Pub Date : 2019-11-19DOI: 10.1201/9781315152516-26
P. Nair, David Christian, Dennis E. Discher
{"title":"Polymersomes","authors":"P. Nair, David Christian, Dennis E. Discher","doi":"10.1201/9781315152516-26","DOIUrl":"https://doi.org/10.1201/9781315152516-26","url":null,"abstract":"","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"1 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65955422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04Epub Date: 2019-02-22DOI: 10.1146/annurev-bioeng-060418-052432
Eleonora Dal Sasso, Andrea Bagno, Silvia T G Scuri, Gino Gerosa, Laura Iop
There are limited therapeutic options for final treatment of end-stage heart failure. Among them, implantation of a total artificial heart (TAH) is an acceptable strategy when suitable donors are not available. TAH development began in the 1930s, followed by a dramatic evolution of the actuation mechanisms operating the mechanical pumps. Nevertheless, the performance of TAHs has not yet been optimized, mainly because of the low biocompatibility of the blood-contacting surfaces. Low hemocompatibility, calcification, and sensitivity to infections seriously affect the success of TAHs. These unsolved issues have led to the withdrawal of many prototypes during preclinical phases of testing. This review offers a comprehensive analysis of the pathophysiological events that may occur in the materials that compose TAHs developed to date. In addition, this review illustrates bioengineering strategies to prevent these events and describes the most significant steps toward the achievement of a fully biocompatible TAH.
{"title":"The Biocompatibility Challenges in the Total Artificial Heart Evolution.","authors":"Eleonora Dal Sasso, Andrea Bagno, Silvia T G Scuri, Gino Gerosa, Laura Iop","doi":"10.1146/annurev-bioeng-060418-052432","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052432","url":null,"abstract":"<p><p>There are limited therapeutic options for final treatment of end-stage heart failure. Among them, implantation of a total artificial heart (TAH) is an acceptable strategy when suitable donors are not available. TAH development began in the 1930s, followed by a dramatic evolution of the actuation mechanisms operating the mechanical pumps. Nevertheless, the performance of TAHs has not yet been optimized, mainly because of the low biocompatibility of the blood-contacting surfaces. Low hemocompatibility, calcification, and sensitivity to infections seriously affect the success of TAHs. These unsolved issues have led to the withdrawal of many prototypes during preclinical phases of testing. This review offers a comprehensive analysis of the pathophysiological events that may occur in the materials that compose TAHs developed to date. In addition, this review illustrates bioengineering strategies to prevent these events and describes the most significant steps toward the achievement of a fully biocompatible TAH.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"85-110"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36991100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04DOI: 10.1146/annurev-bioeng-062117-121120
Marc A Simon, Timothy N Bachman, John Watson, J Timothy Baldwin, William R Wagner, Harvey S Borovetz
Our review in the 2008 volume of this journal detailed the use of mechanical circulatory support (MCS) for treatment of heart failure (HF). MCS initially utilized bladder-based blood pumps generating pulsatile flow; these pulsatile flow pumps have been supplanted by rotary blood pumps, in which cardiac support is generated via the high-speed rotation of computationally designed blading. Different rotary pump designs have been evaluated for their safety, performance, and efficacy in clinical trials both in the United States and internationally. The reduced size of the rotary pump designs has prompted research and development toward the design of MCS suitable for infants and children. The past decade has witnessed efforts focused on tissue engineering-based therapies for the treatment of HF. This review explores the current state and future opportunities of cardiac support therapies within our larger understanding of the treatment options for HF.
{"title":"Current and Future Considerations in the Use of Mechanical Circulatory Support Devices: An Update, 2008-2018.","authors":"Marc A Simon, Timothy N Bachman, John Watson, J Timothy Baldwin, William R Wagner, Harvey S Borovetz","doi":"10.1146/annurev-bioeng-062117-121120","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-062117-121120","url":null,"abstract":"<p><p>Our review in the 2008 volume of this journal detailed the use of mechanical circulatory support (MCS) for treatment of heart failure (HF). MCS initially utilized bladder-based blood pumps generating pulsatile flow; these pulsatile flow pumps have been supplanted by rotary blood pumps, in which cardiac support is generated via the high-speed rotation of computationally designed blading. Different rotary pump designs have been evaluated for their safety, performance, and efficacy in clinical trials both in the United States and internationally. The reduced size of the rotary pump designs has prompted research and development toward the design of MCS suitable for infants and children. The past decade has witnessed efforts focused on tissue engineering-based therapies for the treatment of HF. This review explores the current state and future opportunities of cardiac support therapies within our larger understanding of the treatment options for HF.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"33-60"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-062117-121120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37309794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04DOI: 10.1146/annurev-bioeng-060418-052357
Dominic Scalise, Rebecca Schulman
In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.
{"title":"Controlling Matter at the Molecular Scale with DNA Circuits.","authors":"Dominic Scalise, Rebecca Schulman","doi":"10.1146/annurev-bioeng-060418-052357","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052357","url":null,"abstract":"<p><p>In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"469-493"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052357","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37044838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04Epub Date: 2019-03-20DOI: 10.1146/annurev-bioeng-060418-052453
Jana Ognjenović, Reinhard Grisshammer, Sriram Subramaniam
In recent years, cryo electron microscopy (cryo-EM) technology has been transformed with the development of better instrumentation, direct electron detectors, improved methods for specimen preparation, and improved software for data analysis. Analyses using single-particle cryo-EM methods have enabled determination of structures of proteins with sizes smaller than 100 kDa and resolutions of ∼2 Å in some cases. The use of electron tomography combined with subvolume averaging is beginning to allow the visualization of macromolecular complexes in their native environment in unprecedented detail. As a result of these advances, solutions to many intractable challenges in structural and cell biology, such as analysis of highly dynamic soluble and membrane-embedded protein complexes or partially ordered protein aggregates, are now within reach. Recent reports of structural studies of G protein-coupled receptors, spliceosomes, and fibrillar specimens illustrate the progress that has been made using cryo-EM methods, and are the main focus of this review.
{"title":"Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies.","authors":"Jana Ognjenović, Reinhard Grisshammer, Sriram Subramaniam","doi":"10.1146/annurev-bioeng-060418-052453","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052453","url":null,"abstract":"<p><p>In recent years, cryo electron microscopy (cryo-EM) technology has been transformed with the development of better instrumentation, direct electron detectors, improved methods for specimen preparation, and improved software for data analysis. Analyses using single-particle cryo-EM methods have enabled determination of structures of proteins with sizes smaller than 100 kDa and resolutions of ∼2 Å in some cases. The use of electron tomography combined with subvolume averaging is beginning to allow the visualization of macromolecular complexes in their native environment in unprecedented detail. As a result of these advances, solutions to many intractable challenges in structural and cell biology, such as analysis of highly dynamic soluble and membrane-embedded protein complexes or partially ordered protein aggregates, are now within reach. Recent reports of structural studies of G protein-coupled receptors, spliceosomes, and fibrillar specimens illustrate the progress that has been made using cryo-EM methods, and are the main focus of this review.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"395-415"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37075511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04Epub Date: 2019-02-20DOI: 10.1146/annurev-bioeng-060418-052155
Kinam Park, Andrew Otte
Prescription opioid medications have seen a dramatic rise in misuse and abuse, leading regulators and scientists to develop policies and abuse-deterrent technologies to combat the current opioid epidemic. These abuse-deterrent formulations (ADFs) are intended to deter physical and chemical tampering of opioid-based products, while still providing safe and effective delivery for therapeutic purposes. Even though formulations with varying abuse-deterrent technologies have been approved, questions remain about their effectiveness. While these formulations provide a single means to combat the epidemic, a greater emphasis should be placed on formulations for treatment of addiction and overdose to help those struggling with opioid dependence. This article analyzes various ADFs currently in clinical use and explores potential novel systems for treatment of addiction and prevention of overdose.
{"title":"Prevention of Opioid Abuse and Treatment of Opioid Addiction: Current Status and Future Possibilities.","authors":"Kinam Park, Andrew Otte","doi":"10.1146/annurev-bioeng-060418-052155","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052155","url":null,"abstract":"<p><p>Prescription opioid medications have seen a dramatic rise in misuse and abuse, leading regulators and scientists to develop policies and abuse-deterrent technologies to combat the current opioid epidemic. These abuse-deterrent formulations (ADFs) are intended to deter physical and chemical tampering of opioid-based products, while still providing safe and effective delivery for therapeutic purposes. Even though formulations with varying abuse-deterrent technologies have been approved, questions remain about their effectiveness. While these formulations provide a single means to combat the epidemic, a greater emphasis should be placed on formulations for treatment of addiction and overdose to help those struggling with opioid dependence. This article analyzes various ADFs currently in clinical use and explores potential novel systems for treatment of addiction and prevention of overdose.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"61-84"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36974511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04DOI: 10.1146/annurev-bioeng-060418-052257
Thomas Heldt, Tommaso Zoerle, Daniel Teichmann, Nino Stocchetti
Patients with acute brain injuries tend to be physiologically unstable and at risk of rapid and potentially life-threatening decompensation due to shifts in intracranial compartment volumes and consequent intracranial hypertension. Invasive intracranial pressure (ICP) monitoring therefore remains a cornerstone of modern neurocritical care, despite the attendant risks of infection and damage to brain tissue arising from the surgical placement of a catheter or pressure transducer into the cerebrospinal fluid or brain tissue compartments. In addition to ICP monitoring, tracking of the intracranial capacity to buffer shifts in compartment volumes would help in the assessment of patient state, inform clinical decision making, and guide therapeutic interventions. We review the anatomy, physiology, and current technology relevant to clinical management of patients with acute brain injury and outline unmet clinical needs to advance patient monitoring in neurocritical care.
{"title":"Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care.","authors":"Thomas Heldt, Tommaso Zoerle, Daniel Teichmann, Nino Stocchetti","doi":"10.1146/annurev-bioeng-060418-052257","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052257","url":null,"abstract":"<p><p>Patients with acute brain injuries tend to be physiologically unstable and at risk of rapid and potentially life-threatening decompensation due to shifts in intracranial compartment volumes and consequent intracranial hypertension. Invasive intracranial pressure (ICP) monitoring therefore remains a cornerstone of modern neurocritical care, despite the attendant risks of infection and damage to brain tissue arising from the surgical placement of a catheter or pressure transducer into the cerebrospinal fluid or brain tissue compartments. In addition to ICP monitoring, tracking of the intracranial capacity to buffer shifts in compartment volumes would help in the assessment of patient state, inform clinical decision making, and guide therapeutic interventions. We review the anatomy, physiology, and current technology relevant to clinical management of patients with acute brain injury and outline unmet clinical needs to advance patient monitoring in neurocritical care.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"523-549"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052257","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37044837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04Epub Date: 2018-12-10DOI: 10.1146/annurev-bioeng-060418-052130
Lindong Weng, Shannon L Stott, Mehmet Toner
Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.
{"title":"Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation.","authors":"Lindong Weng, Shannon L Stott, Mehmet Toner","doi":"10.1146/annurev-bioeng-060418-052130","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052130","url":null,"abstract":"<p><p>Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"1-31"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36806334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04DOI: 10.1146/annurev-bioeng-062117-121129
Reza Avazmohammadi, João S Soares, David S Li, Samarth S Raut, Robert C Gorman, Michael S Sacks
Understanding and predicting the mechanical behavior of myocardium under healthy and pathophysiological conditions are vital to developing novel cardiac therapies and promoting personalized interventions. Within the past 30 years, various constitutive models have been proposed for the passive mechanical behavior of myocardium. These models cover a broad range of mathematical forms, microstructural observations, and specific test conditions to which they are fitted. We present a critical review of these models, covering both phenomenological and structural approaches, and their relations to the underlying structure and function of myocardium. We further explore the experimental and numerical techniques used to identify the model parameters. Next, we provide a brief overview of continuum-level electromechanical models of myocardium, with a focus on the methods used to integrate the active and passive components of myocardial behavior. We conclude by pointing to future directions in the areas of optimal form as well as new approaches for constitutive modeling of myocardium.
{"title":"A Contemporary Look at Biomechanical Models of Myocardium.","authors":"Reza Avazmohammadi, João S Soares, David S Li, Samarth S Raut, Robert C Gorman, Michael S Sacks","doi":"10.1146/annurev-bioeng-062117-121129","DOIUrl":"10.1146/annurev-bioeng-062117-121129","url":null,"abstract":"<p><p>Understanding and predicting the mechanical behavior of myocardium under healthy and pathophysiological conditions are vital to developing novel cardiac therapies and promoting personalized interventions. Within the past 30 years, various constitutive models have been proposed for the passive mechanical behavior of myocardium. These models cover a broad range of mathematical forms, microstructural observations, and specific test conditions to which they are fitted. We present a critical review of these models, covering both phenomenological and structural approaches, and their relations to the underlying structure and function of myocardium. We further explore the experimental and numerical techniques used to identify the model parameters. Next, we provide a brief overview of continuum-level electromechanical models of myocardium, with a focus on the methods used to integrate the active and passive components of myocardial behavior. We conclude by pointing to future directions in the areas of optimal form as well as new approaches for constitutive modeling of myocardium.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"417-442"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-062117-121129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37309793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-04Epub Date: 2019-03-11DOI: 10.1146/annurev-bioeng-060418-052324
Barry A Badeau, Cole A DeForest
Stimuli-responsive materials undergo triggered changes when presented with specific environmental cues. These dynamic systems can leverage biological signals found locally within the body as well as exogenous cues administered with spatiotemporal control, providing powerful opportunities in next-generation diagnostics and personalized medicine. Here, we review the synthetic and strategic advances used to impart diverse responsiveness to a wide variety of biomaterials. Categorizing systems on the basis of material type, number of inputs, and response mechanism, we examine past and ongoing efforts toward endowing biomaterials with customizable sensitivity. We draw an analogy to computer science, whereby a stimuli-responsive biomaterial transduces a set of inputs into a functional output as governed by a user-specified logical operator. We discuss Boolean and non-Boolean operations, as well as the various chemical and physical modes of signal transduction. Finally, we examine current limitations and promising directions in the ongoing development of programmable stimuli-responsive biomaterials.
{"title":"Programming Stimuli-Responsive Behavior into Biomaterials.","authors":"Barry A Badeau, Cole A DeForest","doi":"10.1146/annurev-bioeng-060418-052324","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052324","url":null,"abstract":"<p><p>Stimuli-responsive materials undergo triggered changes when presented with specific environmental cues. These dynamic systems can leverage biological signals found locally within the body as well as exogenous cues administered with spatiotemporal control, providing powerful opportunities in next-generation diagnostics and personalized medicine. Here, we review the synthetic and strategic advances used to impart diverse responsiveness to a wide variety of biomaterials. Categorizing systems on the basis of material type, number of inputs, and response mechanism, we examine past and ongoing efforts toward endowing biomaterials with customizable sensitivity. We draw an analogy to computer science, whereby a stimuli-responsive biomaterial transduces a set of inputs into a functional output as governed by a user-specified logical operator. We discuss Boolean and non-Boolean operations, as well as the various chemical and physical modes of signal transduction. Finally, we examine current limitations and promising directions in the ongoing development of programmable stimuli-responsive biomaterials.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"241-265"},"PeriodicalIF":9.7,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37044538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}