Over the past few years, delivery tactics for enhancing drug bioavailability, biocompatibility, and therapeutic index have advanced significantly in innovative strategies, encompassing delivery of small molecules, proteins and peptides, nucleic acids, and, most recently, live-cell therapies. Challenges associated with different drug delivery systems such as reducing off-target toxicity, improving solubility and permeability, non-invasive handling, overcoming biological obstacles, decreasing immunogenicity, improving stability, getting into the nucleus or cytoplasm, viability and persistence in vivo, etc. can be overcome by any one of the three strategies- Modification of drug molecule, change in physiological environment, and using novel drug carrier. This article describes the problems with traditional medication delivery methods and how other methods have been developed to overcome those problems. Additionally, this review also provides knowledge on a few unique technique of drug delivery including nanotechnology, 3D printing, AI aided delivery of therapeutics, etc.
{"title":"Insight on the Rise and Raise of Drug Delivery with Special Emphasis on Five Classes of Therapeutics.","authors":"Madhuri Desavathu, Pratiksha Singh, Ananya Pal, Nisha Joshi, Rajshekher Upadhyay","doi":"10.1615/CritRevTherDrugCarrierSyst.2025053703","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2025053703","url":null,"abstract":"<p><p>Over the past few years, delivery tactics for enhancing drug bioavailability, biocompatibility, and therapeutic index have advanced significantly in innovative strategies, encompassing delivery of small molecules, proteins and peptides, nucleic acids, and, most recently, live-cell therapies. Challenges associated with different drug delivery systems such as reducing off-target toxicity, improving solubility and permeability, non-invasive handling, overcoming biological obstacles, decreasing immunogenicity, improving stability, getting into the nucleus or cytoplasm, viability and persistence in vivo, etc. can be overcome by any one of the three strategies- Modification of drug molecule, change in physiological environment, and using novel drug carrier. This article describes the problems with traditional medication delivery methods and how other methods have been developed to overcome those problems. Additionally, this review also provides knowledge on a few unique technique of drug delivery including nanotechnology, 3D printing, AI aided delivery of therapeutics, etc.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 4","pages":"59-92"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1615/CritRevTherDrugCarrierSyst.2025044498
Mansi Damani, Akshada Mhaske, Sayali Dighe, Sujata P Sawarkar
Cervical cancer is the fourth most common cause of morbidity and mortality in women. The major causative factor for cervical cancer is primary prolonged infection with human papillomavirus, along with secondary factors such as immunodeficiency, smoking, low socioeconomic standards, poor hygiene, and overuse of oral contraceptives. A grave need exists to practice novel strategies to overcome existing drawbacks of conventional therapy such as chemotherapy, radiation therapy, and surgery. Cancer immunotherapy works by strengthening the immune system of the host to combat against the cancerous cells. Immunotherapy in cervical cancer treatment has demonstrated long-lasting effects; however, the response to such therapies was nominal due to its prominent limitations such as immunosuppressive behavior of the tumor. Presently plethora of nanoplatforms such as polymeric nanoparticles, micelles, liposomes, and dendrimers are being maneuvered with cancer immunotherapy. The amalgamation of nanotechnology and immunotherapy in the treatment of cervical cancer is conceivable due to the mutual association between the tumor microenvironment and immunosurveillance. Safety concerns of nanoplatforms with immunotherapeutics such as toxicity, inflammation, and unwanted accumulation in tissues could be surmounted by surface modification methods. This review highlights the benefits of the amalgamation of nanotechnology and immunotherapy to improve shortcomings applicable to the conventional delivery of cancer treatment. We also aim to outline the nanoimmunotherapy sophistications and future translational avenues in this rapidly flourishing cancer treatment modality.
{"title":"Immunotherapy in Cervical Cancer: An Evolutionary Paradigm in Women's Reproductive Health.","authors":"Mansi Damani, Akshada Mhaske, Sayali Dighe, Sujata P Sawarkar","doi":"10.1615/CritRevTherDrugCarrierSyst.2025044498","DOIUrl":"10.1615/CritRevTherDrugCarrierSyst.2025044498","url":null,"abstract":"<p><p>Cervical cancer is the fourth most common cause of morbidity and mortality in women. The major causative factor for cervical cancer is primary prolonged infection with human papillomavirus, along with secondary factors such as immunodeficiency, smoking, low socioeconomic standards, poor hygiene, and overuse of oral contraceptives. A grave need exists to practice novel strategies to overcome existing drawbacks of conventional therapy such as chemotherapy, radiation therapy, and surgery. Cancer immunotherapy works by strengthening the immune system of the host to combat against the cancerous cells. Immunotherapy in cervical cancer treatment has demonstrated long-lasting effects; however, the response to such therapies was nominal due to its prominent limitations such as immunosuppressive behavior of the tumor. Presently plethora of nanoplatforms such as polymeric nanoparticles, micelles, liposomes, and dendrimers are being maneuvered with cancer immunotherapy. The amalgamation of nanotechnology and immunotherapy in the treatment of cervical cancer is conceivable due to the mutual association between the tumor microenvironment and immunosurveillance. Safety concerns of nanoplatforms with immunotherapeutics such as toxicity, inflammation, and unwanted accumulation in tissues could be surmounted by surface modification methods. This review highlights the benefits of the amalgamation of nanotechnology and immunotherapy to improve shortcomings applicable to the conventional delivery of cancer treatment. We also aim to outline the nanoimmunotherapy sophistications and future translational avenues in this rapidly flourishing cancer treatment modality.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 3","pages":"55-88"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1615/CritRevTherDrugCarrierSyst.2024053869
Gaurav S Chavan, Aarti Belgamwar, Kiran D Patil, Yogeeta O Agrawal
Onychomycosis, a nail infection prevalent in 50 to 60% of all nail illnesses globally, caused by dermatophytes, poses significant challenges to current therapies due to their limitations in effective administration. This review explores recent advancements in novel drug delivery systems while exploring the molecular mechanisms underlying onychomycosis progression. The physicochemical properties of antifungal treatments and the intricate structure of the nail plate present challenges and can be addressed by nanotechnology-enabled solutions. Furthermore, the review extensively covers diagnostic methods crucial for accurate onychomycosis identification. This review offers insights to enhance onychomycosis management by elucidating mechanistic aspects of the disease. Emphasizing the role of nanotechnology in drug delivery systems, it addresses current treatment challenges using innovative approaches. Moreover, the evaluation of various formulations highlights opportunities to improve therapeutic efficacy. Overall, this comprehensive review explores the current status, challenges, diagnostics advances, and novel approaches for the administration of drugs for the management of onychomycosis.
{"title":"Mechanistic Understanding of Onychomycosis Progression and Current Advancement in the Transungual Drug Delivery System.","authors":"Gaurav S Chavan, Aarti Belgamwar, Kiran D Patil, Yogeeta O Agrawal","doi":"10.1615/CritRevTherDrugCarrierSyst.2024053869","DOIUrl":"10.1615/CritRevTherDrugCarrierSyst.2024053869","url":null,"abstract":"<p><p>Onychomycosis, a nail infection prevalent in 50 to 60% of all nail illnesses globally, caused by dermatophytes, poses significant challenges to current therapies due to their limitations in effective administration. This review explores recent advancements in novel drug delivery systems while exploring the molecular mechanisms underlying onychomycosis progression. The physicochemical properties of antifungal treatments and the intricate structure of the nail plate present challenges and can be addressed by nanotechnology-enabled solutions. Furthermore, the review extensively covers diagnostic methods crucial for accurate onychomycosis identification. This review offers insights to enhance onychomycosis management by elucidating mechanistic aspects of the disease. Emphasizing the role of nanotechnology in drug delivery systems, it addresses current treatment challenges using innovative approaches. Moreover, the evaluation of various formulations highlights opportunities to improve therapeutic efficacy. Overall, this comprehensive review explores the current status, challenges, diagnostics advances, and novel approaches for the administration of drugs for the management of onychomycosis.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 3","pages":"89-125"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1615/CritRevTherDrugCarrierSyst.2025054733
Divya Dubey, Trinette Fernandes, Prabha Singh
The HIV-1 reservoir is a residual pool of integrated viral genomes that endure in a condition of reversible non-productive infection, notwithstanding suppressive antiretroviral therapy's ability to successfully inhibit HIV-1 replication and evolution. Individual T cells are capable of developing a latent infection due to HIV-1. Even in patients receiving highly effective marketed antiretroviral medication, latent virus survives perpetually in memory T cells and exhibit atypical cellular signaling and metabolic dysfunction, which can cause minor to severe cellular and systemic comorbidities. These include lymphocytic, cardiac, renal, hepatic, and pulmonary dysfunctions as well as genomic DNA damage, telomere attrition, and mitochondrial dysfunction. This latent reservoir is understood to be a substantial challenge for treating HIV-1 infection. The presence of a latent reservoir for HIV-1 can be used to explain the extremely low levels of viremia in patients undergoing antiretroviral therapy. In an effort to eradicate the latent reservoir, several methods are being investigated for reactivating dormant viruses. This review concentrates on figuring out how to awaken latent HIV-1 by adding detailed information about drugs and formulations discovered for latent HIV. This work may provoke the thoughts related for discovering many more promising drugs, and targeting strategies to totally eradicate the HIV.
{"title":"Combating HIV Latency: A Review of Innovative Interventions and Nanotechnology-Based Formulations.","authors":"Divya Dubey, Trinette Fernandes, Prabha Singh","doi":"10.1615/CritRevTherDrugCarrierSyst.2025054733","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2025054733","url":null,"abstract":"<p><p>The HIV-1 reservoir is a residual pool of integrated viral genomes that endure in a condition of reversible non-productive infection, notwithstanding suppressive antiretroviral therapy's ability to successfully inhibit HIV-1 replication and evolution. Individual T cells are capable of developing a latent infection due to HIV-1. Even in patients receiving highly effective marketed antiretroviral medication, latent virus survives perpetually in memory T cells and exhibit atypical cellular signaling and metabolic dysfunction, which can cause minor to severe cellular and systemic comorbidities. These include lymphocytic, cardiac, renal, hepatic, and pulmonary dysfunctions as well as genomic DNA damage, telomere attrition, and mitochondrial dysfunction. This latent reservoir is understood to be a substantial challenge for treating HIV-1 infection. The presence of a latent reservoir for HIV-1 can be used to explain the extremely low levels of viremia in patients undergoing antiretroviral therapy. In an effort to eradicate the latent reservoir, several methods are being investigated for reactivating dormant viruses. This review concentrates on figuring out how to awaken latent HIV-1 by adding detailed information about drugs and formulations discovered for latent HIV. This work may provoke the thoughts related for discovering many more promising drugs, and targeting strategies to totally eradicate the HIV.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 5","pages":"55-99"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1615/CritRevTherDrugCarrierSyst.2025053255
Roshan Kumar Gupta, Lensi Parvadiya, Kiran Dudhat
Skin cancer is one of the most prevalent malignancies globally, with rising incidence rates driven by environmental and genetic factors. This manuscript aims to explore recent advancements in the prevention and treatment of skin cancer, focusing on the integration of emerging technologies, plant-based therapies, and innovative diagnostic approaches. Exposure to ultraviolet (UV) radiation is the primary environmental risk factor for skin cancer, contributing to both melanoma and non-melanoma skin cancer (NMSC), including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Advances in technology, such as AI-driven diagnostic tools and non-invasive imaging techniques, are transforming early detection and risk assessment. Additionally, the role of genetic factors, such as p53 mutations in the development of SCC, is highlighted, emphasizing the importance of molecular diagnostics in guiding treatment strategies. In the realm of therapeutics, plant-based compounds are gaining traction for their anti-cancer properties. Natural agents such as polyphenols and flavonoids exhibit UV-protective and anti-carcinogenic effects, offering promising adjuncts to conventional treatments. Moreover, innovative treatment modalities, including immunotherapy and nanotechnology-based drug delivery systems, are being explored to enhance the efficacy of traditional chemotherapies while minimizing side effects. This article comprehensively reviews the types and classifications of skin cancer, the role of biological and non-biological risk factors, and cutting-edge prevention strategies. It also delves into the potential of plant-based therapies and the emerging role of nanotechnology and advanced diagnostic techniques in skin cancer management. By examining these novel approaches, the manuscript offers a forward-looking perspective on improving early detection, enhancing treatment outcomes, and reducing the global burden of skin cancer. These insights could pave the way for integrating innovative therapies and technologies into clinical practice, facilitating more effective skin cancer management.
{"title":"Advancements in Skin Cancer Prevention and Treatment: Harnessing Technology, Natural Therapies, and Emerging Diagnostic Approaches.","authors":"Roshan Kumar Gupta, Lensi Parvadiya, Kiran Dudhat","doi":"10.1615/CritRevTherDrugCarrierSyst.2025053255","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2025053255","url":null,"abstract":"<p><p>Skin cancer is one of the most prevalent malignancies globally, with rising incidence rates driven by environmental and genetic factors. This manuscript aims to explore recent advancements in the prevention and treatment of skin cancer, focusing on the integration of emerging technologies, plant-based therapies, and innovative diagnostic approaches. Exposure to ultraviolet (UV) radiation is the primary environmental risk factor for skin cancer, contributing to both melanoma and non-melanoma skin cancer (NMSC), including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Advances in technology, such as AI-driven diagnostic tools and non-invasive imaging techniques, are transforming early detection and risk assessment. Additionally, the role of genetic factors, such as p53 mutations in the development of SCC, is highlighted, emphasizing the importance of molecular diagnostics in guiding treatment strategies. In the realm of therapeutics, plant-based compounds are gaining traction for their anti-cancer properties. Natural agents such as polyphenols and flavonoids exhibit UV-protective and anti-carcinogenic effects, offering promising adjuncts to conventional treatments. Moreover, innovative treatment modalities, including immunotherapy and nanotechnology-based drug delivery systems, are being explored to enhance the efficacy of traditional chemotherapies while minimizing side effects. This article comprehensively reviews the types and classifications of skin cancer, the role of biological and non-biological risk factors, and cutting-edge prevention strategies. It also delves into the potential of plant-based therapies and the emerging role of nanotechnology and advanced diagnostic techniques in skin cancer management. By examining these novel approaches, the manuscript offers a forward-looking perspective on improving early detection, enhancing treatment outcomes, and reducing the global burden of skin cancer. These insights could pave the way for integrating innovative therapies and technologies into clinical practice, facilitating more effective skin cancer management.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 5","pages":"1-54"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1615/CritRevTherDrugCarrierSyst.v42.i1.30
Neha P Shukla, Giftson J Senapathy
Cancer is one of the major life-threatening diseases in the world and oral cancer is the 8th most common type of deadly cancers in Asian countries. Despite many causes, tobacco is the main causative agent as 90% of oral cancer cases were due to daily consumption of tobacco and its products. The major drawback of the conventional therapies for oral cancer including chemotherapy, surgery and radiotherapy or combination of these is the dose limiting toxicity. Developments in technology and research led to new innovative discoveries in cancer treatments. In the past few decades, increased attention has been given to researches in alternative cancer treatment strategies using plants and plant products. Recently many anticancer drugs from natural products or phytochemicals were approved internationally. Due to the low bioavailability and poor solubility of phytochemicals, various research works on nano-carrier based drug delivery systems were exploited in the recent past to make them as promising anticancer agents. In the current review, an overview of oral cancer and its treatment, risk factors, missing links of conventional therapies, contribution of nanotechnology in cancer treatment and research on phytochemical based drug treatment and different polymeric nanoparticles were discussed briefly. The future prospects for the use of various types of polymeric nanoparticles applied in the diagnosis and treatment of oral cancer were also mentioned. The major concern of this review is to give the reader a better understanding on various types of treatment for oral cancer.
{"title":"Current Review on Nanophytomedicines in the Treatment of Oral Cancer: Recent Trends and Treatment Prospects.","authors":"Neha P Shukla, Giftson J Senapathy","doi":"10.1615/CritRevTherDrugCarrierSyst.v42.i1.30","DOIUrl":"10.1615/CritRevTherDrugCarrierSyst.v42.i1.30","url":null,"abstract":"<p><p>Cancer is one of the major life-threatening diseases in the world and oral cancer is the 8th most common type of deadly cancers in Asian countries. Despite many causes, tobacco is the main causative agent as 90% of oral cancer cases were due to daily consumption of tobacco and its products. The major drawback of the conventional therapies for oral cancer including chemotherapy, surgery and radiotherapy or combination of these is the dose limiting toxicity. Developments in technology and research led to new innovative discoveries in cancer treatments. In the past few decades, increased attention has been given to researches in alternative cancer treatment strategies using plants and plant products. Recently many anticancer drugs from natural products or phytochemicals were approved internationally. Due to the low bioavailability and poor solubility of phytochemicals, various research works on nano-carrier based drug delivery systems were exploited in the recent past to make them as promising anticancer agents. In the current review, an overview of oral cancer and its treatment, risk factors, missing links of conventional therapies, contribution of nanotechnology in cancer treatment and research on phytochemical based drug treatment and different polymeric nanoparticles were discussed briefly. The future prospects for the use of various types of polymeric nanoparticles applied in the diagnosis and treatment of oral cancer were also mentioned. The major concern of this review is to give the reader a better understanding on various types of treatment for oral cancer.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 1","pages":"89-118"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1615/CritRevTherDrugCarrierSyst.2024053289
Kangkan Sarma, Md Habban Akhter, Amnah Alalmaie, Irfan Ahmad, Mohd Nazam Ansari, Habibullah Khalilullah, Syeda Ayesha Farhana, Shalam M Hussain, Adel M Aljadaan
Lung cancer has the second highest occurrence and lowest survival rate among all cancers and incidence rates are increasing. From the tumor milieu, tumors exude chemokines and cytokines that hassle the pulmonary drug administration hinders the success of treatment. A few mutations lead to generation of lungs cancer. It has prominent levels of mutated genes such as TP53, KRAS, MET, and EGFR. Various molecular pathways involved in causing lung cancer such as PTEN/PI3K/AKT pathway, JAK/STAT pathways, RAF-MEK-ERK, PI3K-AKT-mTOR, and RALGDS-RA, PI3K, AKT, and PI3K/AKT/mTOR pathway. Inhibition of such biological pathway through active targeting, using various biological inhibitors, and blockers could help in treating and recurrence of lungs tumor. The conventional therapeutic modalities concomitant with personalized genomic nanomedicine can have potential in improving treatment regimen. This study explored the different genomic changes that occur due to the prime etiological factors, their reported treatment profile, and nanocarrier mediated therapeutic strategy by targeting tumor microenvironment (TME). Nanocarriers confront multiple obstacles in their journey to the TME therapeutic approach as leaky vasculature, large fenestration, and usually carried off from immune system and phagocytosis process. However, formulators designed a bio-functionalized carrier that enable to evade opsonization, escape immune system, modulate TME, identify reticuloendothelial system, and thus facilitates biological interaction, and enhance cellular uptake.
{"title":"Unlocking the Molecular Targets in Non-Small-Cell Lung Cancer and a Nanomedicine-Based Remedy.","authors":"Kangkan Sarma, Md Habban Akhter, Amnah Alalmaie, Irfan Ahmad, Mohd Nazam Ansari, Habibullah Khalilullah, Syeda Ayesha Farhana, Shalam M Hussain, Adel M Aljadaan","doi":"10.1615/CritRevTherDrugCarrierSyst.2024053289","DOIUrl":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2024053289","url":null,"abstract":"<p><p>Lung cancer has the second highest occurrence and lowest survival rate among all cancers and incidence rates are increasing. From the tumor milieu, tumors exude chemokines and cytokines that hassle the pulmonary drug administration hinders the success of treatment. A few mutations lead to generation of lungs cancer. It has prominent levels of mutated genes such as TP53, KRAS, MET, and EGFR. Various molecular pathways involved in causing lung cancer such as PTEN/PI3K/AKT pathway, JAK/STAT pathways, RAF-MEK-ERK, PI3K-AKT-mTOR, and RALGDS-RA, PI3K, AKT, and PI3K/AKT/mTOR pathway. Inhibition of such biological pathway through active targeting, using various biological inhibitors, and blockers could help in treating and recurrence of lungs tumor. The conventional therapeutic modalities concomitant with personalized genomic nanomedicine can have potential in improving treatment regimen. This study explored the different genomic changes that occur due to the prime etiological factors, their reported treatment profile, and nanocarrier mediated therapeutic strategy by targeting tumor microenvironment (TME). Nanocarriers confront multiple obstacles in their journey to the TME therapeutic approach as leaky vasculature, large fenestration, and usually carried off from immune system and phagocytosis process. However, formulators designed a bio-functionalized carrier that enable to evade opsonization, escape immune system, modulate TME, identify reticuloendothelial system, and thus facilitates biological interaction, and enhance cellular uptake.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"42 4","pages":"1-58"},"PeriodicalIF":3.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1615/critrevtherdrugcarriersyst.2024053427
Abhishek Bamanna, Anjali Rajora, Kalpana Nagpal
Microemulsions are thermodynamically stable, clear and homogeneous mixtures of oil, water, and surfactants that have garnered significant attention in various industrial and biomedical applications. The basic components of microemulsions are oil, water, and surfactant, and their composition ratios play a crucial role in determining their properties and stability. Factors such as the type of surfactant, oil, and water used, temperature, and the presence of cosurfactants can greatly influence the formation, stability and properties of microemulsions. These are appropriate for use in drug delivery applications because to their physicochemical characteristics, which include small droplet size, large interfacial area, and good solubilization capacity for both hydrophilic and hydrophobic drugs with significant improvement in their biological activity. The theories of microemulsion and the role of phase diagrams in microemulsion formation and various components for choice of surfactant and co-surfactant are explained. Recent advancements in the preparation and characterization techniques of microemulsion, ranging from visual inspection to the phase behaviour studies and advanced spectroscopic techniques, with a focus on potential of microemulsion in drug delivery along with microemulsion-based drug candidates that are most commonly used for its formulation are also discussed. The review helps in understanding how different excipients affect the release of the active pharmaceutical ingredient. The quality by design approach utilized for optimization of microemulsions is also discussed.
{"title":"Enhancing Microemulsion based Therapeutic Drug Delivery: Exploring Surfactants, Co-surfactants, and Quality by Design Strategies within Pseudo-ternary Phase Diagrams","authors":"Abhishek Bamanna, Anjali Rajora, Kalpana Nagpal","doi":"10.1615/critrevtherdrugcarriersyst.2024053427","DOIUrl":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2024053427","url":null,"abstract":"Microemulsions are thermodynamically stable, clear and homogeneous mixtures of oil, water, and surfactants that have garnered significant attention in various industrial and biomedical applications. The basic components of microemulsions are oil, water, and surfactant, and their composition ratios play a crucial role in determining their properties and stability. Factors such as the type of surfactant, oil, and water used, temperature, and the presence of cosurfactants can greatly influence the formation, stability and properties of microemulsions. These are appropriate for use in drug delivery applications because to their physicochemical characteristics, which include small droplet size, large interfacial area, and good solubilization capacity for both hydrophilic and hydrophobic drugs with significant improvement in their biological activity. The theories of microemulsion and the role of phase diagrams in microemulsion formation and various components for choice of surfactant and co-surfactant are explained. Recent advancements in the preparation and characterization techniques of microemulsion, ranging from visual inspection to the phase behaviour studies and advanced spectroscopic techniques, with a focus on potential of microemulsion in drug delivery along with microemulsion-based drug candidates that are most commonly used for its formulation are also discussed. The review helps in understanding how different excipients affect the release of the active pharmaceutical ingredient. The quality by design approach utilized for optimization of microemulsions is also discussed.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"9 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1615/critrevtherdrugcarriersyst.2024047670
Kajal Chaudhary, Anjali Rajora
Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations. This comprehensive review seeks to shed light on the potential of nanotechnology as a promising avenue for efficacious cancer treatment, with a particular emphasis on skin cancer. Additionally, it underscores the transdermal approach as a viable strategy for addressing various types of cancer. This work also explores into the delivery of peptides and proteins along with in-depth explanations of different delivery systems currently under investigation for localized skin cancer treatment. Furthermore, the review discusses the formidable challenges that must be surmounted before these innovations can find their way into clinical practice, offering a roadmap for future research and therapeutic development.
{"title":"NOVEL DRUG DELIVERY TOOLS FOR BETTER PERMEATION AND SKIN CANCER TREATMENT","authors":"Kajal Chaudhary, Anjali Rajora","doi":"10.1615/critrevtherdrugcarriersyst.2024047670","DOIUrl":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2024047670","url":null,"abstract":"Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations. This comprehensive review seeks to shed light on the potential of nanotechnology as a promising avenue for efficacious cancer treatment, with a particular emphasis on skin cancer. Additionally, it underscores the transdermal approach as a viable strategy for addressing various types of cancer. This work also explores into the delivery of peptides and proteins along with in-depth explanations of different delivery systems currently under investigation for localized skin cancer treatment. Furthermore, the review discusses the formidable challenges that must be surmounted before these innovations can find their way into clinical practice, offering a roadmap for future research and therapeutic development.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzymes play a pivotal role in the human body, but their potential is not limited to just that. Scientists have successfully modified these enzymes as nanobiocatalysts or nanozymes for industrial or commercial use, either in the food, medicine, biotech, or even textile industries. These nanobiocatalysts and nanozymes offer several advantages over enzymes, like better stability, improved shelf-life, increased percentage yield, and reuse potential, which is very difficult with normal enzymes. The various techniques of NBC synthesis using immobilization techniques like adsorption, covalent binding, affinity immobilization, and entrapment methods are briefly discussed. The enzymes are either entrapped or adsorbed on the nanocarrier matrices, which can be nanofibers, nanoporous carriers, or nanocontainers as nanobiocatalysts. We also highlight the challenges the nanobiocatalyst overcomes in the industrial production of some drugs like sitagliptin, montelukast, pregabalin, and atorvastatin. Also, the inactivation of an organophosphate or opioid poisoning treating agent, SSOPOX nanohybrid, is discussed in this paper. Nanozymes are intrinsic enzyme-like compounds, and they also show wide application in themselves. Their GQD/AGNP nanohybrid shows antibacterial potential; they can also be utilized in optical sensing to detect small molecules, ions, nucleic acids, proteins, and cancer cells. In this paper, various applications of these NBCs have been discussed, and their potential applications with examples are also mentioned.
{"title":"Nanobiocatalysts and Nanozymes: Enzyme-Inspired Nanomaterials for Industrial and Biomedical Applications","authors":"Sarika Gupta, Meenu Kumari, Koyel Panja, Priyanka Bajaj, Kalpana Nagpal","doi":"10.1615/critrevtherdrugcarriersyst.2024051171","DOIUrl":"https://doi.org/10.1615/critrevtherdrugcarriersyst.2024051171","url":null,"abstract":"Enzymes play a pivotal role in the human body, but their potential is not limited to just that. Scientists have successfully modified these enzymes as nanobiocatalysts or nanozymes for industrial or commercial use, either in the food, medicine, biotech, or even textile industries. These nanobiocatalysts and nanozymes offer several advantages over enzymes, like better stability, improved shelf-life, increased percentage yield, and reuse potential, which is very difficult with normal enzymes. The various techniques of NBC synthesis using immobilization techniques like adsorption, covalent binding, affinity immobilization, and entrapment methods are briefly discussed. The enzymes are either entrapped or adsorbed on the nanocarrier matrices, which can be nanofibers, nanoporous carriers, or nanocontainers as nanobiocatalysts. We also highlight the challenges the nanobiocatalyst overcomes in the industrial production of some drugs like sitagliptin, montelukast, pregabalin, and atorvastatin. Also, the inactivation of an organophosphate or opioid poisoning treating agent, SSOPOX nanohybrid, is discussed in this paper. Nanozymes are intrinsic enzyme-like compounds, and they also show wide application in themselves. Their GQD/AGNP nanohybrid shows antibacterial potential; they can also be utilized in optical sensing to detect small molecules, ions, nucleic acids, proteins, and cancer cells. In this paper, various applications of these NBCs have been discussed, and their potential applications with examples are also mentioned.","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"160 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}