Pub Date : 2024-08-06DOI: 10.1016/j.compstruc.2024.107465
Boyang Wang , Zhuyong Liu , Jiabei Shi
Sensitivity analysis plays a significant role in the dynamic optimization of flexible multibody systems. The forward recursive formulation (FRF) is widely used for the dynamic modeling of multibody systems. However, it has not yet been extended to sensitivity analysis. In this paper, a new direct differentiation method is developed based on FRF for flexible multibody systems sensitivity analysis. The recursive nature of FRF allows for the Jacobian derivatives to be derived recursively, with detailed matrix expressions provided to facilitate implementation in computer code. The validity and correctness of the presented direct sensitivity analysis method based on FRF are verified by numerical examples. Besides, a modified staggered direct scheme is presented to improve the efficiency of the sensitivity analysis. In this scheme, different update strategies are adopted by different components of the tangent stiffness matrix for the implicit integrator, which balances the iteration performance and the additional computational cost. The presented scheme is compared with two conventional schemes through three examples. It demonstrates that the presented scheme can significantly improve the computational efficiency of the sensitivity analysis, particularly for complex problems, when the appropriate update strategies are employed.
{"title":"A direct differentiation method based on forward recursive formulation for flexible multibody system sensitivity analysis","authors":"Boyang Wang , Zhuyong Liu , Jiabei Shi","doi":"10.1016/j.compstruc.2024.107465","DOIUrl":"10.1016/j.compstruc.2024.107465","url":null,"abstract":"<div><p>Sensitivity analysis plays a significant role in the dynamic optimization of flexible multibody systems. The forward recursive formulation (FRF) is widely used for the dynamic modeling of multibody systems. However, it has not yet been extended to sensitivity analysis. In this paper, a new direct differentiation method is developed based on FRF for flexible multibody systems sensitivity analysis. The recursive nature of FRF allows for the Jacobian derivatives to be derived recursively, with detailed matrix expressions provided to facilitate implementation in computer code. The validity and correctness of the presented direct sensitivity analysis method based on FRF are verified by numerical examples. Besides, a modified staggered direct scheme is presented to improve the efficiency of the sensitivity analysis. In this scheme, different update strategies are adopted by different components of the tangent stiffness matrix for the implicit integrator, which balances the iteration performance and the additional computational cost. The presented scheme is compared with two conventional schemes through three examples. It demonstrates that the presented scheme can significantly improve the computational efficiency of the sensitivity analysis, particularly for complex problems, when the appropriate update strategies are employed.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107465"},"PeriodicalIF":4.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1016/j.compstruc.2024.107497
Junxiong Lin, Wenxing Zhou
Strain-based assessments of dents in buried steel oil and gas pipelines are commonly carried out in practice. Dent signals obtained from the caliper inspection tool contain noises that can have a large impact on the accuracy of the estimated strain. This paper proposes a novel wavelet-based denoising method for dent signals based on the overcomplete expansion with the corresponding dictionary constructed using the stationary and hyperbolic wavelet transforms. The proposed method is validated based on noise-free and noisy dent signals generated from elasto-plastic finite element analyses of a pipe segment subjected to an indenter and shown to be more effective than the commonly used wavelet transform-based hard- and soft-thresholding methods in terms of the root mean square error and the accuracy of the effective dent strain estimated from the denoised signal. The proposed method is further employed to denoise 42 real dent signals from in-service pipelines to illustrate its effectiveness and potential practical application to facilitate strain-based dent assessments.
{"title":"A wavelet-based denoising method for pipeline dent assessments","authors":"Junxiong Lin, Wenxing Zhou","doi":"10.1016/j.compstruc.2024.107497","DOIUrl":"10.1016/j.compstruc.2024.107497","url":null,"abstract":"<div><p>Strain-based assessments of dents in buried steel oil and gas pipelines are commonly carried out in practice. Dent signals obtained from the caliper inspection tool contain noises that can have a large impact on the accuracy of the estimated strain. This paper proposes a novel wavelet-based denoising method for dent signals based on the overcomplete expansion with the corresponding dictionary constructed using the stationary and hyperbolic wavelet transforms. The proposed method is validated based on noise-free and noisy dent signals generated from elasto-plastic finite element analyses of a pipe segment subjected to an indenter and shown to be more effective than the commonly used wavelet transform-based hard- and soft-thresholding methods in terms of the root mean square error and the accuracy of the effective dent strain estimated from the denoised signal. The proposed method is further employed to denoise 42 real dent signals from in-service pipelines to illustrate its effectiveness and potential practical application to facilitate strain-based dent assessments.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107497"},"PeriodicalIF":4.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924002268/pdfft?md5=f23f3f49b6c4fba9d261d0f6eaba1a7e&pid=1-s2.0-S0045794924002268-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.compstruc.2024.107495
Alireza Nejati, Hossein Mohammadi
In this paper, we have developed a numerical framework to investigate the effects of the electrostriction phenomenon on the deformations of three-dimensional dielectric elastomer actuators with complex geometries and inhomogeneous displacement fields at finite strains. The finite element method has been used to solve the governing equations. In this investigation, we adopt one of the most complete constitutive equations with regard to the electrostrictive behavior of dielectric elastomers which is capable of analyzing general three-dimensional states of deformation. The terms emerging in the tangent stiffness matrix as a result of the electrostrictive model are fully derived in this study. The implementation of the finite element modeling is conducted via an in-house computer code. Three three-dimensional actuators, namely a bending actuator, a buckling actuator, and a torsional actuator are selected to demonstrate the capabilities of the numerical framework. In conclusion, we have proved that the electrostriction phenomenon is effective in terms of improving the performance of dielectric elastomer actuators and in lowering their operating voltage. Moreover, the relationship of the diagonal entries of the permittivity tensor and the left Cauchy-Green tensor have been depicted on the deformed bodies of the actuators.
{"title":"A numerical framework for modeling 3D electrostrictive dielectric elastomer actuators","authors":"Alireza Nejati, Hossein Mohammadi","doi":"10.1016/j.compstruc.2024.107495","DOIUrl":"10.1016/j.compstruc.2024.107495","url":null,"abstract":"<div><p>In this paper, we have developed a numerical framework to investigate the effects of the electrostriction phenomenon on the deformations of three-dimensional dielectric elastomer actuators with complex geometries and inhomogeneous displacement fields at finite strains. The finite element method has been used to solve the governing equations. In this investigation, we adopt one of the most complete constitutive equations with regard to the electrostrictive behavior of dielectric elastomers which is capable of analyzing general three-dimensional states of deformation. The terms emerging in the tangent stiffness matrix as a result of the electrostrictive model are fully derived in this study. The implementation of the finite element modeling is conducted via an in-house computer code. Three three-dimensional actuators, namely a bending actuator, a buckling actuator, and a torsional actuator are selected to demonstrate the capabilities of the numerical framework. In conclusion, we have proved that the electrostriction phenomenon is effective in terms of improving the performance of dielectric elastomer actuators and in lowering their operating voltage. Moreover, the relationship of the diagonal entries of the permittivity tensor and the left Cauchy-Green tensor have been depicted on the deformed bodies of the actuators.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107495"},"PeriodicalIF":4.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.compstruc.2024.107493
Piotr Tauzowski , Bartlomiej Blachowski , János Lógó
This study presents a general computational framework for topology optimization under constraints related to various engineering design problems, including: reliability analysis, low-cycle fatigue assessment, and stress limited analysis. Such a framework aims to facilitate comprehensive engineering design considerations by incorporating traditional constraints such as displacement and stress alongside probabilistic assessments of fatigue failure and the complex behaviors exhibited by structures made of elastoplastic material. The framework's amalgamation of diverse analytical components offers engineers a versatile toolkit to address intricate design challenges. Notably, the inclusion of reliability analysis introduces a probabilistic perspective, transforming conventional design constraints into random parameters, thereby enhancing the robustness of the design process.
Key to the framework's efficacy is its implementation using MATLAB mathematical computing software, leveraging the platform's efficient code execution and object-oriented programming paradigm. This choice ensures an intuitive and potent environment for designers and researchers, facilitating seamless adaptation across various engineering applications. Additionally, the proposed previously by the Authors algorithm for the topology optimization is extended by adaptive strategy allowing for efficient adjustment of an amount of material removed at individual optimization step.
The presented framework is offering a comprehensive and integrated approach to address multifaceted design challenges while enhancing design robustness and efficiency.
{"title":"Computational framework for a family of methods based on stress-constrained topology optimization","authors":"Piotr Tauzowski , Bartlomiej Blachowski , János Lógó","doi":"10.1016/j.compstruc.2024.107493","DOIUrl":"10.1016/j.compstruc.2024.107493","url":null,"abstract":"<div><p>This study presents a general computational framework for topology optimization under constraints related to various engineering design problems, including: reliability analysis, low-cycle fatigue assessment, and stress limited analysis. Such a framework aims to facilitate comprehensive engineering design considerations by incorporating traditional constraints such as displacement and stress alongside probabilistic assessments of fatigue failure and the complex behaviors exhibited by structures made of elastoplastic material. The framework's amalgamation of diverse analytical components offers engineers a versatile toolkit to address intricate design challenges. Notably, the inclusion of reliability analysis introduces a probabilistic perspective, transforming conventional design constraints into random parameters, thereby enhancing the robustness of the design process.</p><p>Key to the framework's efficacy is its implementation using MATLAB mathematical computing software, leveraging the platform's efficient code execution and object-oriented programming paradigm. This choice ensures an intuitive and potent environment for designers and researchers, facilitating seamless adaptation across various engineering applications. Additionally, the proposed previously by the Authors algorithm for the topology optimization is extended by adaptive strategy allowing for efficient adjustment of an amount of material removed at individual optimization step.</p><p>The presented framework is offering a comprehensive and integrated approach to address multifaceted design challenges while enhancing design robustness and efficiency.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107493"},"PeriodicalIF":4.4,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924002220/pdfft?md5=54d93361ed8a873db90e2f4b67c3407a&pid=1-s2.0-S0045794924002220-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.compstruc.2024.107496
Ali Kaveh, Kiarash Biabani Hamedani
This paper proposes an improved hybrid growth optimizer (IHGO) to solve discrete structural optimization problems. The growth optimizer (GO) is a recent metaheuristic that has been successfully used to solve numerical and real-world optimization problems. However, it has been found that GO faces challenges with parameter tuning and operator refinement. We also noticed that the formulation of GO has some drawbacks, which may cause degradation in optimization performance. Compared to the original GO, four improvements are introduced in IHGO. First, the learning phase of GO is improved to avoid useless search and reinforce exploration. To do this, the exploration phase of an improved metaheuristic called IAOA is incorporated into the learning phase of GO. Second, the replacement strategy of GO is modified to prevent the loss of the best-so-far solution. Third, the hierarchical structure of GO is modified. Fourth, some adjustments are made to the reflection phase of GO to promote the exploitation of promising regions. To demonstrate the performance of the proposed IHGO, four discrete optimization problems of skeletal structures are provided. The results are compared with those of the original GO and some other metaheuristics in the literature. The source codes of IHGO are available at https://github.com/K-BiabaniHamedani/Improved-Hybrid-Growth-Optimizer.
本文提出了一种改进的混合增长优化器(IHGO)来解决离散结构优化问题。增长优化器(GO)是一种最新的元启发式,已成功用于解决数值和现实世界中的优化问题。然而,人们发现,GO 在参数调整和算子细化方面面临挑战。我们还注意到,GO 的表述存在一些缺陷,可能会导致优化性能下降。与最初的 GO 相比,IHGO 引入了四项改进。首先,改进了 GO 的学习阶段,以避免无用搜索并加强探索。为此,一种名为 IAOA 的改进型元启发式的探索阶段被纳入 GO 的学习阶段。其次,修改了 GO 的替换策略,以防止丢失迄今为止的最佳解决方案。第三,修改了 GO 的层次结构。第四,对 GO 的反射阶段进行了一些调整,以促进对有希望区域的开发。为了证明所提出的 IHGO 的性能,提供了四个骨骼结构的离散优化问题。将结果与原始 GO 和文献中的其他一些元启发式算法进行了比较。IHGO 的源代码可在 .
{"title":"A hybridization of growth optimizer and improved arithmetic optimization algorithm and its application to discrete structural optimization","authors":"Ali Kaveh, Kiarash Biabani Hamedani","doi":"10.1016/j.compstruc.2024.107496","DOIUrl":"10.1016/j.compstruc.2024.107496","url":null,"abstract":"<div><p>This paper proposes an improved hybrid growth optimizer (IHGO) to solve discrete structural optimization problems. The growth optimizer (GO) is a recent metaheuristic that has been successfully used to solve numerical and real-world optimization problems. However, it has been found that GO faces challenges with parameter tuning and operator refinement. We also noticed that the formulation of GO has some drawbacks, which may cause degradation in optimization performance. Compared to the original GO, four improvements are introduced in IHGO. First, the learning phase of GO is improved to avoid useless search and reinforce exploration. To do this, the exploration phase of an improved metaheuristic called IAOA is incorporated into the learning phase of GO. Second, the replacement strategy of GO is modified to prevent the loss of the best-so-far solution. Third, the hierarchical structure of GO is modified. Fourth, some adjustments are made to the reflection phase of GO to promote the exploitation of promising regions. To demonstrate the performance of the proposed IHGO, four discrete optimization problems of skeletal structures are provided. The results are compared with those of the original GO and some other metaheuristics in the literature. The source codes of IHGO are available at <span><span>https://github.com/K-BiabaniHamedani/Improved-Hybrid-Growth-Optimizer</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107496"},"PeriodicalIF":4.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.compstruc.2024.107494
Wenbin Ye , Jun Liu , Lei Gan , Haibo Wang , Lei Qin , Quansheng Zang , Stéphane P.A. Bordas
In this study, a semi-analytical model is developed to investigate the fluid-structure coupling characteristics of liquid sloshing in an elastic rectangular container subjected to horizontal external excitation based on the scaled boundary finite element method (SBFEM) for the first time. The fluid inside the container is assumed to be incompressible, inviscid and irrotational, with the hydrodynamic pressure chosen as independent nodal variable in the governing equations. The container walls are considered as cantilever beams. The coupled fluid-structure system is initially divided into the structural domain and fluid domain, after which the SBFEM is employed to obtain the governing equations for each sub-domain. In the framework of the SBFEM, only the boundary of each sub-domain, rather than the entire computational domain, needs to be meshed and discretized. This method reduces the spatial dimension of the problem by one and offers an efficient approach to model the computational domain, while allowing for analytical formulations to be derived for the internal of the domain, resulting in an accurate description of the field variables. The fundamental equation of the entire coupled fluid-structure system is then assembled by performing the equilibrium condition and compatibility condition to ensure the balance of interaction forces at the interface between container walls and the liquid. The free vibrations analysis of the fluid-structure coupling system is solved by utilizing the generalized eigenvalue problem, and the transient dynamic response is determined using the synchronous solution algorithm in conjunction with the implicit-implicit scheme of the Newmark method. To validate the excellent accuracy and stability of the proposed formulation, several numerical examples are presented to investigate the free vibration and transient dynamic characteristics for the fluid-structure coupling problem. The obtained results show good agreement with reference solutions available in the literature. Additionally, the effects of geometrical and material parameters on the system responses are examined and discussed.
{"title":"Fluid-structure coupling analysis in liquid-filled containers using scaled boundary finite element method","authors":"Wenbin Ye , Jun Liu , Lei Gan , Haibo Wang , Lei Qin , Quansheng Zang , Stéphane P.A. Bordas","doi":"10.1016/j.compstruc.2024.107494","DOIUrl":"10.1016/j.compstruc.2024.107494","url":null,"abstract":"<div><p>In this study, a semi-analytical model is developed to investigate the fluid-structure coupling characteristics of liquid sloshing in an elastic rectangular container subjected to horizontal external excitation based on the scaled boundary finite element method (SBFEM) for the first time. The fluid inside the container is assumed to be incompressible, inviscid and irrotational, with the hydrodynamic pressure chosen as independent nodal variable in the governing equations. The container walls are considered as cantilever beams. The coupled fluid-structure system is initially divided into the structural domain and fluid domain, after which the SBFEM is employed to obtain the governing equations for each sub-domain. In the framework of the SBFEM, only the boundary of each sub-domain, rather than the entire computational domain, needs to be meshed and discretized. This method reduces the spatial dimension of the problem by one and offers an efficient approach to model the computational domain, while allowing for analytical formulations to be derived for the internal of the domain, resulting in an accurate description of the field variables. The fundamental equation of the entire coupled fluid-structure system is then assembled by performing the equilibrium condition and compatibility condition to ensure the balance of interaction forces at the interface between container walls and the liquid. The free vibrations analysis of the fluid-structure coupling system is solved by utilizing the generalized eigenvalue problem, and the transient dynamic response is determined using the synchronous solution algorithm in conjunction with the implicit-implicit scheme of the Newmark method. To validate the excellent accuracy and stability of the proposed formulation, several numerical examples are presented to investigate the free vibration and transient dynamic characteristics for the fluid-structure coupling problem. The obtained results show good agreement with reference solutions available in the literature. Additionally, the effects of geometrical and material parameters on the system responses are examined and discussed.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107494"},"PeriodicalIF":4.4,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1016/j.compstruc.2024.107487
Jun Cao , Songhan Zhang , Miao Zhang , Chenguang Fan
Ultrasonic guided waves are widely applied in health monitoring of slender structures. Being different from the well-known semi-analytical finite element method (SAFE), the global-discretized semi-analytical formulation (GDSA) exactly satisfies all the continuity and boundary conditions accurately while has improved computational efficiency, but is only applicable to the plate-like problems described in the Cartesian coordinate system currently, which is not applicable to the cylindrical waveguide. In the present work, the polar coordinate system is therefore introduced into the GDSA formulation to improve the computational efficiency of calculating the dispersion relation in a multi-layer cylindrical waveguide without loss of accuracy. The characteristic equations of the unit layer are derived from the principle of virtual work. The involved matrices are explicitly derived in the form of Kronecker product to reduce the dimension of the matrices to be evaluated and a reduced Boolean matrix is introduced to avoid the singularity problem caused by the trivial radial displacement of the central point. The dispersion curves of a steel wire are firstly analyzed and are verified in comparison with the analytical solutions solved from the Pochhammer-Chree equations. Taking the steel wire having a surface corrosion as a two-layer case example, the dispersion curves are obtained based on the quadratic eigenvalue equation. It is found that the cut-off frequency of the F(1,2) mode is sensitive to corrosion, having potential to detect corrosion of hidden cable wires.
{"title":"A global-discretized semi-analytical formulation in polar coordinate system for the wave characteristics in multi-layer cylindrical waveguides","authors":"Jun Cao , Songhan Zhang , Miao Zhang , Chenguang Fan","doi":"10.1016/j.compstruc.2024.107487","DOIUrl":"10.1016/j.compstruc.2024.107487","url":null,"abstract":"<div><p>Ultrasonic guided waves are widely applied in health monitoring of slender structures. Being different from the well-known semi-analytical finite element method (SAFE), the global-discretized semi-analytical formulation (GDSA) exactly satisfies all the continuity and boundary conditions accurately while has improved computational efficiency, but is only applicable to the plate-like problems described in the Cartesian coordinate system currently, which is not applicable to the cylindrical waveguide. In the present work, the polar coordinate system is therefore introduced into the GDSA formulation to improve the computational efficiency of calculating the dispersion relation in a multi-layer cylindrical waveguide without loss of accuracy. The characteristic equations of the unit layer are derived from the principle of virtual work. The involved matrices are explicitly derived in the form of Kronecker product to reduce the dimension of the matrices to be evaluated and a reduced Boolean matrix is introduced to avoid the singularity problem caused by the trivial radial displacement of the central point. The dispersion curves of a steel wire are firstly analyzed and are verified in comparison with the analytical solutions solved from the Pochhammer-Chree equations. Taking the steel wire having a surface corrosion as a two-layer case example, the dispersion curves are obtained based on the quadratic eigenvalue equation. It is found that the cut-off frequency of the F(1,2) mode is sensitive to corrosion, having potential to detect corrosion of hidden cable wires.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107487"},"PeriodicalIF":4.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.compstruc.2024.107486
Rashmi Singh, Tanusree Chakraborty
This paper presents insights into the finite element (FE) simulation of semi-buried box structures under combined blast and fragment loads. Semi-buried box structures are important military protective structures of national and strategic importance and must withstand extreme loading threats from weapon detonations. Herein, the dynamic response of a semi-buried box structure with a blast door subjected to cased explosive charge detonations is investigated using the finite element simulation technique considering both blast and fragment loading. A series of analyses are performed using FE simulation software LS DYNA to estimate the intricate effects of two simultaneous cased charge detonations on the semi-buried box structure by varying the cased loading and point of fragment impact. At first, a comparative study of the semi-buried box structure with and without the protective sand layer is performed under different cased loading. Thereafter, the response of the semi-buried box structure with the protective sand layer is studied under different cased loading along with different points of fragment impacts. Results indicate that the present simulation technique is proficient in estimating the response of the semi-buried box structure under cased loading.
本文介绍了在爆炸和碎片综合载荷作用下对半埋式箱形结构进行有限元(FE)模拟的深入研究。半埋式箱形结构是具有国家战略意义的重要军事防护结构,必须能够承受武器爆炸带来的极端载荷威胁。本文使用有限元模拟技术研究了带防爆门的半埋式箱形结构在箱式炸药爆炸下的动态响应,同时考虑了爆炸和碎片载荷。使用有限元模拟软件 LS DYNA 进行了一系列分析,通过改变装药载荷和碎片冲击点,估算了两种同时发生的装药起爆对半埋式箱形结构的复杂影响。首先,对有保护砂层和无保护砂层的半埋式箱形结构在不同套管荷载下的反应进行了比较研究。随后,研究了有保护砂层的半埋式箱形结构在不同套管荷载和不同碎片撞击点下的响应。结果表明,目前的模拟技术能够很好地估算半埋式箱形结构在套管荷载下的响应。
{"title":"Insights into finite element simulations of semi-buried box structures under combined blast and fragment loads","authors":"Rashmi Singh, Tanusree Chakraborty","doi":"10.1016/j.compstruc.2024.107486","DOIUrl":"10.1016/j.compstruc.2024.107486","url":null,"abstract":"<div><p>This paper presents insights into the finite element (FE) simulation of semi-buried box structures under combined blast and fragment loads. Semi-buried box structures are important military protective structures of national and strategic importance and must withstand extreme loading threats from weapon detonations. Herein, the dynamic response of a semi-buried box structure with a blast door subjected to cased explosive charge detonations is investigated using the finite element simulation technique considering both blast and fragment loading. A series of analyses are performed using FE simulation software LS DYNA to estimate the intricate effects of two simultaneous cased charge detonations on the semi-buried box structure by varying the cased loading and point of fragment impact. At first, a comparative study of the semi-buried box structure with and without the protective sand layer is performed under different cased loading. Thereafter, the response of the semi-buried box structure with the protective sand layer is studied under different cased loading along with different points of fragment impacts. Results indicate that the present simulation technique is proficient in estimating the response of the semi-buried box structure under cased loading.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107486"},"PeriodicalIF":4.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.compstruc.2024.107492
Yassir Sitli , Oussama Elmhaia , Said Mesmoudi , Omar Askour , Mohammed Rammane , Youssef Hilali , Oussama Bourihane
The aim of the present work consists in investigating the nonlinear behavior of porous beams reinforced with graphene platelets (GPL) and supported carbon nanotubes (CNT), termed functionally graded graphene platelets reinforced composite beam (FG-GPLRC) and functionally graded nanotube carbon reinforced composite beam (FG-CNTRC), respectively. Notably, the distribution of GPL/CNT is explored in both uniform and non-uniform patterns across the beam's thickness. What sets this research apart is its utilization of a refined beam model as enhanced FSDT incorporating nonlinear shear terms which is a crucial advancement in accurately capturing the post-buckling response in certain boundary conditions, a feature lacking in the existing FSDT literature. Innovatively, the post-buckling load-deflection relationship is derived through the solution of governing equations incorporating cubic nonlinearity. This is achieved by employing Galerkin's method alongside a non-iterative high-order continuation technique based on the asymptotic numerical method coupled with the Tchebychev-radial point interpolation method (TRPIM), using a path-following where the solutions are obtained branch-by-branch by eliminating the need for iterative processes. In essence, this research underscores the pivotal role of porosity and GPL/CNT reinforcement in shaping the post-buckling configuration of both perfect and imperfect nanocomposite beams, thereby advancing our understanding of structural behavior in porous nanocomposite materials. The findings of this study illuminate the significant influence of parameters such as porosity coefficient, porosity distribution, GPL/CNT distribution, and GPL-weight/CNT-volume fraction on the nonlinear buckling behavior of porous beams.
{"title":"Investigating the bending and buckling behaviors of composite porous beams reinforced with carbon nanotubes and graphene platelets using a TRPIM path following mesh-free approach","authors":"Yassir Sitli , Oussama Elmhaia , Said Mesmoudi , Omar Askour , Mohammed Rammane , Youssef Hilali , Oussama Bourihane","doi":"10.1016/j.compstruc.2024.107492","DOIUrl":"10.1016/j.compstruc.2024.107492","url":null,"abstract":"<div><p>The aim of the present work consists in investigating the nonlinear behavior of porous beams reinforced with graphene platelets (GPL) and supported carbon nanotubes (CNT), termed functionally graded graphene platelets reinforced composite beam (FG-GPLRC) and functionally graded nanotube carbon reinforced composite beam (FG-CNTRC), respectively. Notably, the distribution of GPL/CNT is explored in both uniform and non-uniform patterns across the beam's thickness. What sets this research apart is its utilization of a refined beam model as enhanced FSDT incorporating nonlinear shear terms which is a crucial advancement in accurately capturing the post-buckling response in certain boundary conditions, a feature lacking in the existing FSDT literature. Innovatively, the post-buckling load-deflection relationship is derived through the solution of governing equations incorporating cubic nonlinearity. This is achieved by employing Galerkin's method alongside a non-iterative high-order continuation technique based on the asymptotic numerical method coupled with the Tchebychev-radial point interpolation method (TRPIM), using a path-following where the solutions are obtained branch-by-branch by eliminating the need for iterative processes. In essence, this research underscores the pivotal role of porosity and GPL/CNT reinforcement in shaping the post-buckling configuration of both perfect and imperfect nanocomposite beams, thereby advancing our understanding of structural behavior in porous nanocomposite materials. The findings of this study illuminate the significant influence of parameters such as porosity coefficient, porosity distribution, GPL/CNT distribution, and GPL-weight/CNT-volume fraction on the nonlinear buckling behavior of porous beams.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107492"},"PeriodicalIF":4.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1016/j.compstruc.2024.107476
Pengge Wu , Bingyu Ni , Chao Jiang
This paper proposes a nonlinear interval finite element method for elastic–plastic analysis of structures with spatially uncertain parameters. The spatially uncertain parameters are described by the interval field, and the variation bounds of the elastic–plastic structural responses can be calculated effectively. Quantified by the interval field, the spatially uncertain parameters are represented by the interval Karhunen–Loève (K-L) expansion, based on which the nonlinear interval finite element equilibrium equation is formulated. An interval iterative method is then presented to solve the equilibrium equation and obtain an outer solution of the variation bounds of structural responses such as displacement. In this method, the Newton-Raphson iterative method is used to transform the nonlinear problem into a linear one, and then the interval iterative method is introduced to solve the interval linear equations. Three numerical examples are employed to illustrate the feasibility and accuracy of the proposed method.
{"title":"A nonlinear interval finite element method for elastic–plastic problems with spatially uncertain parameters","authors":"Pengge Wu , Bingyu Ni , Chao Jiang","doi":"10.1016/j.compstruc.2024.107476","DOIUrl":"10.1016/j.compstruc.2024.107476","url":null,"abstract":"<div><p>This paper proposes a nonlinear interval finite element method for elastic–plastic analysis of structures with spatially uncertain parameters. The spatially uncertain parameters are described by the interval field, and the variation bounds of the elastic–plastic structural responses can be calculated effectively. Quantified by the interval field, the spatially uncertain parameters are represented by the interval Karhunen–Loève (K-L) expansion, based on which the nonlinear interval finite element equilibrium equation is formulated. An interval iterative method is then presented to solve the equilibrium equation and obtain an outer solution of the variation bounds of structural responses such as displacement. In this method, the Newton-Raphson iterative method is used to transform the nonlinear problem into a linear one, and then the interval iterative method is introduced to solve the interval linear equations. Three numerical examples are employed to illustrate the feasibility and accuracy of the proposed method.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"303 ","pages":"Article 107476"},"PeriodicalIF":4.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}