complete loss of expression of marker genes of ciliated cells and shell fields, possibly reflecting incomplete specification of 1q2 and 2q. Our results provide a molecular framework for quartet specification and highlight the importance of maternal lineage-specific transcription factors in the development and evolution of spiralians.
{"title":"Role of maternal spiralian-specific homeobox gene SPILE-E in the specification of blastomeres along the animal–vegetal axis during the early cleavage stages of mollusks","authors":"Yoshiaki Morino, Hiroki Yoshikawa","doi":"10.1111/dgd.12874","DOIUrl":"10.1111/dgd.12874","url":null,"abstract":"<p>Spiralians, one of the major clades of bilaterians, share a unique development known as spiralian development, characterized by the formation of tiers of cells called quartets, which exhibit different developmental potentials along the animal–vegetal axis. Recently, spiralian-specific TALE-type homeobox genes (SPILE) have been identified, some of which show zygotic and staggered expression patterns along the animal–vegetal axis and function in quartet specification in mollusks. However, it is unclear which maternal molecular components control the zygotic expression of these transcription factors. In this study, we focused on SPILE-E, a maternal transcription factor, and investigated its expression and function in mollusks. We found that the maternal and ubiquitous expression of SPILE-E in the cleavage stages is conserved in molluskan species, including limpets, mussels, and chitons. We knocked down SPILE-E in limpets and revealed that the expression of transcription factors specifically expressed in the first quartet (1q<sup>2</sup>; <i>foxj1b</i>) and second quartet (2q; <i>SPILE-B</i>) was abolished, whereas the macromere-quartet marker (<i>SPILE-C</i>) was ectopically expressed in 1q<sup>2</sup> in SPILE-E morphants. Moreover, we showed that the expression of <i>SPILE-A</i>, which upregulates <i>SPILE-B</i> but represses <i>SPILE-C</i> expression, decreased in SPILE-E morphants. Consistent with changes in the expression pattern of the above transcription factors, SPILE-E-morphant larvae exhibited patchy or complete loss of expression of marker genes of ciliated cells and shell fields, possibly reflecting incomplete specification of 1q<sup>2</sup> and 2q. Our results provide a molecular framework for quartet specification and highlight the importance of maternal lineage-specific transcription factors in the development and evolution of spiralians.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 7","pages":"384-394"},"PeriodicalIF":2.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9767012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Division of labor is a prominent feature of social insect societies, where different castes engage in different specialized tasks. As brain differences are associated with behavioral differences, brain anatomy may be linked to caste polymorphism. Here, we show that termite brain morphology changes markedly with caste differentiation and age in the termite, Reticulitermes speratus. Brain morphology was shown to be associated with reproductive division of labor, with reproductive individuals (alates and neotenic reproductives) having larger brains than nonreproductives (workers and soldiers). Micro-computed tomography (CT) imaging and dissection observations showed that the king's brain morphology changed markedly with shrinkage of the optic lobes during their long life in the dark. Behavioral experiments showed that mature primary kings lose visual function as a result of optic lobe shrinkage. These results suggested that termites restructure their nervous systems to perform necessary tasks as they undergo caste differentiation, and that they also show flexible changes in brain morphology even after the final molt. This study showed that brain morphology in social insects is linked to caste and aging, and that the evolution of the division of labor is underpinned by the development of diverse neural systems for specialized tasks.
{"title":"Plastic brain structure changes associated with the division of labor and aging in termites","authors":"Tomoki Ishibashi, A.S.M. Waliullah, Shuhei Aramaki, Masaki Kamiya, Tomoaki Kahyo, Katsumasa Nakamura, Eisuke Tasaki, Mamoru Takata, Mitsutoshi Setou, Kenji Matsuura","doi":"10.1111/dgd.12873","DOIUrl":"10.1111/dgd.12873","url":null,"abstract":"<p>Division of labor is a prominent feature of social insect societies, where different castes engage in different specialized tasks. As brain differences are associated with behavioral differences, brain anatomy may be linked to caste polymorphism. Here, we show that termite brain morphology changes markedly with caste differentiation and age in the termite, <i>Reticulitermes speratus</i>. Brain morphology was shown to be associated with reproductive division of labor, with reproductive individuals (alates and neotenic reproductives) having larger brains than nonreproductives (workers and soldiers). Micro-computed tomography (CT) imaging and dissection observations showed that the king's brain morphology changed markedly with shrinkage of the optic lobes during their long life in the dark. Behavioral experiments showed that mature primary kings lose visual function as a result of optic lobe shrinkage. These results suggested that termites restructure their nervous systems to perform necessary tasks as they undergo caste differentiation, and that they also show flexible changes in brain morphology even after the final molt. This study showed that brain morphology in social insects is linked to caste and aging, and that the evolution of the division of labor is underpinned by the development of diverse neural systems for specialized tasks.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 7","pages":"374-383"},"PeriodicalIF":2.5,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/dgd.12873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optogenetics enables the manipulation of neural activity with high spatiotemporal resolution in genetically defined neurons. The method is widely used in various model animals in the neuroscience and physiology fields. Channelrhodopsins are robust tools for optogenetic manipulation, but they have not yet been used for studies in medaka. In the present study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knock-in approach to establish a transgenic medaka strain expressing the Chloromonas oogama channelrhodopsin (CoChR) in the ISL LIM homeobox 1 (isl1) locus. We demonstrated that light stimuli elicited specific behavioral responses, such as bending or turning locomotion in the embryos and pectoral fin movements in the larvae and adults. The response probabilities and intensities of these movements could be controlled by adjusting the intensity, duration, or wavelength of each light stimulus. Furthermore, we demonstrated that the pectoral fin movements in the adult stage could be elicited using a laser pointer to irradiate region including the caudal hind brain and the rostral spinal cord. Our results indicate that CoChR allows for manipulation of medaka behaviors by activating targeted neurons, which will further our understanding of the detailed neural mechanisms of motor control or social behaviors in medaka.
{"title":"Optogenetic control of medaka behavior with channelrhodopsin","authors":"Takahide Seki, Hideaki Takeuchi, Satoshi Ansai","doi":"10.1111/dgd.12872","DOIUrl":"10.1111/dgd.12872","url":null,"abstract":"<p>Optogenetics enables the manipulation of neural activity with high spatiotemporal resolution in genetically defined neurons. The method is widely used in various model animals in the neuroscience and physiology fields. Channelrhodopsins are robust tools for optogenetic manipulation, but they have not yet been used for studies in medaka. In the present study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knock-in approach to establish a transgenic medaka strain expressing the <i>Chloromonas oogama</i> channelrhodopsin (CoChR) in the <i>ISL LIM homeobox 1</i> (<i>isl1</i>) locus. We demonstrated that light stimuli elicited specific behavioral responses, such as bending or turning locomotion in the embryos and pectoral fin movements in the larvae and adults. The response probabilities and intensities of these movements could be controlled by adjusting the intensity, duration, or wavelength of each light stimulus. Furthermore, we demonstrated that the pectoral fin movements in the adult stage could be elicited using a laser pointer to irradiate region including the caudal hind brain and the rostral spinal cord. Our results indicate that CoChR allows for manipulation of medaka behaviors by activating targeted neurons, which will further our understanding of the detailed neural mechanisms of motor control or social behaviors in medaka.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 6","pages":"288-299"},"PeriodicalIF":2.5,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}