Nisha Shareef, Xiang Ting Liu, Kai Zhao, Muhammad Saqib Shahzad, Jing Tao Zhang, E. Guo, Hui Jun Kang, Zhi Gang Hao, Jie Hua Li, Cun-shan Wang, Zong Ning Chen, Tongzhen Wang
The demand for structural lightweight in a variety of industries, particularly the automobile industry, has driven the development of heat-free die-cast aluminum alloys with excellent properties. Utilizing lightweight materials, such as Al-Si alloys has several benefits, including higher overall performance in automobiles and other industries, increased heat resistance efficiency, decreased emissions, and reduced weight. The purpose of this study is to modify the microstructure and enhance the mechanical properties of high-pressure die-casting (HPDC) AlSi10MnMg foundry alloy by incorporation of TiB2 and Sc without any heat treatment. The results showed that the HPDC process significantly refines the grain structure and AlSiMnFe intermetallic compounds, transforming the eutectic morphology from sharp to rounded, and 93% enhancement in elongation at the optimum content (0.018 wt.%) of TiB2. While the hardness of the alloy was improved by 15.7% with the addition of 0.03wt.% TiB2. TiB2 incorporation refines the grain structure and AlSiMnFe phases, while depressing externally solidified crystals (ESCs). The HPDC process refines Al3Sc phases as well as AlSiMnFe phases while increasing yield strength due to Al3Sc strengthening effects. After 0.5wt.% Sc addition in 0.018wt.% TiB2-AlSi10MnMg alloy, the YS, and EL reached the maximum of 196MPa and 9.93% respectively.
{"title":"Modifying the Microstructure and Mechanical Properties of Non-Heat Treated HPDC AlSi10MnMg Foundry Alloy via Incorporation of TiB2 Particles and Sc","authors":"Nisha Shareef, Xiang Ting Liu, Kai Zhao, Muhammad Saqib Shahzad, Jing Tao Zhang, E. Guo, Hui Jun Kang, Zhi Gang Hao, Jie Hua Li, Cun-shan Wang, Zong Ning Chen, Tongzhen Wang","doi":"10.4028/p-dsd17k","DOIUrl":"https://doi.org/10.4028/p-dsd17k","url":null,"abstract":"The demand for structural lightweight in a variety of industries, particularly the automobile industry, has driven the development of heat-free die-cast aluminum alloys with excellent properties. Utilizing lightweight materials, such as Al-Si alloys has several benefits, including higher overall performance in automobiles and other industries, increased heat resistance efficiency, decreased emissions, and reduced weight. The purpose of this study is to modify the microstructure and enhance the mechanical properties of high-pressure die-casting (HPDC) AlSi10MnMg foundry alloy by incorporation of TiB2 and Sc without any heat treatment. The results showed that the HPDC process significantly refines the grain structure and AlSiMnFe intermetallic compounds, transforming the eutectic morphology from sharp to rounded, and 93% enhancement in elongation at the optimum content (0.018 wt.%) of TiB2. While the hardness of the alloy was improved by 15.7% with the addition of 0.03wt.% TiB2. TiB2 incorporation refines the grain structure and AlSiMnFe phases, while depressing externally solidified crystals (ESCs). The HPDC process refines Al3Sc phases as well as AlSiMnFe phases while increasing yield strength due to Al3Sc strengthening effects. After 0.5wt.% Sc addition in 0.018wt.% TiB2-AlSi10MnMg alloy, the YS, and EL reached the maximum of 196MPa and 9.93% respectively.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140980195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, a picosecond laser source was employed to irradiate the nanostructured ZnO thin film prepared by the sol-gel method. The impact of laser irradiation on the characteristics of a nanostructured ZnO thin film was investigated. Analysis using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy confirmed a significant influence on the structure of the ZnO thin film. As the duration of laser irradiation (the number of laser pulses) increased, there was a remarkable decrease in both the electronic and photoluminescence intensities of the nanostructured film. Tauc's plot indicates a noticeable change in the optical band gaps of the thin film with the increase in irradiation time. The morphological image suggests that the laser irradiation energy induces both degradation and modification of the film surface, consequently causing changes in the structural, absorption, and photoluminescence properties of nanostructured ZnO. The observed effects are attributed to alterations in the crystal structure and size of the nanostructured ZnO film, as confirmed by XRD. The reduction in photoluminescence intensity observed over the laser irradiation times may be a result of potential degradation in the crystalline structure of the nanostructured ZnO film.
本文采用皮秒激光源辐照溶胶-凝胶法制备的纳米结构氧化锌薄膜。研究了激光辐照对纳米结构氧化锌薄膜特性的影响。利用 X 射线衍射、扫描电子显微镜和傅立叶变换红外光谱进行的分析表明,激光辐照对氧化锌薄膜的结构有显著影响。随着激光照射时间(激光脉冲数)的增加,纳米结构薄膜的电子强度和光致发光强度都显著下降。陶克曲线图表明,随着辐照时间的增加,薄膜的光带隙发生了明显变化。形态图像表明,激光辐照能量会引起薄膜表面的降解和改性,从而导致纳米结构 ZnO 的结构、吸收和光致发光特性发生变化。经 XRD 证实,观察到的效应归因于纳米结构氧化锌薄膜晶体结构和尺寸的改变。激光照射时间越长,光致发光强度越低,这可能是纳米结构氧化锌薄膜晶体结构退化的结果。
{"title":"Effect of Picosecond Laser Irradiation on the Properties of Nanostructured Zinc Oxide Thin Films","authors":"Muhammed Naziruddin Khan, A. Almohammedi","doi":"10.4028/p-djtw4k","DOIUrl":"https://doi.org/10.4028/p-djtw4k","url":null,"abstract":"In this article, a picosecond laser source was employed to irradiate the nanostructured ZnO thin film prepared by the sol-gel method. The impact of laser irradiation on the characteristics of a nanostructured ZnO thin film was investigated. Analysis using X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy confirmed a significant influence on the structure of the ZnO thin film. As the duration of laser irradiation (the number of laser pulses) increased, there was a remarkable decrease in both the electronic and photoluminescence intensities of the nanostructured film. Tauc's plot indicates a noticeable change in the optical band gaps of the thin film with the increase in irradiation time. The morphological image suggests that the laser irradiation energy induces both degradation and modification of the film surface, consequently causing changes in the structural, absorption, and photoluminescence properties of nanostructured ZnO. The observed effects are attributed to alterations in the crystal structure and size of the nanostructured ZnO film, as confirmed by XRD. The reduction in photoluminescence intensity observed over the laser irradiation times may be a result of potential degradation in the crystalline structure of the nanostructured ZnO film.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fatigue strength of maraging steel, which is an ultra-high-strength steel, is relatively low, compared to that of conventional high-strength steel. The fatigue life of a structure is highly dependent on the surface conditions, because fatigue cracks generally start at the surface of the material. In particular, surface cracks considerably degrade the fatigue limit. To expand the application range of maraging steel, it is necessary to improve the fatigue limit, and render the surface cracks harmless. This study aims to investigate the effect of shot peening (SP) on the fatigue strength of maraging steel with surface cracks. The SP application introduced a compressive residual stress from the specimen surface to a depth of 170 μm, and increased the fatigue limit by 77 %. The estimated crack size that can be rendered harmless, based on fracture mechanics, is (0.170 − 0.202) μm in the range As = (1.0 − 0.1). The intersections of the harmless crack sizes were determined at depth. A semicircular surface crack below this value is harmless in terms of fatigue limit. The usefulness of non-destructive inspection (NDI) and non-damaging technology was evaluated in relation to ahml, aNDI, a25,50, and As. Thus, the SP process can improve the reliability of the maraging steel. Compressive residual stress is the dominant factor to improve fatigue strength and render the surface crack harmless.
马氏体时效钢是一种超高强度钢,与传统的高强度钢相比,其疲劳强度相对较低。结构的疲劳寿命在很大程度上取决于表面条件,因为疲劳裂纹通常始于材料表面。尤其是表面裂纹会大大降低疲劳极限。为了扩大马氏体时效钢的应用范围,有必要提高其疲劳极限,并使表面裂纹无害化。本研究旨在探讨喷丸强化(SP)对带有表面裂纹的马氏体时效钢疲劳强度的影响。喷丸强化从试样表面到 170 μm 的深度引入了压缩残余应力,使疲劳极限提高了 77%。根据断裂力学估算,在 As = (1.0 - 0.1) 范围内,可实现无害化的裂纹尺寸为 (0.170 - 0.202) μm。无害裂缝尺寸的交叉点是在深度上确定的。就疲劳极限而言,低于该值的半圆形表面裂纹是无害的。根据 ahml、aNDI、a25、50 和 As 对无损检测(NDI)和无损技术的有用性进行了评估。因此,SP 工艺可以提高马氏体时效钢的可靠性。压缩残余应力是提高疲劳强度和使表面裂纹无害化的主要因素。
{"title":"Evaluation of Fatigue Limit Improvement and Harmless Crack Size of Maraging Steel Using Shot Peening","authors":"Seo Hyun Yun, Ho Seok Nam, Ki Woo Nam","doi":"10.4028/p-ucz3th","DOIUrl":"https://doi.org/10.4028/p-ucz3th","url":null,"abstract":"The fatigue strength of maraging steel, which is an ultra-high-strength steel, is relatively low, compared to that of conventional high-strength steel. The fatigue life of a structure is highly dependent on the surface conditions, because fatigue cracks generally start at the surface of the material. In particular, surface cracks considerably degrade the fatigue limit. To expand the application range of maraging steel, it is necessary to improve the fatigue limit, and render the surface cracks harmless. This study aims to investigate the effect of shot peening (SP) on the fatigue strength of maraging steel with surface cracks. The SP application introduced a compressive residual stress from the specimen surface to a depth of 170 μm, and increased the fatigue limit by 77 %. The estimated crack size that can be rendered harmless, based on fracture mechanics, is (0.170 − 0.202) μm in the range As = (1.0 − 0.1). The intersections of the harmless crack sizes were determined at depth. A semicircular surface crack below this value is harmless in terms of fatigue limit. The usefulness of non-destructive inspection (NDI) and non-damaging technology was evaluated in relation to ahml, aNDI, a25,50, and As. Thus, the SP process can improve the reliability of the maraging steel. Compressive residual stress is the dominant factor to improve fatigue strength and render the surface crack harmless.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hossain, A. Abdkader, Chokri Cherif, Mostafa Baloochi, Ruben Hühne, Yves Jesus Perez Delgado, Michael Beitelschmidt
The twisting of yarn in one of the most widely used conventional ring spinning processes is based on the ring/traveler system. The existing limitation of productivity in the ring spinning process lies on the prevailing force relation between ring, traveler and yarn as well as the frictional heat between traveler and ring, principally in the ring traveler system. Recently, a frictional free twisting element based on a superconducting magnetic bearing (SMB) was developed to increase the productivity of ring spinning drastically, which was patented by ITM and Leibniz IFW Dresden. This SMB consists of a circular superconductor and a permanent magnet (PM) ring. In the superconducting state, the PM ring levitates and can freely rotate even up to an angular speed of 50.000 rpm. It is connected with the spindle via the yarn through a guide attached to the PM ring to impart yarn twist. Through the rotation of the PM ring, the twist propagates to the nip point of the delivery rollers. The twist propagation rate depends on different parameters, e.g., spindle speed, balloon geometry, and friction between yarn and yarn guides. A change in the level of twist affects the process, yarn tension, yarn breakage rate, and yarn properties. Hence, it is important to investigate the twist distribution to derive effective measures for improving the twist propagation especially at higher angular spindle speeds and thus eliminate weak points to increase process stability and yarn quality. The aim of these measurements is to analyze the twist distribution along the yarn path to understand the causes of yarn breakages. In this study, the yarn path was traced at different regions by in-situ measuring the helix angle of twisted yarn using a high-speed camera. From the recorded images, the number of twists per unit length was determined using the image processing software ‘Image J’. Thus, the measurement method allows a new insight into the problem of yarn breakages originating from twist propagation in order to take optimized measures at higher angular spindle speeds.
{"title":"In Situ Measurement of Twist Propagation and Yarn Tension with Superconducting Magnetic Bearing Twisting Element for Ring Spinning Process","authors":"M. Hossain, A. Abdkader, Chokri Cherif, Mostafa Baloochi, Ruben Hühne, Yves Jesus Perez Delgado, Michael Beitelschmidt","doi":"10.4028/p-6a6cti","DOIUrl":"https://doi.org/10.4028/p-6a6cti","url":null,"abstract":"The twisting of yarn in one of the most widely used conventional ring spinning processes is based on the ring/traveler system. The existing limitation of productivity in the ring spinning process lies on the prevailing force relation between ring, traveler and yarn as well as the frictional heat between traveler and ring, principally in the ring traveler system. Recently, a frictional free twisting element based on a superconducting magnetic bearing (SMB) was developed to increase the productivity of ring spinning drastically, which was patented by ITM and Leibniz IFW Dresden. This SMB consists of a circular superconductor and a permanent magnet (PM) ring. In the superconducting state, the PM ring levitates and can freely rotate even up to an angular speed of 50.000 rpm. It is connected with the spindle via the yarn through a guide attached to the PM ring to impart yarn twist. Through the rotation of the PM ring, the twist propagates to the nip point of the delivery rollers. The twist propagation rate depends on different parameters, e.g., spindle speed, balloon geometry, and friction between yarn and yarn guides. A change in the level of twist affects the process, yarn tension, yarn breakage rate, and yarn properties. Hence, it is important to investigate the twist distribution to derive effective measures for improving the twist propagation especially at higher angular spindle speeds and thus eliminate weak points to increase process stability and yarn quality. The aim of these measurements is to analyze the twist distribution along the yarn path to understand the causes of yarn breakages. In this study, the yarn path was traced at different regions by in-situ measuring the helix angle of twisted yarn using a high-speed camera. From the recorded images, the number of twists per unit length was determined using the image processing software ‘Image J’. Thus, the measurement method allows a new insight into the problem of yarn breakages originating from twist propagation in order to take optimized measures at higher angular spindle speeds.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140373767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liquid-metal printed processes have been recently developed as a novel strategy to grow ultrathin 2D oxide materials, which are transferred from liquid-metal surfaces to substrates. In this study, we fabricated liquid-metal printing 2D tin oxide (SnO) nanosheets on SiO2/Si and glass substrates. A large lateral-sized 2D SnO nanosheets of >100 µm and a thickness of approximately 6.3 nm was fabricated. The 2D SnO nanosheets exhibited a strong optical absorption in the ultraviolet and violet region and its bandgap was estimated to be approximately 2.9 eV. The 2D SnO nanosheets on glass substrates with patterned gold electrodes generated a photocurrent under ultraviolet (UV) light irradiation, demonstrating a potential for optoelectronic applications such as UV detectors.
{"title":"Fabrication of Liquid-Metal Printed 2D Tin Oxide Nanosheets for Optoelectronic Applications","authors":"Shunjiro Fujii","doi":"10.4028/p-clz1kt","DOIUrl":"https://doi.org/10.4028/p-clz1kt","url":null,"abstract":"Liquid-metal printed processes have been recently developed as a novel strategy to grow ultrathin 2D oxide materials, which are transferred from liquid-metal surfaces to substrates. In this study, we fabricated liquid-metal printing 2D tin oxide (SnO) nanosheets on SiO2/Si and glass substrates. A large lateral-sized 2D SnO nanosheets of >100 µm and a thickness of approximately 6.3 nm was fabricated. The 2D SnO nanosheets exhibited a strong optical absorption in the ultraviolet and violet region and its bandgap was estimated to be approximately 2.9 eV. The 2D SnO nanosheets on glass substrates with patterned gold electrodes generated a photocurrent under ultraviolet (UV) light irradiation, demonstrating a potential for optoelectronic applications such as UV detectors.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140374512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Maghfirah, Sudiati Sudiati, M. Z. Sofyan, Nurul Adila Damanik, Yoseva Hia
The objective of this work is in order to investigate how the mechanical properties of bioplastics synthesized from chitosan and porang starch with sorbitol plasticizer are affected by varying drying temperatures. According to the study's findings, changes in drying temperatures significantly affect the mechanical properties of these bioplastics. This research provides valuable insights for developing environmentally friendly packaging alternatives of various drying temperatures starting from 50°C, 55°C, 60°C, 65°C, 70°C. The results of mechanical characterization show that at 50°C with 40% sorbitol, the plastic possesses a 17.32% elongation and 2.66 MPa tensile strength. At 50°C with 60% sorbitol, the tensile strength reaches 1.34 MPa and elongation is 34.43%. Meanwhile, at 65°C with 80% sorbitol, the tensile strength is 1.59 MPa and elongation reaches 37.80%. The plastic is also thermally tested using TGA-DTA, morphologically tested using SEM and its functional divisions are analyzed using FTIR to obtain further data about its properties.
{"title":"The Effect of Drying Temperature Variation on the Production of Porang Starch Bioplastics with Sorbitol Plasticizer on Mechanical and Thermal Properties","authors":"A. Maghfirah, Sudiati Sudiati, M. Z. Sofyan, Nurul Adila Damanik, Yoseva Hia","doi":"10.4028/p-d9dpe4","DOIUrl":"https://doi.org/10.4028/p-d9dpe4","url":null,"abstract":"The objective of this work is in order to investigate how the mechanical properties of bioplastics synthesized from chitosan and porang starch with sorbitol plasticizer are affected by varying drying temperatures. According to the study's findings, changes in drying temperatures significantly affect the mechanical properties of these bioplastics. This research provides valuable insights for developing environmentally friendly packaging alternatives of various drying temperatures starting from 50°C, 55°C, 60°C, 65°C, 70°C. The results of mechanical characterization show that at 50°C with 40% sorbitol, the plastic possesses a 17.32% elongation and 2.66 MPa tensile strength. At 50°C with 60% sorbitol, the tensile strength reaches 1.34 MPa and elongation is 34.43%. Meanwhile, at 65°C with 80% sorbitol, the tensile strength is 1.59 MPa and elongation reaches 37.80%. The plastic is also thermally tested using TGA-DTA, morphologically tested using SEM and its functional divisions are analyzed using FTIR to obtain further data about its properties.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140375397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pile has a textured structure that contains voids and cavities, and the texture hardens with repeated use. It is advantageous to numerically evaluate the hardening characteristics of the pile texture for the development of the products such as towels. Then, the objective of this study is to establish an objective method for evaluating the hardening of the pile due to repeated use. In particular, to determine product specifications, it is necessary to define the conditions under which measurement results are stable. Therefore, for proper design of pile products, objective test methods for repeat use of the pile must be identified. This article reports the effect of repeated indentation testing with a spherical probe on towel samples folded in two to form four layers. A contact theory based on Hertzian theorem is used to evaluate the stiffening of the towel due to repeated indentation. For the properties evaluated in this extended contact theorem, the stiffening behavior is discussed by comparing the changes in the results of 20 repeated tests. In this discussion, the critical times of the indentation test are analyzed to quantify the characteristics of the stiffening behavior of the cotton towels. Analyzing the indentation times shows that critical conditions for the number of tests can be defined.
{"title":"Effect Evaluation of Repeated Compression for Tactile Hardening of Cotton Pile Towel by Indentation Test","authors":"Shenglin Cui, Atsushi Sakuma, Tsuyoshi Morita, Hideo Matsui","doi":"10.4028/p-qxq4ws","DOIUrl":"https://doi.org/10.4028/p-qxq4ws","url":null,"abstract":"Pile has a textured structure that contains voids and cavities, and the texture hardens with repeated use. It is advantageous to numerically evaluate the hardening characteristics of the pile texture for the development of the products such as towels. Then, the objective of this study is to establish an objective method for evaluating the hardening of the pile due to repeated use. In particular, to determine product specifications, it is necessary to define the conditions under which measurement results are stable. Therefore, for proper design of pile products, objective test methods for repeat use of the pile must be identified. This article reports the effect of repeated indentation testing with a spherical probe on towel samples folded in two to form four layers. A contact theory based on Hertzian theorem is used to evaluate the stiffening of the towel due to repeated indentation. For the properties evaluated in this extended contact theorem, the stiffening behavior is discussed by comparing the changes in the results of 20 repeated tests. In this discussion, the critical times of the indentation test are analyzed to quantify the characteristics of the stiffening behavior of the cotton towels. Analyzing the indentation times shows that critical conditions for the number of tests can be defined.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140376797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Bo Wang, Zhan Xia Chen, Li Jing Wang, Xue Lei Shan, Zi Li Xie, Yun Long Shi, Xiao Ming Qian
In order to promote the sustainable growth of the wool industry and protect consumers' legitimate rights, rapid identification of the country of origin for wool of the same type is deemed crucial. This research presents a computer graphic recognition training model that utilizes median and Wiener filtering techniques to effectively reduce noise in the raw wool fiber images. Employing a support vector machine as the classifier and integrating a polynomial kernel function, this model achieves swift and accurate identification of Chinese and Australian Merino wool fibers. Experimental results underscore that following image recognition training, the model attains an impressive 92.5% comprehensive and precise identification rate for Chinese and Australian Merino wool fibers, effectively distinguishing the origin of wool from the same category. This approach not only provides a valuable reference for identifying the origin of similar wool types but also holds the potential to standardizing the wool fibre material market and assuring the consumer’s confidence on wool products.
{"title":"Intelligent Identification of Chinese and Australian Merino Wool Fibers Based on Image Recognition","authors":"Xiao Bo Wang, Zhan Xia Chen, Li Jing Wang, Xue Lei Shan, Zi Li Xie, Yun Long Shi, Xiao Ming Qian","doi":"10.4028/p-o96bar","DOIUrl":"https://doi.org/10.4028/p-o96bar","url":null,"abstract":"In order to promote the sustainable growth of the wool industry and protect consumers' legitimate rights, rapid identification of the country of origin for wool of the same type is deemed crucial. This research presents a computer graphic recognition training model that utilizes median and Wiener filtering techniques to effectively reduce noise in the raw wool fiber images. Employing a support vector machine as the classifier and integrating a polynomial kernel function, this model achieves swift and accurate identification of Chinese and Australian Merino wool fibers. Experimental results underscore that following image recognition training, the model attains an impressive 92.5% comprehensive and precise identification rate for Chinese and Australian Merino wool fibers, effectively distinguishing the origin of wool from the same category. This approach not only provides a valuable reference for identifying the origin of similar wool types but also holds the potential to standardizing the wool fibre material market and assuring the consumer’s confidence on wool products.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140374411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Overberg, Alexander Dams, A. Abdkader, Chokri Cherif
A deep understanding on the intermixing of components in hybrid yarn or composite structures is decisive in order to develop hybrid structures with desired properties. This paper presents the development of a versatile procedure for the determination of the degree of fiber mixing in yarns and composites based on microscopy images auto-segmented by a neural network. The procedure is based on the quantification of blend irregularity values and blend homogeneity. For this purpose, functions of spatial point patterns analysis have been used to investigate the blend uniformity of yarn and composite cross sectional areas. The results show that the trained neural network model for segmentation of images has an accuracy of 92 %, indicating that the method is capable of accurately assessing the location of fibers in hybrid struc-tures. The results of the spatial point patterns analysis reveals a correlation between the blend value and the properties of yarns and composites. The proposed method provides a fast and reliable way to evaluate the hybrid structures, which could be used as a tool for quality control and process optimization.
{"title":"Neural Network Based Determination of the Degree of Fiber Mixing in Hybrid Yarns and Composites","authors":"Matthias Overberg, Alexander Dams, A. Abdkader, Chokri Cherif","doi":"10.4028/p-x2keu5","DOIUrl":"https://doi.org/10.4028/p-x2keu5","url":null,"abstract":"A deep understanding on the intermixing of components in hybrid yarn or composite structures is decisive in order to develop hybrid structures with desired properties. This paper presents the development of a versatile procedure for the determination of the degree of fiber mixing in yarns and composites based on microscopy images auto-segmented by a neural network. The procedure is based on the quantification of blend irregularity values and blend homogeneity. For this purpose, functions of spatial point patterns analysis have been used to investigate the blend uniformity of yarn and composite cross sectional areas. The results show that the trained neural network model for segmentation of images has an accuracy of 92 %, indicating that the method is capable of accurately assessing the location of fibers in hybrid struc-tures. The results of the spatial point patterns analysis reveals a correlation between the blend value and the properties of yarns and composites. The proposed method provides a fast and reliable way to evaluate the hybrid structures, which could be used as a tool for quality control and process optimization.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140374641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intensive global research is focused on advanced conductive materials to meet the electrical requirements of the telecommunication and power industry. The primary aim is to enhance electrical conductivity, resulting of improved current-carrying capacity and reduced energy loss during transmission. Copper and its composites are vital for power transmission and telecommunications due to their electrical, thermal, and mechanical qualities. However, current methods have drawbacks, such as compromised conductivity with alloying. Graphene, an extraordinary carbon allotrope with exceptional properties and high conductivity, offers promising opportunities for the development of superior materials; such as graphene-incorporated copper (GrCu). The incorporation of graphene into copper wire holds significant potential for various industries, including electronics, energy transmission, and telecommunications, where high conductivity and reliability are paramount. This study investigates GrCu characteristics through mixing graphene and copper, vacuum melting, fine copper wire drawing, and GrCu coaxial cable manufacturing. Graphene infusion enhances conductivity and mechanical properties, altering microstructure and inducing twin boundaries in copper grains. Graphene's disruption during wire drawing triggers this effect, elevating wire conductivity to 103.5% by IACS. GrCu coaxial cable demonstrates performance coherence with HFSS simulation up to 6 GHz. Graphene's inclusion offers tailored material properties. Ongoing research promises further optimization and advancement of graphene-copper composites, paving the way for novel technological progress.
{"title":"Enhanced Electrical Conductivity of Graphene-Incorporated Copper Wire and its Performances on Coaxial Cable Application at Sub 6 GHz","authors":"Yi Chun Jin, Han Chang Pan, Shih Hong Chen","doi":"10.4028/p-vy3zb7","DOIUrl":"https://doi.org/10.4028/p-vy3zb7","url":null,"abstract":"Intensive global research is focused on advanced conductive materials to meet the electrical requirements of the telecommunication and power industry. The primary aim is to enhance electrical conductivity, resulting of improved current-carrying capacity and reduced energy loss during transmission. Copper and its composites are vital for power transmission and telecommunications due to their electrical, thermal, and mechanical qualities. However, current methods have drawbacks, such as compromised conductivity with alloying. Graphene, an extraordinary carbon allotrope with exceptional properties and high conductivity, offers promising opportunities for the development of superior materials; such as graphene-incorporated copper (GrCu). The incorporation of graphene into copper wire holds significant potential for various industries, including electronics, energy transmission, and telecommunications, where high conductivity and reliability are paramount. This study investigates GrCu characteristics through mixing graphene and copper, vacuum melting, fine copper wire drawing, and GrCu coaxial cable manufacturing. Graphene infusion enhances conductivity and mechanical properties, altering microstructure and inducing twin boundaries in copper grains. Graphene's disruption during wire drawing triggers this effect, elevating wire conductivity to 103.5% by IACS. GrCu coaxial cable demonstrates performance coherence with HFSS simulation up to 6 GHz. Graphene's inclusion offers tailored material properties. Ongoing research promises further optimization and advancement of graphene-copper composites, paving the way for novel technological progress.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140375248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}