Pub Date : 2022-06-06DOI: 10.1146/annurev-bioeng-110220-115419
Garrett F Beeghly, Kwasi Y Amofa, Claudia Fischbach, Sanjay Kumar
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical propertiesfor mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment.
{"title":"Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer.","authors":"Garrett F Beeghly, Kwasi Y Amofa, Claudia Fischbach, Sanjay Kumar","doi":"10.1146/annurev-bioeng-110220-115419","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-110220-115419","url":null,"abstract":"<p><p>The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical propertiesfor mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"24 ","pages":"29-59"},"PeriodicalIF":9.7,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177572/pdf/nihms-1781704.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-06DOI: 10.1146/annurev-bioeng-110320-110749
Wenxuan Du, Praful Nair, Adrian Johnston, Pei-Hsun Wu, Denis Wirtz
Migration is an essential cellular process that regulates human organ development and homeostasis as well as disease initiation and progression. In cancer, immune and tumor cell migration is strongly associated with immune cell infiltration, immune escape, and tumor cell metastasis, which ultimately account for more than 90% of cancer deaths. The biophysics and molecular regulation of the migration of cancer and immune cells have been extensively studied separately. However, accumulating evidence indicates that, in the tumor microenvironment, the motilities of immune and cancer cells are highly interdependent via secreted factors such as cytokines and chemokines. Tumor and immune cells constantly express these soluble factors, which produce a tightly intertwined regulatory network for these cells' respective migration. A mechanistic understanding of the reciprocal regulation of soluble factor-mediated cell migration can provide critical information for the development of new biomarkers of tumor progression and of tumor response to immuno-oncological treatments. We review the biophysical andbiomolecular basis for the migration of immune and tumor cells and their associated reciprocal regulatory network. We also describe ongoing attempts to translate this knowledge into the clinic.
{"title":"Cell Trafficking at the Intersection of the Tumor-Immune Compartments.","authors":"Wenxuan Du, Praful Nair, Adrian Johnston, Pei-Hsun Wu, Denis Wirtz","doi":"10.1146/annurev-bioeng-110320-110749","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-110320-110749","url":null,"abstract":"<p><p>Migration is an essential cellular process that regulates human organ development and homeostasis as well as disease initiation and progression. In cancer, immune and tumor cell migration is strongly associated with immune cell infiltration, immune escape, and tumor cell metastasis, which ultimately account for more than 90% of cancer deaths. The biophysics and molecular regulation of the migration of cancer and immune cells have been extensively studied separately. However, accumulating evidence indicates that, in the tumor microenvironment, the motilities of immune and cancer cells are highly interdependent via secreted factors such as cytokines and chemokines. Tumor and immune cells constantly express these soluble factors, which produce a tightly intertwined regulatory network for these cells' respective migration. A mechanistic understanding of the reciprocal regulation of soluble factor-mediated cell migration can provide critical information for the development of new biomarkers of tumor progression and of tumor response to immuno-oncological treatments. We review the biophysical andbiomolecular basis for the migration of immune and tumor cells and their associated reciprocal regulatory network. We also describe ongoing attempts to translate this knowledge into the clinic.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"24 ","pages":"275-305"},"PeriodicalIF":9.7,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-08DOI: 10.1146/annurev-bioeng-110220-025309
J. Bonnemain, P. D. del Nido, E. Roche
The treatment of end-stage heart failure has evolved substantially with advances in medical treatment, cardiac transplantation, and mechanical circulatory support (MCS) devices such as left ventricular assist devices and total artificial hearts. However, current MCS devices are inherently blood contacting and can lead to potential complications including pump thrombosis, hemorrhage, stroke, and hemolysis. Attempts to address these issues and avoid blood contact led to the concept of compressing the failing heart from the epicardial surface and the design of direct cardiac compression (DCC) devices. We review the fundamental concepts related to DCC, present the foundational devices and recent devices in the research and commercialization stages, and discuss the milestones required for clinical translation and adoption of this technology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Direct Cardiac Compression Devices to Augment Heart Biomechanics and Function.","authors":"J. Bonnemain, P. D. del Nido, E. Roche","doi":"10.1146/annurev-bioeng-110220-025309","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-110220-025309","url":null,"abstract":"The treatment of end-stage heart failure has evolved substantially with advances in medical treatment, cardiac transplantation, and mechanical circulatory support (MCS) devices such as left ventricular assist devices and total artificial hearts. However, current MCS devices are inherently blood contacting and can lead to potential complications including pump thrombosis, hemorrhage, stroke, and hemolysis. Attempts to address these issues and avoid blood contact led to the concept of compressing the failing heart from the epicardial surface and the design of direct cardiac compression (DCC) devices. We review the fundamental concepts related to DCC, present the foundational devices and recent devices in the research and commercialization stages, and discuss the milestones required for clinical translation and adoption of this technology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49031566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-06DOI: 10.1146/annurev-bioeng-060418-052527
C. Nelson
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Mechanical Control of Cell Differentiation: Insights from the Early Embryo.","authors":"C. Nelson","doi":"10.1146/annurev-bioeng-060418-052527","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-060418-052527","url":null,"abstract":"Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46358603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-04DOI: 10.1146/annurev-bioeng-092021-042744
C. Luni, O. Gagliano, N. Elvassore
An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices.","authors":"C. Luni, O. Gagliano, N. Elvassore","doi":"10.1146/annurev-bioeng-092021-042744","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-092021-042744","url":null,"abstract":"An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46237375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-01DOI: 10.1146/annurev-bioeng-110220-014644
R. Mukkamala, G. Stergiou, A. Avolio
Cuffless blood pressure (BP) measurement has become a popular field due to clinical need and technological opportunity. However, no method has been broadly accepted hitherto. The objective of this review is to accelerate progress in the development and application of cuffless BP measurement methods. We begin by describing the principles of conventional BP measurement, outstanding hypertension/hypotension problems that could be addressed with cuffless methods, and recent technological advances, including smartphone proliferation and wearable sensing, that are driving the field. We then present all major cuffless methods under investigation, including their current evidence. Our presentation includes calibrated methods (i.e., pulse transit time, pulse wave analysis, and facial video processing) and uncalibrated methods (i.e., cuffless oscillometry, ultrasound, and volume control). The calibrated methods can offer convenience advantages, whereas the uncalibrated methods do not require periodic cuff device usage or demographic inputs. We conclude by summarizing the field and highlighting potentially useful future research directions. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Cuffless Blood Pressure Measurement.","authors":"R. Mukkamala, G. Stergiou, A. Avolio","doi":"10.1146/annurev-bioeng-110220-014644","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-110220-014644","url":null,"abstract":"Cuffless blood pressure (BP) measurement has become a popular field due to clinical need and technological opportunity. However, no method has been broadly accepted hitherto. The objective of this review is to accelerate progress in the development and application of cuffless BP measurement methods. We begin by describing the principles of conventional BP measurement, outstanding hypertension/hypotension problems that could be addressed with cuffless methods, and recent technological advances, including smartphone proliferation and wearable sensing, that are driving the field. We then present all major cuffless methods under investigation, including their current evidence. Our presentation includes calibrated methods (i.e., pulse transit time, pulse wave analysis, and facial video processing) and uncalibrated methods (i.e., cuffless oscillometry, ultrasound, and volume control). The calibrated methods can offer convenience advantages, whereas the uncalibrated methods do not require periodic cuff device usage or demographic inputs. We conclude by summarizing the field and highlighting potentially useful future research directions. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43701137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-28DOI: 10.1146/annurev-bioeng-010220-113008
F. Berthiaume, H. Hsia
Chronic skin wounds are commonly found in older individuals who have impaired circulation due to diabetes or are immobilized due to physical disability. Chronic wounds pose a severe burden to the health-care system and are likely to become increasingly prevalent in aging populations. Various treatment approaches exist to help the healing process, although the healed tissue does not generally recapitulate intact skin but rather forms a scar that has inferior mechanical properties and that lacks appendages such as hair or sweat glands. This article describes new experimental avenues for attempting to improve the regenerative response of skin using biophysical techniques as well as biochemical methods, in some cases by trying to harness the potential of stem cells, either endogenous to the host or provided exogenously, to regenerate the skin. These approaches primarily address the local wound environment and should likely be combined with other modalities to address regional and systemic disease, as well as social determinants of health. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Regenerative Approaches for Chronic Wounds.","authors":"F. Berthiaume, H. Hsia","doi":"10.1146/annurev-bioeng-010220-113008","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-010220-113008","url":null,"abstract":"Chronic skin wounds are commonly found in older individuals who have impaired circulation due to diabetes or are immobilized due to physical disability. Chronic wounds pose a severe burden to the health-care system and are likely to become increasingly prevalent in aging populations. Various treatment approaches exist to help the healing process, although the healed tissue does not generally recapitulate intact skin but rather forms a scar that has inferior mechanical properties and that lacks appendages such as hair or sweat glands. This article describes new experimental avenues for attempting to improve the regenerative response of skin using biophysical techniques as well as biochemical methods, in some cases by trying to harness the potential of stem cells, either endogenous to the host or provided exogenously, to regenerate the skin. These approaches primarily address the local wound environment and should likely be combined with other modalities to address regional and systemic disease, as well as social determinants of health. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"1 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42540923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-13Epub Date: 2021-04-28DOI: 10.1146/annurev-bioeng-122019-121602
Amr A Abdeen, Brian D Cosgrove, Charles A Gersbach, Krishanu Saha
The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.
{"title":"Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science.","authors":"Amr A Abdeen, Brian D Cosgrove, Charles A Gersbach, Krishanu Saha","doi":"10.1146/annurev-bioeng-122019-121602","DOIUrl":"10.1146/annurev-bioeng-122019-121602","url":null,"abstract":"<p><p>The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"23 ","pages":"493-516"},"PeriodicalIF":12.8,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9340769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-13Epub Date: 2021-03-31DOI: 10.1146/annurev-bioeng-121219-024239
Jacob S Brenner, Samir Mitragotri, Vladimir R Muzykantov
Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.
{"title":"Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers.","authors":"Jacob S Brenner, Samir Mitragotri, Vladimir R Muzykantov","doi":"10.1146/annurev-bioeng-121219-024239","DOIUrl":"10.1146/annurev-bioeng-121219-024239","url":null,"abstract":"<p><p>Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"23 ","pages":"225-248"},"PeriodicalIF":9.7,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277719/pdf/nihms-1701544.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-13DOI: 10.1146/annurev-bioeng-062117-121238
Dallan McMahon, Meaghan A O'Reilly, Kullervo Hynynen
Specialized features of vasculature in the central nervous system greatly limit therapeutic treatment options for many neuropathologies. Focused ultrasound, in combination with circulating microbubbles, can be used to transiently and noninvasively increase cerebrovascular permeability with a high level of spatial precision. For minutes to hours following sonication, drugs can be administered systemically to extravasate in the targeted brain regions and exert a therapeutic effect, after which permeability returns to baseline levels. With the wide range of therapeutic agents that can be delivered using this approach and the growing clinical need, focused ultrasound and microbubble (FUS+MB) exposure in the brain has entered human testing to assess safety. This review outlines the use of FUS+MB-mediated cerebrovascular permeability enhancement as a drug delivery technique, details several technical and biological considerations of this approach, summarizes results from the clinical trials conducted to date, and discusses the future direction of the field.
{"title":"Therapeutic Agent Delivery Across the Blood-Brain Barrier Using Focused Ultrasound.","authors":"Dallan McMahon, Meaghan A O'Reilly, Kullervo Hynynen","doi":"10.1146/annurev-bioeng-062117-121238","DOIUrl":"https://doi.org/10.1146/annurev-bioeng-062117-121238","url":null,"abstract":"<p><p>Specialized features of vasculature in the central nervous system greatly limit therapeutic treatment options for many neuropathologies. Focused ultrasound, in combination with circulating microbubbles, can be used to transiently and noninvasively increase cerebrovascular permeability with a high level of spatial precision. For minutes to hours following sonication, drugs can be administered systemically to extravasate in the targeted brain regions and exert a therapeutic effect, after which permeability returns to baseline levels. With the wide range of therapeutic agents that can be delivered using this approach and the growing clinical need, focused ultrasound and microbubble (FUS+MB) exposure in the brain has entered human testing to assess safety. This review outlines the use of FUS+MB-mediated cerebrovascular permeability enhancement as a drug delivery technique, details several technical and biological considerations of this approach, summarizes results from the clinical trials conducted to date, and discusses the future direction of the field.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"23 ","pages":"89-113"},"PeriodicalIF":9.7,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9401250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}