首页 > 最新文献

Chromosome Research最新文献

英文 中文
TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L.). TAR30是典型植物TTTAGGG端粒重复序列的同源物,在花生(arachhis hypogaea L.)染色体近端区域富集。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 Epub Date: 2022-01-19 DOI: 10.1007/s10577-022-09684-7
Dongying Gao, Eliza F M B Nascimento, Soraya C M Leal-Bertioli, Brian Abernathy, Scott A Jackson, Ana C G Araujo, David J Bertioli

Telomeres are the physical ends of eukaryotic linear chromosomes that play critical roles in cell division, chromosome maintenance, and genome stability. In many plants, telomeres are comprised of TTTAGGG tandem repeat that is widely found in plants. We refer to this repeat as canonical plant telomeric repeat (CPTR). Peanut (Arachis hypogaea L.) is a spontaneously formed allotetraploid and an important food and oil crop worldwide. In this study, we analyzed the peanut genome sequences and identified a new type of tandem repeat with 10-bp basic motif TTTT(C/T)TAGGG named TAndem Repeat (TAR) 30. TAR30 showed significant sequence identity to TTTAGGG repeat in 112 plant genomes suggesting that TAR30 is a homolog of CPTR. It also is nearly identical to the telomeric tandem repeat in Cestrum elegans. Fluorescence in situ hybridization (FISH) analysis revealed interstitial locations of TAR30 in peanut chromosomes but we did not detect visible signals in the terminal ends of chromosomes as expected for telomeric repeats. Interestingly, different TAR30 hybridization patterns were found between the newly induced allotetraploid ValSten and its diploid wild progenitors. The canonical telomeric repeat TTTAGGG is also present in the peanut genomes and some of these repeats are closely adjacent to TAR30 from both cultivated peanut and its wild relatives. Overall, our work identifies a new homolog of CPTR and reveals the unique distributions of TAR30 in cultivated peanuts and wild species. Our results provide new insights into the evolution of tandem repeats during peanut polyploidization and domestication.

端粒是真核生物线性染色体的物理末端,在细胞分裂、染色体维持和基因组稳定中起着至关重要的作用。在许多植物中,端粒是由TTTAGGG串联重复序列组成的,这种重复序列在植物中广泛存在。我们把这个重复序列称为典型植物端粒重复序列(CPTR)。花生(arachhis hypogaea L.)是一种自然形成的异源四倍体植物,是世界上重要的粮食和油料作物。本研究通过对花生基因组序列的分析,鉴定出一种新的具有10 bp基本基序TTTT(C/T)TAGGG的串联重复序列,命名为tandem repeat (TAR) 30。在112个植物基因组中,TAR30与TTTAGGG重复序列具有显著的同源性,表明TAR30是CPTR的同源物。它也几乎与秀丽隐杆线虫的端粒串联重复序列相同。荧光原位杂交(FISH)分析显示了花生染色体中TAR30的间隙位置,但我们没有在染色体末端检测到端粒重复序列的可见信号。有趣的是,在新诱导的异源四倍体ValSten与其二倍体野生祖体细胞之间发现了不同的TAR30杂交模式。典型端粒重复序列TTTAGGG也存在于花生基因组中,其中一些重复序列与栽培花生及其野生近缘种的TAR30非常接近。总的来说,我们的工作确定了一个新的CPTR同源物,并揭示了TAR30在栽培花生和野生花生中的独特分布。我们的研究结果为花生多倍体化和驯化过程中串联重复序列的进化提供了新的见解。
{"title":"TAR30, a homolog of the canonical plant TTTAGGG telomeric repeat, is enriched in the proximal chromosome regions of peanut (Arachis hypogaea L.).","authors":"Dongying Gao,&nbsp;Eliza F M B Nascimento,&nbsp;Soraya C M Leal-Bertioli,&nbsp;Brian Abernathy,&nbsp;Scott A Jackson,&nbsp;Ana C G Araujo,&nbsp;David J Bertioli","doi":"10.1007/s10577-022-09684-7","DOIUrl":"https://doi.org/10.1007/s10577-022-09684-7","url":null,"abstract":"<p><p>Telomeres are the physical ends of eukaryotic linear chromosomes that play critical roles in cell division, chromosome maintenance, and genome stability. In many plants, telomeres are comprised of TTTAGGG tandem repeat that is widely found in plants. We refer to this repeat as canonical plant telomeric repeat (CPTR). Peanut (Arachis hypogaea L.) is a spontaneously formed allotetraploid and an important food and oil crop worldwide. In this study, we analyzed the peanut genome sequences and identified a new type of tandem repeat with 10-bp basic motif TTTT(C/T)TAGGG named TAndem Repeat (TAR) 30. TAR30 showed significant sequence identity to TTTAGGG repeat in 112 plant genomes suggesting that TAR30 is a homolog of CPTR. It also is nearly identical to the telomeric tandem repeat in Cestrum elegans. Fluorescence in situ hybridization (FISH) analysis revealed interstitial locations of TAR30 in peanut chromosomes but we did not detect visible signals in the terminal ends of chromosomes as expected for telomeric repeats. Interestingly, different TAR30 hybridization patterns were found between the newly induced allotetraploid ValSten and its diploid wild progenitors. The canonical telomeric repeat TTTAGGG is also present in the peanut genomes and some of these repeats are closely adjacent to TAR30 from both cultivated peanut and its wild relatives. Overall, our work identifies a new homolog of CPTR and reveals the unique distributions of TAR30 in cultivated peanuts and wild species. Our results provide new insights into the evolution of tandem repeats during peanut polyploidization and domestication.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"30 1","pages":"77-90"},"PeriodicalIF":2.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39920936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Scientist Spotlight: Karen Wing Yee Yeun. 科学家焦点:温怡妍。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 Epub Date: 2022-02-08 DOI: 10.1007/s10577-021-09682-1
{"title":"Scientist Spotlight: Karen Wing Yee Yeun.","authors":"","doi":"10.1007/s10577-021-09682-1","DOIUrl":"https://doi.org/10.1007/s10577-021-09682-1","url":null,"abstract":"","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"30 1","pages":"1-3"},"PeriodicalIF":2.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39602984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. 现代甘蔗品种基因组结构的综合分子细胞遗传学分析。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 Epub Date: 2022-01-06 DOI: 10.1007/s10577-021-09680-3
Kai Wang, Hon Cheng, Jinlei Han, Ayman Esh, Jiayong Liu, Yuebin Zhang, Baohua Wang

Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.

现代甘蔗品种是由Saccharum officinarum (2n = 80)和S. spontaneum (2n = 40-128)杂交而成,形成了具有高度多倍体和不同染色体结构的多种复杂基因组。这些复杂的基因组阻碍了基因组结构的破译和甘蔗育种中的标记辅助选择。对10个品种进行了荧光原位杂交分析,采用染色体彩绘和天然葡萄特异性探针。结果表明,所研究品种中存在6种类型的染色体,包括天然山楂和铁皮山楂的染色体,同源或非同源染色体的种间重组,以及天然山楂和铁皮山楂染色体的易位。结果显示,这些品种的种间重组比例出人意料地高(11.9-40.9%),这更新了我们对不到13%的染色体是由种间交换产生的认识。此外,研究结果还表明,柽柽树染色体间的易位频率较高,平均每条染色体有2.15个易位。不同品种间染色体类型的差异表明,两种杂交配子可能形成不同寻常的染色体对,包括同源或非同源染色体,可能存在于两种品种之间或内部。此外,我们在研究的4条染色体(即染色体1、2、7和8)中一致观察到11或12个拷贝,表明在育种过程中稳定传播。通过比较,我们发现1号染色体的拷贝数比2、7和8号染色体的拷贝数要少。这些结果对甘蔗品种结构的研究提供了深入的见解,并可能为甘蔗育种中的染色体辅助选择提供便利。
{"title":"A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars.","authors":"Kai Wang,&nbsp;Hon Cheng,&nbsp;Jinlei Han,&nbsp;Ayman Esh,&nbsp;Jiayong Liu,&nbsp;Yuebin Zhang,&nbsp;Baohua Wang","doi":"10.1007/s10577-021-09680-3","DOIUrl":"https://doi.org/10.1007/s10577-021-09680-3","url":null,"abstract":"<p><p>Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"30 1","pages":"29-41"},"PeriodicalIF":2.6,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39901397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Thanks to Referees 感谢裁判
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-01-02 DOI: 10.1007/s10577-005-1902-8
J. Agundez, A. Alfirevic, S. Aliño, L. Becquemont, S. Bell, L. Benhaim, W. Berrettini, M. Białecka, E. Bleecker, L. Cavallari, A. Cederbaum, D. Chasman, L. Chen, B. Chowbay, M. Coenen, J. Corvol, W. Sadee, Y. Saito, R. Sargis, A. Schatzberg, S. Scherer, C. Schindler, M. Schirmer, K. Schmiegelow, W. Schroth, B. Tomlinson, J. Trontelj, T. Tsunoda, A. Turkistani, M. Tzvetkov, R. Uher, J. Upham, T. V. Gelder, L. H. J. Huis, R. V. Schaik
{"title":"Thanks to Referees","authors":"J. Agundez, A. Alfirevic, S. Aliño, L. Becquemont, S. Bell, L. Benhaim, W. Berrettini, M. Białecka, E. Bleecker, L. Cavallari, A. Cederbaum, D. Chasman, L. Chen, B. Chowbay, M. Coenen, J. Corvol, W. Sadee, Y. Saito, R. Sargis, A. Schatzberg, S. Scherer, C. Schindler, M. Schirmer, K. Schmiegelow, W. Schroth, B. Tomlinson, J. Trontelj, T. Tsunoda, A. Turkistani, M. Tzvetkov, R. Uher, J. Upham, T. V. Gelder, L. H. J. Huis, R. V. Schaik","doi":"10.1007/s10577-005-1902-8","DOIUrl":"https://doi.org/10.1007/s10577-005-1902-8","url":null,"abstract":"","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"13 1","pages":"839"},"PeriodicalIF":2.6,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-005-1902-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41788936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Communal living: the role of polyploidy and syncytia in tissue biology. 群落生活:多倍体和合胞体在组织生物学中的作用。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-01 DOI: 10.1007/s10577-021-09664-3
Nora G Peterson, Donald T Fox

Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.

多细胞生物是由不同细胞大小的组织组成的。一个组织主要是由大量的小细胞还是较少的大细胞组成,都会影响组织的发育和功能。在一个共同的细胞质中加入核基因组拷贝是一种在组织中操纵细胞大小的反复出现的策略。具有两个以上基因组的细胞可以短暂存在,例如在发育中的生殖系或胚胎中,或者可以是成熟体细胞组织的一部分。这种核集体跨越多个层次的组织,从单核或双核多倍体细胞到称为合胞体的高度多核结构。在这里,我们回顾了自然界中发现的多倍体和合胞体组织的多样性。我们总结了目前关于通过合胞体和/或多倍体构建组织的文献,并推测为什么一种或两种策略都是有利的。
{"title":"Communal living: the role of polyploidy and syncytia in tissue biology.","authors":"Nora G Peterson,&nbsp;Donald T Fox","doi":"10.1007/s10577-021-09664-3","DOIUrl":"https://doi.org/10.1007/s10577-021-09664-3","url":null,"abstract":"<p><p>Multicellular organisms are composed of tissues with diverse cell sizes. Whether a tissue primarily consists of numerous, small cells as opposed to fewer, large cells can impact tissue development and function. The addition of nuclear genome copies within a common cytoplasm is a recurring strategy to manipulate cellular size within a tissue. Cells with more than two genomes can exist transiently, such as in developing germlines or embryos, or can be part of mature somatic tissues. Such nuclear collectives span multiple levels of organization, from mononuclear or binuclear polyploid cells to highly multinucleate structures known as syncytia. Here, we review the diversity of polyploid and syncytial tissues found throughout nature. We summarize current literature concerning tissue construction through syncytia and/or polyploidy and speculate why one or both strategies are advantageous.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"29 3-4","pages":"245-260"},"PeriodicalIF":2.6,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-021-09664-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9291922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Karyotype asymmetry in Cuscuta L. subgenus Pachystigma reflects its repeat DNA composition 厚柱头菟丝子亚属核型不对称反映了其重复DNA组成
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-08-10 DOI: 10.1101/2021.08.09.455742
Amalia Ibiapino, M. Báez, M. García, M. Costea, S. Stefanović, A. Pedrosa‐Harand
Cuscuta is a cytogenetically diverse genus, with karyotypes varying 18-fold in chromosome number and 127-fold in genome size. Each of its four subgenera also presents particular chromosomal features, such as bimodal karyotypes in Pachystigma. We used low coverage sequencing of the Cuscuta nitida genome (subgenus Pachystigma), as well as chromosome banding and molecular cytogenetics of three subgenus representatives, to understand the origin of bimodal karyotypes. All three species, C. nitida, C. africana (2n = 28) and C. angulata (2n = 30), showed heterochromatic bands mainly in the largest chromosome pairs. Eighteen satellite DNAs were identified in C. nitida genome, two showing similarity to mobile elements. The most abundant were present at the largest pairs, as well as the highly abundant ribosomal DNAs. The most abundant Ty1/Copia and Ty3/Gypsy elements were also highly enriched in the largest pairs, except for the Ty3/Gypsy CRM, which also labelled the pericentromeric regions of the smallest chromosomes. This accumulation of repetitive DNA in the larger pairs indicates that these sequences are largely responsible for the formation of bimodal karyotypes in the subgenus Pachystigma. The repetitive DNA fraction is directly linked to karyotype evolution in Cuscuta.
菟丝子属是一个细胞遗传学多样的属,其核型在染色体数量上变化了18倍,在基因组大小上变化了127倍。它的四个亚属中的每一个也都具有特定的染色体特征,例如Pachystigma的双峰核型。我们使用了菟丝子基因组(Pachystigma亚属)的低覆盖率测序,以及三个亚属代表的染色体显带和分子细胞遗传学,来了解双峰核型的起源。所有三个物种,C.nitida、C.africana(2n=28)和C.angulata(2n=30),主要在最大的染色体对中显示异色带。在C.nitida基因组中鉴定出18个卫星DNA,其中两个与移动元件相似。最丰富的存在于最大的对,以及高度丰富的核糖体DNA。最丰富的Ty1/Copia和Ty3/Gypsy元素在最大的配对中也高度富集,除了Ty3/Gyssy CRM,它也标记了最小染色体的着丝粒周围区域。这种重复DNA在较大配对中的积累表明,这些序列在很大程度上是Pachystigma亚属双峰核型形成的原因。菟丝子的重复DNA部分与核型进化直接相关。
{"title":"Karyotype asymmetry in Cuscuta L. subgenus Pachystigma reflects its repeat DNA composition","authors":"Amalia Ibiapino, M. Báez, M. García, M. Costea, S. Stefanović, A. Pedrosa‐Harand","doi":"10.1101/2021.08.09.455742","DOIUrl":"https://doi.org/10.1101/2021.08.09.455742","url":null,"abstract":"Cuscuta is a cytogenetically diverse genus, with karyotypes varying 18-fold in chromosome number and 127-fold in genome size. Each of its four subgenera also presents particular chromosomal features, such as bimodal karyotypes in Pachystigma. We used low coverage sequencing of the Cuscuta nitida genome (subgenus Pachystigma), as well as chromosome banding and molecular cytogenetics of three subgenus representatives, to understand the origin of bimodal karyotypes. All three species, C. nitida, C. africana (2n = 28) and C. angulata (2n = 30), showed heterochromatic bands mainly in the largest chromosome pairs. Eighteen satellite DNAs were identified in C. nitida genome, two showing similarity to mobile elements. The most abundant were present at the largest pairs, as well as the highly abundant ribosomal DNAs. The most abundant Ty1/Copia and Ty3/Gypsy elements were also highly enriched in the largest pairs, except for the Ty3/Gypsy CRM, which also labelled the pericentromeric regions of the smallest chromosomes. This accumulation of repetitive DNA in the larger pairs indicates that these sequences are largely responsible for the formation of bimodal karyotypes in the subgenus Pachystigma. The repetitive DNA fraction is directly linked to karyotype evolution in Cuscuta.","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"30 1","pages":"91 - 107"},"PeriodicalIF":2.6,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43389471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae 比较细胞基因组学揭示豆科菜豆基因组改组和着丝粒重新定位
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-08-09 DOI: 10.1101/2021.08.06.455448
Claudio Montenegro, Lívia do Vale Martins, F. de Oliveira Bustamante, A. C. Brasileiro-Vidal, A. Pedrosa‐Harand
The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae ( P. lunatus ) and Glycininae ( Amphicarpaea edgeworthii ) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n  = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n  = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus . We also reconstructed the chromosome number reduction in S. suberectus . The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.
Phaseoleae部落包括几种具有组装基因组的豆类作物。尽管尚未对菜豆进化过程中的染色体动力学进行研究,但比较基因组研究已经证明在豆类中保留了大的基因组块。我们进行了一项比较基因组分析,以确定一个信息基因组块(GB)系统,并重建祖先的菜豆核型(APK)。我们根据普通菜豆和有蹄目Vigna unguiculata之间的直向同源基因鉴定了GBs,并以截茎苜蓿为外群,在菜豆科(P.lunatus)和大豆科(Amphicarpaea edgeworthii)亚系和近直血藤(菜豆科和大豆科的姐妹)的不同基因组中寻找GBs。我们还使用两条P.vulgaris染色体的寡聚FISH探针绘制了两个未测序的Phaseolinae物种的同源染色体。我们推断APK具有n = 11和19 GBs(A到S),假设五个染色体融合将祖先的豆类核型减少到n = 11.我们确定了APK与亚种和物种之间的重排,在菜豆中有大量的着丝粒重新定位。我们还重建了近直肌梭染色体数目的减少。GB系统的开发和提出的APK为未来豆类物种的比较基因组分析提供了有用的方法。
{"title":"Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae","authors":"Claudio Montenegro, Lívia do Vale Martins, F. de Oliveira Bustamante, A. C. Brasileiro-Vidal, A. Pedrosa‐Harand","doi":"10.1101/2021.08.06.455448","DOIUrl":"https://doi.org/10.1101/2021.08.06.455448","url":null,"abstract":"The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae ( P. lunatus ) and Glycininae ( Amphicarpaea edgeworthii ) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n  = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n  = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus . We also reconstructed the chromosome number reduction in S. suberectus . The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"30 1","pages":"477-492"},"PeriodicalIF":2.6,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44888532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. 两种黄斑钩端绦虫在无性系生长过程中组蛋白修饰的全基因组图谱显示了不同的基因组组织。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-06-01 Epub Date: 2021-05-21 DOI: 10.1007/s10577-021-09658-1
Jessica L Soyer, Colin Clairet, Elise J Gay, Nicolas Lapalu, Thierry Rouxel, Eva H Stukenbrock, Isabelle Fudal

Leptosphaeria maculans 'brassicae' (Lmb) and Leptosphaeria maculans 'lepidii' (Lml) are closely related phytopathogenic species that exhibit a large macrosynteny but contrasting genome structure. Lmb has more than 30% of repeats clustered in large repeat-rich regions, while the Lml genome has only a small amount of evenly distributed repeats. Repeat-rich regions of Lmb are enriched in effector genes, expressed during plant infection. The distinct genome structures of Lmb and Lml provide an excellent model for comparing the organization of pathogenicity genes in relation to the chromatin landscape in two closely related phytopathogenic fungi. Here, we performed chromatin immunoprecipitation (ChIP) during axenic culture, targeting histone modifications typical for heterochromatin or euchromatin, combined with transcriptomic analysis to analyze the influence of chromatin organization on gene expression. In both species, we found that facultative heterochromatin is enriched with genes lacking functional annotation, including numerous effector and species-specific genes. Notably, orthologous genes located in H3K27me3 domains are enriched with effector genes. Compared to other fungal species, including Lml, Lmb is distinct in having large H3K9me3 domains associated with repeat-rich regions that contain numerous species-specific effector genes. Discovery of these two distinctive heterochromatin landscapes now raises questions about their involvement in the regulation of pathogenicity, the dynamics of these domains during plant infection and the selective advantage to the fungus to host effector genes in H3K9me3 or H3K27me3 domains.

maculans Leptosphaeria 'brassicae' (Lmb)和lepidii' Leptosphaeria maculans 'lepidii' (Lml)是密切相关的植物致病物种,它们表现出大的宏观同质性,但基因组结构不同。Lmb有超过30%的重复序列聚集在重复序列丰富的大区域,而Lml基因组只有少量均匀分布的重复序列。Lmb的重复区富含效应基因,在植物侵染过程中表达。Lmb和Lml不同的基因组结构为比较两种密切相关的植物病原真菌中与染色质景观相关的致病性基因组织提供了一个很好的模型。在这里,我们在无菌培养期间进行了染色质免疫沉淀(ChIP),针对异染色质或常染色质的典型组蛋白修饰,结合转录组学分析来分析染色质组织对基因表达的影响。在这两个物种中,我们发现兼性异染色质富含缺乏功能注释的基因,包括许多效应基因和物种特异性基因。值得注意的是,位于H3K27me3结构域的同源基因富含效应基因。与其他真菌物种(包括Lml)相比,Lmb的独特之处是具有与含有许多物种特异性效应基因的重复序列丰富区域相关的大H3K9me3结构域。这两种不同的异染色质景观的发现现在提出了关于它们参与致病性调节的问题,植物感染期间这些结构域的动态以及真菌在H3K9me3或H3K27me3结构域中宿主效应基因的选择优势。
{"title":"Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization.","authors":"Jessica L Soyer, Colin Clairet, Elise J Gay, Nicolas Lapalu, Thierry Rouxel, Eva H Stukenbrock, Isabelle Fudal","doi":"10.1007/s10577-021-09658-1","DOIUrl":"10.1007/s10577-021-09658-1","url":null,"abstract":"<p><p>Leptosphaeria maculans 'brassicae' (Lmb) and Leptosphaeria maculans 'lepidii' (Lml) are closely related phytopathogenic species that exhibit a large macrosynteny but contrasting genome structure. Lmb has more than 30% of repeats clustered in large repeat-rich regions, while the Lml genome has only a small amount of evenly distributed repeats. Repeat-rich regions of Lmb are enriched in effector genes, expressed during plant infection. The distinct genome structures of Lmb and Lml provide an excellent model for comparing the organization of pathogenicity genes in relation to the chromatin landscape in two closely related phytopathogenic fungi. Here, we performed chromatin immunoprecipitation (ChIP) during axenic culture, targeting histone modifications typical for heterochromatin or euchromatin, combined with transcriptomic analysis to analyze the influence of chromatin organization on gene expression. In both species, we found that facultative heterochromatin is enriched with genes lacking functional annotation, including numerous effector and species-specific genes. Notably, orthologous genes located in H3K27me3 domains are enriched with effector genes. Compared to other fungal species, including Lml, Lmb is distinct in having large H3K9me3 domains associated with repeat-rich regions that contain numerous species-specific effector genes. Discovery of these two distinctive heterochromatin landscapes now raises questions about their involvement in the regulation of pathogenicity, the dynamics of these domains during plant infection and the selective advantage to the fungus to host effector genes in H3K9me3 or H3K27me3 domains.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"29 2","pages":"219-236"},"PeriodicalIF":2.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-021-09658-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39005035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize. 雄性不育28编码玉米雄性育性必需的ARGONAUTE家族蛋白。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-06-01 Epub Date: 2021-03-02 DOI: 10.1007/s10577-021-09653-6
Yunfei Li, Yumin Huang, Lingling Pan, Yue Zhao, Wei Huang, Weiwei Jin

Male sterility is a common biological phenomenon in plants and is a useful trait for hybrid seed production. Normal tapetum development is essential for viable pollen generation. Although many genes involved in tapetum differentiation and degradation have been isolated in maize, elements that regulate tapetum development during pollen mother cell (PMC) meiosis are less studied. Here, we characterized a classical male-sterile mutant male sterile 28 (ms28) in maize. The ms28 mutant had a regular male meiosis process, while its tapetum cells showed premature vacuolation at the early meiotic prophase stage. Using map-based cloning, we cloned the Ms28 gene and confirmed its role in male fertility in maize together with two allelic mutants. Ms28 encodes the ARGONAUTE (AGO) family protein ZmAGO5c, and its transcripts primarily accumulate in premeiosis anthers, with more intense signals in PMCs. Transcriptomic analysis revealed that genes related to anther development, cell division, and reproductive structure development processes were differentially expressed between the ms28 mutant and its fertile siblings. Moreover, small RNA (sRNA) sequencing revealed that the small interfering RNA (siRNA) and microRNA (miRNA) abundances were obviously changed in ms28 meiotic anthers, which indicated that Ms28 may regulate tapetal cell development through small RNA-mediated epigenetic regulatory pathways. Taken together, our results shed more light on the functional mechanisms of the early development of the tapetum for male fertility in maize.

雄性不育是植物中常见的生物学现象,是杂交制种的重要性状。正常的绒毡层发育是花粉产生的必要条件。虽然在玉米中已经分离到许多参与绒毡层分化和降解的基因,但对花粉母细胞减数分裂过程中绒毡层发育的调控因子研究较少。在这里,我们鉴定了一个典型的玉米雄性不育突变体ms28。ms28突变体具有正常的雄性减数分裂过程,而其绒毡层细胞在减数分裂前期表现出过早的空泡化。利用定位克隆技术,我们克隆了Ms28基因,并与两个等位突变体一起证实了它在玉米雄性育性中的作用。Ms28编码ARGONAUTE (AGO)家族蛋白ZmAGO5c,其转录本主要在减数分裂前花药中积累,在pmc中信号更为强烈。转录组学分析显示,与花药发育、细胞分裂和生殖结构发育过程相关的基因在ms28突变体和其可育兄弟姐妹之间存在差异表达。此外,小RNA (sRNA)测序结果显示ms28减数分裂花药中小干扰RNA (siRNA)和微小RNA (miRNA)丰度发生明显变化,表明ms28可能通过小RNA介导的表观遗传调控途径调控绒毡层细胞发育。综上所述,我们的研究结果进一步揭示了玉米绒毡层早期发育对雄性育性的功能机制。
{"title":"Male sterile 28 encodes an ARGONAUTE family protein essential for male fertility in maize.","authors":"Yunfei Li,&nbsp;Yumin Huang,&nbsp;Lingling Pan,&nbsp;Yue Zhao,&nbsp;Wei Huang,&nbsp;Weiwei Jin","doi":"10.1007/s10577-021-09653-6","DOIUrl":"https://doi.org/10.1007/s10577-021-09653-6","url":null,"abstract":"<p><p>Male sterility is a common biological phenomenon in plants and is a useful trait for hybrid seed production. Normal tapetum development is essential for viable pollen generation. Although many genes involved in tapetum differentiation and degradation have been isolated in maize, elements that regulate tapetum development during pollen mother cell (PMC) meiosis are less studied. Here, we characterized a classical male-sterile mutant male sterile 28 (ms28) in maize. The ms28 mutant had a regular male meiosis process, while its tapetum cells showed premature vacuolation at the early meiotic prophase stage. Using map-based cloning, we cloned the Ms28 gene and confirmed its role in male fertility in maize together with two allelic mutants. Ms28 encodes the ARGONAUTE (AGO) family protein ZmAGO5c, and its transcripts primarily accumulate in premeiosis anthers, with more intense signals in PMCs. Transcriptomic analysis revealed that genes related to anther development, cell division, and reproductive structure development processes were differentially expressed between the ms28 mutant and its fertile siblings. Moreover, small RNA (sRNA) sequencing revealed that the small interfering RNA (siRNA) and microRNA (miRNA) abundances were obviously changed in ms28 meiotic anthers, which indicated that Ms28 may regulate tapetal cell development through small RNA-mediated epigenetic regulatory pathways. Taken together, our results shed more light on the functional mechanisms of the early development of the tapetum for male fertility in maize.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"29 2","pages":"189-201"},"PeriodicalIF":2.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-021-09653-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25420229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The new year for chromosome research: a change of guard amidst a shifting scientific landscape and global pandemic. 染色体研究的新一年:在不断变化的科学格局和全球流行病中换岗。
IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-06-01 Epub Date: 2021-02-24 DOI: 10.1007/s10577-021-09647-4
Beth A Sullivan
{"title":"The new year for chromosome research: a change of guard amidst a shifting scientific landscape and global pandemic.","authors":"Beth A Sullivan","doi":"10.1007/s10577-021-09647-4","DOIUrl":"https://doi.org/10.1007/s10577-021-09647-4","url":null,"abstract":"","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"29 2","pages":"127-130"},"PeriodicalIF":2.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10577-021-09647-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25400295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chromosome Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1