Pub Date : 2023-03-22DOI: 10.1186/s13021-023-00225-1
Xia Chen, Mingyu Luo, Markku Larjavaara
Background
Forest above-ground biomass (AGB) accumulation is widely considered an important tool for mitigating climate change. However, the general pattern of forest AGB accumulation associated with age and climate gradients across various forest functional types at a global scale have remained unclear. In this study, we compiled a global AGB data set and applied a Bayesian statistical model to reveal the age-related dynamics of forest AGB accumulation, and to quantify the effects of mean annual temperature and annual precipitation on the initial AGB accumulation rate and on the saturated AGB characterizing the limit to AGB accumulation.
Results
The results of the study suggest that mean annual temperature has a significant positive effect on the initial AGB accumulation rate in needleleaf evergreen forest, and a negative effect in broadleaf deciduous forest; whereas annual precipitation has a positive effect in broadleaf deciduous forest, and negative effect in broadleaf evergreen forest. The positive effect of mean annual temperature on the saturated AGB in broadleaf evergreen forest is greater than in broadleaf deciduous forest; annual precipitation has a greater negative effect on the saturated AGB in deciduous forests than in evergreen forests. Additionally, the difference of AGB accumulation rate across four forest functional types is closely correlated with the forest development stage at a given climate.
Conclusions
The contrasting responses of AGB accumulation rate to mean annual temperature and precipitation across four forest functional types emphasizes the importance of incorporating the complexity of forest types into the models which are used in planning climate change mitigation. This study also highlights the high potential for further AGB growth in existing evergreen forests.
{"title":"Effects of climate and plant functional types on forest above-ground biomass accumulation","authors":"Xia Chen, Mingyu Luo, Markku Larjavaara","doi":"10.1186/s13021-023-00225-1","DOIUrl":"10.1186/s13021-023-00225-1","url":null,"abstract":"<div><h3>Background</h3><p>Forest above-ground biomass (AGB) accumulation is widely considered an important tool for mitigating climate change. However, the general pattern of forest AGB accumulation associated with age and climate gradients across various forest functional types at a global scale have remained unclear. In this study, we compiled a global AGB data set and applied a Bayesian statistical model to reveal the age-related dynamics of forest AGB accumulation, and to quantify the effects of mean annual temperature and annual precipitation on the initial AGB accumulation rate and on the saturated AGB characterizing the limit to AGB accumulation.</p><h3>Results</h3><p>The results of the study suggest that mean annual temperature has a significant positive effect on the initial AGB accumulation rate in needleleaf evergreen forest, and a negative effect in broadleaf deciduous forest; whereas annual precipitation has a positive effect in broadleaf deciduous forest, and negative effect in broadleaf evergreen forest. The positive effect of mean annual temperature on the saturated AGB in broadleaf evergreen forest is greater than in broadleaf deciduous forest; annual precipitation has a greater negative effect on the saturated AGB in deciduous forests than in evergreen forests. Additionally, the difference of AGB accumulation rate across four forest functional types is closely correlated with the forest development stage at a given climate.</p><h3>Conclusions</h3><p>The contrasting responses of AGB accumulation rate to mean annual temperature and precipitation across four forest functional types emphasizes the importance of incorporating the complexity of forest types into the models which are used in planning climate change mitigation. This study also highlights the high potential for further AGB growth in existing evergreen forests.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00225-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4867282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.1186/s13021-023-00223-3
Sol-E Choi, Segi Hong, Cholho Song, Jiwon Kim, Whijin Kim, Ram Ha, Woo-Kyun Lee
Background
Five ministries are involved in estimating the greenhouse gas (GHG) inventory in the South Korean land use, land-use change, and forestry (LULUCF) sectors. However, these ministries have not established a consistent land classification standard between land-use categories. Therefore, the GHG inventory is estimated at the approach 1 level with no spatial clarity between land-use categories. Moreover, the settlements category is not estimated because activity data and the spatial scope are lacking. This study proposed a methodology for constructing a land-use change (LUC) matrix in the LULUCF sector for improving approach level and estimating the GHG inventory in the settlements.
Result
We examined 10 sets of spatiotemporal data in South Korea to construct a LUC matrix. To maintain consistency in the spatial land classification, we constructed a LUC matrix using cadastral maps, which provide useful data for consistent land-use classification in South Korea. The LUC matrix was divided into remaining and land-converted settlements between 2005 and 2019 with estimated areas of 878,393.17 and 203,260.42 ha, respectively. CO2 emissions, according to Intergovernmental Panel Climate Change’s Guideline Tier 1, were estimated at 18.94 MtCO2 for 15 years, with an annual CO2 emission of 1.26 MtCO2 yr−1. CO2 emission by land conversion type was found to be the largest at 16.93 MtCO2 in the case of forest converted to settlements. In addition, the area with the largest CO2 emission density was Sejong-si at 7.59 tCO2/ha.
Conclusion
Based on reviewing available spatial data in South Korea, it is possible to improve Approach 3, which is more advanced than previous Approach 1 in the settlement category. In addition, the national GHG inventory also can be estimated by our constructed LUC matrix and activity data in this study. Under the many discussions about developing the Approach system, this study can provide in-detail information on developing LUC in South Korea in the settlement category as well as suggesting a methodology for constructing the LUC matrix for countries with similar problems to South Korea.
{"title":"Construction of land-use change matrix and estimation of greenhouse gas inventory focusing on settlements in South Korea","authors":"Sol-E Choi, Segi Hong, Cholho Song, Jiwon Kim, Whijin Kim, Ram Ha, Woo-Kyun Lee","doi":"10.1186/s13021-023-00223-3","DOIUrl":"10.1186/s13021-023-00223-3","url":null,"abstract":"<div><h3>Background</h3><p>Five ministries are involved in estimating the greenhouse gas (GHG) inventory in the South Korean land use, land-use change, and forestry (LULUCF) sectors. However, these ministries have not established a consistent land classification standard between land-use categories. Therefore, the GHG inventory is estimated at the approach 1 level with no spatial clarity between land-use categories. Moreover, the settlements category is not estimated because activity data and the spatial scope are lacking. This study proposed a methodology for constructing a land-use change (LUC) matrix in the LULUCF sector for improving approach level and estimating the GHG inventory in the settlements.</p><h3>Result</h3><p>We examined 10 sets of spatiotemporal data in South Korea to construct a LUC matrix. To maintain consistency in the spatial land classification, we constructed a LUC matrix using cadastral maps, which provide useful data for consistent land-use classification in South Korea. The LUC matrix was divided into remaining and land-converted settlements between 2005 and 2019 with estimated areas of 878,393.17 and 203,260.42 ha, respectively. CO<sub>2</sub> emissions, according to Intergovernmental Panel Climate Change’s Guideline Tier 1, were estimated at 18.94 MtCO<sub>2</sub> for 15 years, with an annual CO<sub>2</sub> emission of 1.26 MtCO<sub>2</sub> yr<sup>−1</sup>. CO<sub>2</sub> emission by land conversion type was found to be the largest at 16.93 MtCO<sub>2</sub> in the case of forest converted to settlements. In addition, the area with the largest CO<sub>2</sub> emission density was Sejong-si at 7.59 tCO<sub>2</sub>/ha.</p><h3>Conclusion</h3><p>Based on reviewing available spatial data in South Korea, it is possible to improve Approach 3, which is more advanced than previous Approach 1 in the settlement category. In addition, the national GHG inventory also can be estimated by our constructed LUC matrix and activity data in this study. Under the many discussions about developing the Approach system, this study can provide in-detail information on developing LUC in South Korea in the settlement category as well as suggesting a methodology for constructing the LUC matrix for countries with similar problems to South Korea.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00223-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4835617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-16DOI: 10.1186/s13021-023-00224-2
Ayana A. Jember, Mintesinot A. Taye, Getaneh Gebeyehu, Gashaw Mulu, Trinh Thang Long, Durai Jayaraman, Shiferaw Abebe
Background
In Ethiopia, highland bamboo has been cultivated in various niches: farmlands, riverbanks, woodlot boundaries, and homesteads, and agroforestry systems. However, the biomass and carbon storage of potential of bamboo forests across niches is not well characterized in Ethiopia. Therefore, this study was conducted to estimate the biomass and carbon storage potential of highland bamboo plantations in northwestern Ethiopia. To this end, a total of 60 circular plots measuring 100 m2 with a radius of 5.64 m were randomly established on the homestead, woodlot, and riverbank plantation niches to conduct the inventory. The biomass storage of bamboo was calculated based on previously published allometric equations. Biomass and carbon stock variations among age-classes and niches of bamboo forests were analyzed using analysis of variance (ANOVA) and subsequent pairwise means comparisons of carbon stocks among niches were performed via post hoc Tukey test at p < 0.05.
Results
Results showed that the mean aboveground biomass (AGB) ranged from 150.18 – 191.42 Mg ha−1 in the entire niches. The highest amount of AGB was stored in the homestead niche (191.42 Mg ha−1) followed by the woodlot (180.11 Mg ha−1) and riverbank niche (150.17 Mg ha−1), respectively. The highest carbon stock (111.56 Mg C ha−1) was found in the homestead niche while the smallest amount was recorded in the riverbank niche (87.52 Mg ha−1). The homestead bamboo plantation has the highest biomass storage due to the application of manure and natural fertilizer, regular harvesting and management of culms, and protection from illegal harvesting and grazing.
Conclusion
This study highlights the importance of bamboo plantations in climate change mitigation. Hence, bamboo plantation should be promoted; and natural resource management and forestry departments of the government, Universities, research centers, the International Bamboo and Rattan Organization (INBAR), and other partners should work with local communities to expand bamboo plantation on their homesteads and degraded lands.
{"title":"Carbon stock potential of highland bamboo plantations in northwestern Ethiopia","authors":"Ayana A. Jember, Mintesinot A. Taye, Getaneh Gebeyehu, Gashaw Mulu, Trinh Thang Long, Durai Jayaraman, Shiferaw Abebe","doi":"10.1186/s13021-023-00224-2","DOIUrl":"10.1186/s13021-023-00224-2","url":null,"abstract":"<div><h3>Background</h3><p>In Ethiopia, highland bamboo has been cultivated in various niches: farmlands, riverbanks, woodlot boundaries, and homesteads, and agroforestry systems. However, the biomass and carbon storage of potential of bamboo forests across niches is not well characterized in Ethiopia. Therefore, this study was conducted to estimate the biomass and carbon storage potential of highland bamboo plantations in northwestern Ethiopia. To this end, a total of 60 circular plots measuring 100 m<sup>2</sup> with a radius of 5.64 m were randomly established on the homestead, woodlot, and riverbank plantation niches to conduct the inventory. The biomass storage of bamboo was calculated based on previously published allometric equations. Biomass and carbon stock variations among age-classes and niches of bamboo forests were analyzed using analysis of variance (ANOVA) and subsequent pairwise means comparisons of carbon stocks among niches were performed via post hoc Tukey test at p < 0.05.</p><h3>Results</h3><p>Results showed that the mean aboveground biomass (AGB) ranged from 150.18 – 191.42 Mg ha<sup>−1</sup> in the entire niches. The highest amount of AGB was stored in the homestead niche (191.42 Mg ha<sup>−1</sup>) followed by the woodlot (180.11 Mg ha<sup>−1</sup>) and riverbank niche (150.17 Mg ha<sup>−1</sup>), respectively. The highest carbon stock (111.56 Mg C ha<sup>−1</sup>) was found in the homestead niche while the smallest amount was recorded in the riverbank niche (87.52 Mg ha<sup>−1</sup>). The homestead bamboo plantation has the highest biomass storage due to the application of manure and natural fertilizer, regular harvesting and management of culms, and protection from illegal harvesting and grazing.</p><h3>Conclusion</h3><p>This study highlights the importance of bamboo plantations in climate change mitigation. Hence, bamboo plantation should be promoted; and natural resource management and forestry departments of the government, Universities, research centers, the International Bamboo and Rattan Organization (INBAR), and other partners should work with local communities to expand bamboo plantation on their homesteads and degraded lands.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00224-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4653415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-14DOI: 10.1186/s13021-023-00221-5
Ekena Rangel Pinagé, Michael Keller, Christopher P. Peck, Marcos Longo, Paul Duffy, Ovidiu Csillik
Background
Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites. We also estimated biomass for these forest classes using airborne lidar and compared biomass uncertainties using the lidar-derived estimates only to biomass uncertainties considering the forest degradation classification as well.
Results
Our classification approach reached overall accuracy of 0.86, with accuracy at individual sites varying from 0.69 to 0.93. Logged forests showed variable biomass changes, while burned forests showed an average carbon loss of 35%. We found that including uncertainty in forest degradation classification significantly increased uncertainty and decreased estimates of mean carbon density in two of the three test sites.
Conclusions
Our findings indicate that the attribution of biomass changes to forest degradation classes needs to account for the uncertainty in forest degradation classification. By combining very high-resolution images with lidar data, we could attribute carbon stock changes to specific pathways of forest degradation. This approach also allows quantifying uncertainties of carbon emissions associated with forest degradation through logging and fire. Both the attribution and uncertainty quantification provide critical information for national greenhouse gas inventories.
{"title":"Effects of forest degradation classification on the uncertainty of aboveground carbon estimates in the Amazon","authors":"Ekena Rangel Pinagé, Michael Keller, Christopher P. Peck, Marcos Longo, Paul Duffy, Ovidiu Csillik","doi":"10.1186/s13021-023-00221-5","DOIUrl":"10.1186/s13021-023-00221-5","url":null,"abstract":"<div><h3>Background</h3><p>Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites. We also estimated biomass for these forest classes using airborne lidar and compared biomass uncertainties using the lidar-derived estimates only to biomass uncertainties considering the forest degradation classification as well.</p><h3>Results</h3><p>Our classification approach reached overall accuracy of 0.86, with accuracy at individual sites varying from 0.69 to 0.93. Logged forests showed variable biomass changes, while burned forests showed an average carbon loss of 35%. We found that including uncertainty in forest degradation classification significantly increased uncertainty and decreased estimates of mean carbon density in two of the three test sites.</p><h3>Conclusions</h3><p>Our findings indicate that the attribution of biomass changes to forest degradation classes needs to account for the uncertainty in forest degradation classification. By combining very high-resolution images with lidar data, we could attribute carbon stock changes to specific pathways of forest degradation. This approach also allows quantifying uncertainties of carbon emissions associated with forest degradation through logging and fire. Both the attribution and uncertainty quantification provide critical information for national greenhouse gas inventories.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00221-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4568102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.1186/s13021-022-00220-y
Xinyuan Wei, Jianheng Zhao, Daniel J. Hayes, Adam Daigneault, He Zhu
Background
Timber harvesting and industrial wood processing laterally transfer the carbon stored in forest sectors to wood products creating a wood products carbon pool. The carbon stored in wood products is allocated to end-use wood products (e.g., paper, furniture), landfill, and charcoal. Wood products can store substantial amounts of carbon and contribute to the mitigation of greenhouse effects. Therefore, accurate accounts for the size of wood products carbon pools for different regions are essential to estimating the land-atmosphere carbon exchange by using the bottom-up approach of carbon stock change.
Results
To quantify the carbon stored in wood products, we developed a state-of-the-art estimator (Wood Products Carbon Storage Estimator, WPsCS Estimator) that includes the wood products disposal, recycling, and waste wood decomposition processes. The wood products carbon pool in this estimator has three subpools: (1) end-use wood products, (2) landfill, and (3) charcoal carbon. In addition, it has a user-friendly interface, which can be used to easily parameterize and calibrate an estimation. To evaluate its performance, we applied this estimator to account for the carbon stored in wood products made from the timber harvested in Maine, USA, and the carbon storage of wood products consumed in the United States.
Conclusion
The WPsCS Estimator can efficiently and easily quantify the carbon stored in harvested wood products for a given region over a specific period, which was demonstrated with two illustrative examples. In addition, WPsCS Estimator has a user-friendly interface, and all parameters can be easily modified.
{"title":"A life cycle and product type based estimator for quantifying the carbon stored in wood products","authors":"Xinyuan Wei, Jianheng Zhao, Daniel J. Hayes, Adam Daigneault, He Zhu","doi":"10.1186/s13021-022-00220-y","DOIUrl":"10.1186/s13021-022-00220-y","url":null,"abstract":"<div><h3>Background</h3><p>Timber harvesting and industrial wood processing laterally transfer the carbon stored in forest sectors to wood products creating a wood products carbon pool. The carbon stored in wood products is allocated to end-use wood products (e.g., paper, furniture), landfill, and charcoal. Wood products can store substantial amounts of carbon and contribute to the mitigation of greenhouse effects. Therefore, accurate accounts for the size of wood products carbon pools for different regions are essential to estimating the land-atmosphere carbon exchange by using the bottom-up approach of carbon stock change.</p><h3>Results</h3><p>To quantify the carbon stored in wood products, we developed a state-of-the-art estimator (Wood Products Carbon Storage Estimator, WPsCS Estimator) that includes the wood products disposal, recycling, and waste wood decomposition processes. The wood products carbon pool in this estimator has three subpools: (1) end-use wood products, (2) landfill, and (3) charcoal carbon. In addition, it has a user-friendly interface, which can be used to easily parameterize and calibrate an estimation. To evaluate its performance, we applied this estimator to account for the carbon stored in wood products made from the timber harvested in Maine, USA, and the carbon storage of wood products consumed in the United States.</p><h3>Conclusion</h3><p>The WPsCS Estimator can efficiently and easily quantify the carbon stored in harvested wood products for a given region over a specific period, which was demonstrated with two illustrative examples. In addition, WPsCS Estimator has a user-friendly interface, and all parameters can be easily modified.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-022-00220-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4648994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-08DOI: 10.1186/s13021-022-00218-6
Zhong-Du Chen, Fu Chen
Background
Rice (Oryza sativa L.) production, such as farmers’ livelihood and the soil quality, has been identified to be strong influenced by climate change in China. However, the benefits of low carbon technologies (LCTs) are still debatable in rice production for farmers, which have been identified to tackle agricultural challenges. The choice of potential LCTs relevant to the case study is based on a literature review of previous empirical studies. Thus, the objectives of the study were to (1) investigate the public perception and preferences of LCTs in rice production of China, and (2) analyze the influences of the factors on farmer’s decision in adopting LCTs in rice production. There were 555 farmer surveys from eight representative rice production counties in HP province of southern China, both the Poisson estimators and multivariate probit (MVP) approach were applied in the study.
Results
Our results show that water-saving irrigation, integrated pest management techniques and planting green manure crops in winter season were the three major LCTs adapted by farmers in rice production. The intensity and probability of LCTs adoptions were influenced by the main factors including farmers’ education level, climate change awareness, machinery ownership, technical support and subsidies. There is a significant correlation among the LCTs, and the adoption of the technologies is interdependent, depicting either complementarities or substitutabilities between the practices.
Conclusions
This study suggests that policies enhance the integration of LCTs would be central to farmers’ knowledge, environmental concerns, technical service and financial support in rice production systems in China.
{"title":"Socio-economic factors influencing the adoption of low carbon technologies under rice production systems in China","authors":"Zhong-Du Chen, Fu Chen","doi":"10.1186/s13021-022-00218-6","DOIUrl":"10.1186/s13021-022-00218-6","url":null,"abstract":"<div><h3>Background</h3><p>Rice (<i>Oryza sativa</i> L.) production, such as farmers’ livelihood and the soil quality, has been identified to be strong influenced by climate change in China. However, the benefits of low carbon technologies (LCTs) are still debatable in rice production for farmers, which have been identified to tackle agricultural challenges. The choice of potential LCTs relevant to the case study is based on a literature review of previous empirical studies. Thus, the objectives of the study were to (1) investigate the public perception and preferences of LCTs in rice production of China, and (2) analyze the influences of the factors on farmer’s decision in adopting LCTs in rice production. There were 555 farmer surveys from eight representative rice production counties in HP province of southern China, both the Poisson estimators and multivariate probit (MVP) approach were applied in the study.</p><h3>Results</h3><p>Our results show that water-saving irrigation, integrated pest management techniques and planting green manure crops in winter season were the three major LCTs adapted by farmers in rice production. The intensity and probability of LCTs adoptions were influenced by the main factors including farmers’ education level, climate change awareness, machinery ownership, technical support and subsidies. There is a significant correlation among the LCTs, and the adoption of the technologies is interdependent, depicting either complementarities or substitutabilities between the practices.</p><h3>Conclusions</h3><p>This study suggests that policies enhance the integration of LCTs would be central to farmers’ knowledge, environmental concerns, technical service and financial support in rice production systems in China.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10374369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-19DOI: 10.1186/s13021-022-00219-5
E. E. Swails, M. Ardón, K. W. Krauss, A. L. Peralta, R. E. Emanuel, A. M. Helton, J. L. Morse, L. Gutenberg, N. Cormier, D. Shoch, S. Settlemyer, E. Soderholm, B. P. Boutin, C. Peoples, S. Ward
Background
Extensive drainage of peatlands in the southeastern United States coastal plain for the purposes of agriculture and timber harvesting has led to large releases of soil carbon as carbon dioxide (CO2) due to enhanced peat decomposition. Growth in mechanisms that provide financial incentives for reducing emissions from land use and land-use change could increase funding for hydrological restoration that reduces peat CO2 emissions from these ecosystems. Measuring soil respiration and physical drivers across a range of site characteristics and land use histories is valuable for understanding how CO2 emissions from peat decomposition may respond to raising water table levels. We combined measurements of total soil respiration, depth to water table from soil surface, and soil temperature from drained and restored peatlands at three locations in eastern North Carolina and one location in southeastern Virginia to investigate relationships among total soil respiration and physical drivers, and to develop models relating total soil respiration to parameters that can be easily measured and monitored in the field.
Results
Total soil respiration increased with deeper water tables and warmer soil temperatures in both drained and hydrologically restored peatlands. Variation in soil respiration was more strongly linked to soil temperature at drained (R2 = 0.57, p < 0.0001) than restored sites (R2 = 0.28, p < 0.0001).
Conclusions
The results suggest that drainage amplifies the impact of warming temperatures on peat decomposition. Proxy measurements for estimation of CO2 emissions from peat decomposition represent a considerable cost reduction compared to direct soil flux measurements for land managers contemplating the potential climate impact of restoring drained peatland sites. Research can help to increase understanding of factors influencing variation in soil respiration in addition to physical variables such as depth to water table and soil temperature.
背景:美国东南部沿海平原的泥炭地因农业和木材采伐而广泛排水,由于泥炭分解加速,导致大量土壤碳以二氧化碳的形式释放出来。为减少土地利用和土地利用变化造成的排放提供财政激励的机制的发展,可以增加水文恢复的资金,从而减少这些生态系统的泥炭二氧化碳排放。通过一系列场地特征和土地利用历史来测量土壤呼吸和物理驱动因素,对于了解泥炭分解产生的二氧化碳排放如何响应地下水位的升高是有价值的。在北卡罗来纳州东部的三个地点和弗吉尼亚州东南部的一个地点,我们将排水和恢复的泥炭地的土壤呼吸总量、土壤表面到地下水位的深度和土壤温度的测量结果结合起来,研究了土壤呼吸总量和物理驱动因素之间的关系,并开发了将土壤呼吸总量与野外容易测量和监测的参数联系起来的模型。结果排水泥炭地和水文恢复泥炭地的土壤呼吸总量随着地下水位的加深和土壤温度的升高而增加。土壤呼吸变化与排水土壤温度的关系(R2 = 0.57, p < 0.0001)强于恢复土壤温度(R2 = 0.28, p < 0.0001)。结论排水放大了气温升高对泥炭分解的影响。与直接土壤通量测量相比,估算泥炭分解产生的二氧化碳排放量的代用测量可大大降低成本,使土地管理者能够考虑恢复排水泥炭地遗址的潜在气候影响。研究可以帮助增加对影响土壤呼吸变化的因素的了解,除了物理变量,如地下水位的深度和土壤温度。
{"title":"Response of soil respiration to changes in soil temperature and water table level in drained and restored peatlands of the southeastern United States","authors":"E. E. Swails, M. Ardón, K. W. Krauss, A. L. Peralta, R. E. Emanuel, A. M. Helton, J. L. Morse, L. Gutenberg, N. Cormier, D. Shoch, S. Settlemyer, E. Soderholm, B. P. Boutin, C. Peoples, S. Ward","doi":"10.1186/s13021-022-00219-5","DOIUrl":"10.1186/s13021-022-00219-5","url":null,"abstract":"<div><h3>Background</h3><p>Extensive drainage of peatlands in the southeastern United States coastal plain for the purposes of agriculture and timber harvesting has led to large releases of soil carbon as carbon dioxide (CO<sub>2</sub>) due to enhanced peat decomposition. Growth in mechanisms that provide financial incentives for reducing emissions from land use and land-use change could increase funding for hydrological restoration that reduces peat CO<sub>2</sub> emissions from these ecosystems. Measuring soil respiration and physical drivers across a range of site characteristics and land use histories is valuable for understanding how CO<sub>2</sub> emissions from peat decomposition may respond to raising water table levels. We combined measurements of total soil respiration, depth to water table from soil surface, and soil temperature from drained and restored peatlands at three locations in eastern North Carolina and one location in southeastern Virginia to investigate relationships among total soil respiration and physical drivers, and to develop models relating total soil respiration to parameters that can be easily measured and monitored in the field.</p><h3>Results</h3><p>Total soil respiration increased with deeper water tables and warmer soil temperatures in both drained and hydrologically restored peatlands. Variation in soil respiration was more strongly linked to soil temperature at drained (R<sup>2</sup> = 0.57, p < 0.0001) than restored sites (R<sup>2</sup> = 0.28, p < 0.0001).</p><h3>Conclusions</h3><p>The results suggest that drainage amplifies the impact of warming temperatures on peat decomposition. Proxy measurements for estimation of CO<sub>2</sub> emissions from peat decomposition represent a considerable cost reduction compared to direct soil flux measurements for land managers contemplating the potential climate impact of restoring drained peatland sites. Research can help to increase understanding of factors influencing variation in soil respiration in addition to physical variables such as depth to water table and soil temperature.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40713467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-03DOI: 10.1186/s13021-022-00217-7
Qixiang Cai, Ning Zeng, Fang Zhao, Pengfei Han, Di Liu, Xiaohui Lin, Jingwen Chen
Background
The CO2 released by humans and livestock through digestion and decomposition is an important part of the urban carbon cycle, but is rarely considered in studies of city carbon budgets since its annual magnitude is usually much lower than that of fossil fuel emissions within the boundaries of cities. However, human and livestock respiration may be substantial compared to fossil fuel emissions in areas with high population density such as Manhattan or Beijing. High-resolution datasets of CO2 released from respiration also have rarely been reported on a global scale or in cities globally. Here, we estimate the CO2 released by human and livestock respiration at global and city scales and then compare it with the carbon emissions inventory from fossil fuels in 14 cities worldwide.
Results
The results show that the total magnitude of human and livestock respiration emissions is 38.2% of the fossil fuel emissions in Sao Paulo, highest amongst the 14 cities considered here. The proportion is larger than 10% in cities of Delhi, Cape Town and Tokyo. In other cities, it is relatively small with a proportion around 5%. In addition, almost 90% of respiratory carbon comes from urban areas in most of the cities, while up to one-third comes from suburban areas in Beijing on account of the siginificant livestock production.
Conclution
The results suggest that the respiration of human and livestock represents a significant CO2 source in some cities and is nonnegligible for city carbon budget analysis and carbon monitoring.
{"title":"The impact of human and livestock respiration on CO2 emissions from 14 global cities","authors":"Qixiang Cai, Ning Zeng, Fang Zhao, Pengfei Han, Di Liu, Xiaohui Lin, Jingwen Chen","doi":"10.1186/s13021-022-00217-7","DOIUrl":"10.1186/s13021-022-00217-7","url":null,"abstract":"<div><h3>Background</h3><p>The CO<sub>2</sub> released by humans and livestock through digestion and decomposition is an important part of the urban carbon cycle, but is rarely considered in studies of city carbon budgets since its annual magnitude is usually much lower than that of fossil fuel emissions within the boundaries of cities. However, human and livestock respiration may be substantial compared to fossil fuel emissions in areas with high population density such as Manhattan or Beijing. High-resolution datasets of CO<sub>2</sub> released from respiration also have rarely been reported on a global scale or in cities globally. Here, we estimate the CO<sub>2</sub> released by human and livestock respiration at global and city scales and then compare it with the carbon emissions inventory from fossil fuels in 14 cities worldwide.</p><h3>Results</h3><p>The results show that the total magnitude of human and livestock respiration emissions is 38.2% of the fossil fuel emissions in Sao Paulo, highest amongst the 14 cities considered here. The proportion is larger than 10% in cities of Delhi, Cape Town and Tokyo. In other cities, it is relatively small with a proportion around 5%. In addition, almost 90% of respiratory carbon comes from urban areas in most of the cities, while up to one-third comes from suburban areas in Beijing on account of the siginificant livestock production.</p><h3>Conclution</h3><p>The results suggest that the respiration of human and livestock represents a significant CO<sub>2</sub> source in some cities and is nonnegligible for city carbon budget analysis and carbon monitoring.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9635100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40678348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-08DOI: 10.1186/s13021-022-00215-9
Yanyu Lu, Yao Huang, Qianlai Zhuang, Wei Sun, Shutao Chen, Jun Lu
Background
China’s terrestrial ecosystems play a pronounced role in the global carbon cycle. Here we combine spatially-explicit information on vegetation, soil, topography, climate and land use change with a process-based biogeochemistry model to quantify the responses of terrestrial carbon cycle in China during the 20th century.
Results
At a century scale, China’s terrestrial ecosystems have acted as a carbon sink averaging at 96 Tg C yr− 1, with large inter-annual and decadal variabilities. The regional sink has been enhanced due to the rising temperature and CO2 concentration, with a slight increase trend in carbon sink strength along with the enhanced net primary production in the century. The areas characterized by C source are simulated to extend in the west and north of the Hu Huanyong line, while the eastern and southern regions increase their area and intensity of C sink, particularly in the late 20th century. Forest ecosystems dominate the C sink in China and are responsible for about 64% of the total sink. On the century scale, the increase in carbon sinks in China’s terrestrial ecosystems is mainly contributed by rising CO2. Afforestation and reforestation promote an increase in terrestrial carbon uptake in China from 1950s. Although climate change has generally contributed to the increase of carbon sinks in terrestrial ecosystems in China, the positive effect of climate change has been diminishing in the last decades of the 20th century.
Conclusion
This study focuses on the impacts of climate, CO2 and land use change on the carbon cycle, and presents the potential trends of terrestrial ecosystem carbon balance in China at a century scale. While a slight increase in carbon sink strength benefits from the enhanced vegetation carbon uptake in China’s terrestrial ecosystems during the 20th century, the increase trend may diminish or even change to a decrease trend under future climate change.
中国陆地生态系统在全球碳循环中扮演着重要角色。本文将植被、土壤、地形、气候和土地利用变化的空间信息与基于过程的生物地球化学模型相结合,量化了20世纪中国陆地碳循环的响应。结果在一个世纪尺度上,中国陆地生态系统的平均碳汇为96 Tg C /年,具有较大的年际和年代际变化。由于温度和CO2浓度的升高,区域碳汇强度有所增强,在本世纪内碳汇强度随净初级产量的增加略有增加。在胡焕永线的西部和北部,以C源为特征的区域有所扩展,而东部和南部地区的C汇面积和强度增加,特别是在20世纪后期。森林生态系统在中国碳汇中占主导地位,约占总碳汇的64%。在世纪尺度上,中国陆地生态系统碳汇的增加主要是由于CO2的增加。20世纪50年代以来,造林和再造林促进了中国陆地碳吸收的增加。尽管气候变化总体上促进了中国陆地生态系统碳汇的增加,但在20世纪最后几十年,气候变化的积极影响正在减弱。结论研究了气候、CO2和土地利用变化对中国陆地生态系统碳循环的影响,揭示了百年尺度下中国陆地生态系统碳平衡的潜在趋势。虽然20世纪中国陆地生态系统碳汇强度的小幅增加得益于植被碳吸收的增强,但在未来气候变化的影响下,碳汇强度的增加趋势可能会减弱甚至变为减少趋势。
{"title":"China’s terrestrial ecosystem carbon balance during the 20th century: an analysis with a process-based biogeochemistry model","authors":"Yanyu Lu, Yao Huang, Qianlai Zhuang, Wei Sun, Shutao Chen, Jun Lu","doi":"10.1186/s13021-022-00215-9","DOIUrl":"10.1186/s13021-022-00215-9","url":null,"abstract":"<div><h3>Background</h3><p>China’s terrestrial ecosystems play a pronounced role in the global carbon cycle. Here we combine spatially-explicit information on vegetation, soil, topography, climate and land use change with a process-based biogeochemistry model to quantify the responses of terrestrial carbon cycle in China during the 20th century.</p><h3>Results</h3><p>At a century scale, China’s terrestrial ecosystems have acted as a carbon sink averaging at 96 Tg C yr<sup>− 1</sup>, with large inter-annual and decadal variabilities. The regional sink has been enhanced due to the rising temperature and CO<sub>2</sub> concentration, with a slight increase trend in carbon sink strength along with the enhanced net primary production in the century. The areas characterized by C source are simulated to extend in the west and north of the Hu Huanyong line, while the eastern and southern regions increase their area and intensity of C sink, particularly in the late 20th century. Forest ecosystems dominate the C sink in China and are responsible for about 64% of the total sink. On the century scale, the increase in carbon sinks in China’s terrestrial ecosystems is mainly contributed by rising CO<sub>2</sub>. Afforestation and reforestation promote an increase in terrestrial carbon uptake in China from 1950s. Although climate change has generally contributed to the increase of carbon sinks in terrestrial ecosystems in China, the positive effect of climate change has been diminishing in the last decades of the 20th century.</p><h3>Conclusion</h3><p>This study focuses on the impacts of climate, CO<sub>2</sub> and land use change on the carbon cycle, and presents the potential trends of terrestrial ecosystem carbon balance in China at a century scale. While a slight increase in carbon sink strength benefits from the enhanced vegetation carbon uptake in China’s terrestrial ecosystems during the 20th century, the increase trend may diminish or even change to a decrease trend under future climate change.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33493623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1186/s13021-022-00214-w
Ana Bastos, Philippe Ciais, Stephen Sitch, Luiz E. O. C. Aragão, Frédéric Chevallier, Dominic Fawcett, Thais M. Rosan, Marielle Saunois, Dirk Günther, Lucia Perugini, Colas Robert, Zhu Deng, Julia Pongratz, Raphael Ganzenmüller, Richard Fuchs, Karina Winkler, Sönke Zaehle, Clément Albergel
The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement.
{"title":"On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2","authors":"Ana Bastos, Philippe Ciais, Stephen Sitch, Luiz E. O. C. Aragão, Frédéric Chevallier, Dominic Fawcett, Thais M. Rosan, Marielle Saunois, Dirk Günther, Lucia Perugini, Colas Robert, Zhu Deng, Julia Pongratz, Raphael Ganzenmüller, Richard Fuchs, Karina Winkler, Sönke Zaehle, Clément Albergel","doi":"10.1186/s13021-022-00214-w","DOIUrl":"10.1186/s13021-022-00214-w","url":null,"abstract":"<div><p>The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major challenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inventories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. While national GHG inventories follow diverse methodologies depending on the availability of activity data in the different countries, the proposed comparison with EO-based estimates can help improve our understanding of the comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering high potential to improve the quantification of global and regional GHG budgets and advance process understanding. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG inventories. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris Agreement.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"17 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40387968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}