Pub Date : 2023-08-17DOI: 10.3390/aerospace10080721
Q. Zhuang, Xiaoquan Cheng, Peijie Yue, Xin Guo, Kai Li
Coal-based carbon foam (CCF) has broad application prospects in aerospace, composite material tooling and other fields. However, the lack of failure criteria limits its promotion. In previous studies, the failure criteria of similar materials were proposed, but there are some limitations. This paper proposes improved failure criteria based on macro-mechanical tests. Furthermore, uniaxial and multiaxial loading tests were carried out to obtain accurate failure criteria of CCF. Finally, 3-points bending tests of the CCF sandwich structure were conducted and their finite element models (FEMs) were established. The CCF test results show that the mechanical properties of CCF are transversely isotropic. The failure criteria in this paper can accurately predict the stress when the CCF fails. The error band boundary formula caused by the dispersion of the material were also given. The maximum load Pmax calculated by the failure surface (3684 N) was only 4.7% larger than the mean value measured by the test (3518 N), and all of the Pmax measured by the test (3933 N, 3640 N, 3657 N, 3269 N, 3091 N) were between the maximum value (4297 N) and minimum value (3085 N) calculated by the error band boundary formula, which means that the failure criteria have good precision.
{"title":"Study on Failure Criteria and the Numerical Simulation Method of a Coal-Based Carbon Foam under Multiaxial Loading","authors":"Q. Zhuang, Xiaoquan Cheng, Peijie Yue, Xin Guo, Kai Li","doi":"10.3390/aerospace10080721","DOIUrl":"https://doi.org/10.3390/aerospace10080721","url":null,"abstract":"Coal-based carbon foam (CCF) has broad application prospects in aerospace, composite material tooling and other fields. However, the lack of failure criteria limits its promotion. In previous studies, the failure criteria of similar materials were proposed, but there are some limitations. This paper proposes improved failure criteria based on macro-mechanical tests. Furthermore, uniaxial and multiaxial loading tests were carried out to obtain accurate failure criteria of CCF. Finally, 3-points bending tests of the CCF sandwich structure were conducted and their finite element models (FEMs) were established. The CCF test results show that the mechanical properties of CCF are transversely isotropic. The failure criteria in this paper can accurately predict the stress when the CCF fails. The error band boundary formula caused by the dispersion of the material were also given. The maximum load Pmax calculated by the failure surface (3684 N) was only 4.7% larger than the mean value measured by the test (3518 N), and all of the Pmax measured by the test (3933 N, 3640 N, 3657 N, 3269 N, 3091 N) were between the maximum value (4297 N) and minimum value (3085 N) calculated by the error band boundary formula, which means that the failure criteria have good precision.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"129 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83659792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Through the establishment of a three-dimensional joint clearance model, the effects of joint clearances at different positions on shimmy stability are evaluated. In this paper, considering the radial, axial and coupling characteristics of joint clearance, the shimmy multibody dynamics (MBD) model is applied to different joints in the nose landing gear (NLG) transmission system. It is proposed to evaluate the influence of joint clearance on shimmy from two aspects of position factor and wear factor. The study found that different joint clearances have different effects on shimmy: the joint clearance between the NLG and fuselage has little influence on shimmy; the larger axial clearance of upper and lower torque link joint will cause the shimmy of the NLG, but the radial clearance has no effect on shimmy; while the joint clearance between turning sleeve and upper torque link, lower torque link and piston only works in the axial and radial coupling. The reasons for the different influence characteristics of each joint space are analyzed. Consequently, studying and summarizing the influence of different clearance on shimmy is of great significance for the design and maintenance of the NLG joints.
{"title":"Evaluation of Joint Clearance Effects on the Shimmy of Nose Landing Gear","authors":"Yiyao Jiang, Guang Feng, Panglun Liu, Li Yuan, Jianbin Ding, Bingyan Jiang","doi":"10.3390/aerospace10080722","DOIUrl":"https://doi.org/10.3390/aerospace10080722","url":null,"abstract":"Through the establishment of a three-dimensional joint clearance model, the effects of joint clearances at different positions on shimmy stability are evaluated. In this paper, considering the radial, axial and coupling characteristics of joint clearance, the shimmy multibody dynamics (MBD) model is applied to different joints in the nose landing gear (NLG) transmission system. It is proposed to evaluate the influence of joint clearance on shimmy from two aspects of position factor and wear factor. The study found that different joint clearances have different effects on shimmy: the joint clearance between the NLG and fuselage has little influence on shimmy; the larger axial clearance of upper and lower torque link joint will cause the shimmy of the NLG, but the radial clearance has no effect on shimmy; while the joint clearance between turning sleeve and upper torque link, lower torque link and piston only works in the axial and radial coupling. The reasons for the different influence characteristics of each joint space are analyzed. Consequently, studying and summarizing the influence of different clearance on shimmy is of great significance for the design and maintenance of the NLG joints.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"34 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86783821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.3390/aerospace10080718
Mohsen Rostami, J. Bardin, D. Neufeld, Joon Son Chung
Recent development in Electric Vertical Take-off and Landing (eVTOL) aircraft makes it a popular design approach for urban air mobility (UAM). When designing these configurations, due to the uncertainty present in semi-empirical estimations, often used for aerodynamic characteristics during the conceptual design phase, results can only be trusted to approximately 80% accuracy. Accordingly, an optimized aircraft using semi-empirical estimations and deterministic multi-disciplinary design optimization (MDO) approaches can be at risk of not being certifiable in the detailed design phase of the life cycle. The focus of this study was to implement a robust and efficient possibility-based design optimization (PBDO) method for the MDO of an eVTOL tilt-wing aircraft in the conceptual design phase, using existing conventional designs as an initial configuration. As implemented, the optimization framework utilizes a deterministic gradient-based optimizer, run sequentially with a possibility assessment algorithm, to select an optimal design. To achieve this, the uncertainties which arise from multi-fidelity calculations, such as semi-empirical methods, are considered and used to modify the final design such that its viability is guaranteed in the detailed design phase. With respect to various requirements, including trim, stability, and control behaviors, the optimized eVTOL tilt-wing aircraft design offers the preferred results which ensure that airworthiness criteria are met whilst complying with predefined constraints. The proposed approach may be used to revise currently available light aircraft and develop eVTOL versions from the original light aircraft. The resulting aircraft is not only an optimized layout but one where the stability of the eVTOL tilt-wing aircraft has been guaranteed.
{"title":"EVTOL Tilt-Wing Aircraft Design under Uncertainty Using a Multidisciplinary Possibilistic Approach","authors":"Mohsen Rostami, J. Bardin, D. Neufeld, Joon Son Chung","doi":"10.3390/aerospace10080718","DOIUrl":"https://doi.org/10.3390/aerospace10080718","url":null,"abstract":"Recent development in Electric Vertical Take-off and Landing (eVTOL) aircraft makes it a popular design approach for urban air mobility (UAM). When designing these configurations, due to the uncertainty present in semi-empirical estimations, often used for aerodynamic characteristics during the conceptual design phase, results can only be trusted to approximately 80% accuracy. Accordingly, an optimized aircraft using semi-empirical estimations and deterministic multi-disciplinary design optimization (MDO) approaches can be at risk of not being certifiable in the detailed design phase of the life cycle. The focus of this study was to implement a robust and efficient possibility-based design optimization (PBDO) method for the MDO of an eVTOL tilt-wing aircraft in the conceptual design phase, using existing conventional designs as an initial configuration. As implemented, the optimization framework utilizes a deterministic gradient-based optimizer, run sequentially with a possibility assessment algorithm, to select an optimal design. To achieve this, the uncertainties which arise from multi-fidelity calculations, such as semi-empirical methods, are considered and used to modify the final design such that its viability is guaranteed in the detailed design phase. With respect to various requirements, including trim, stability, and control behaviors, the optimized eVTOL tilt-wing aircraft design offers the preferred results which ensure that airworthiness criteria are met whilst complying with predefined constraints. The proposed approach may be used to revise currently available light aircraft and develop eVTOL versions from the original light aircraft. The resulting aircraft is not only an optimized layout but one where the stability of the eVTOL tilt-wing aircraft has been guaranteed.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"69 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79521790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.3390/aerospace10080714
Yufei Wang, Honghai Zhang, Zongbei Shi, Jinlun Zhou, Wenquan Liu
General aviation accidents have complex interactions and influences within them that cannot be simply explained and predicted by linear models. This study is based on chaos theory and uses general aviation accident data to conduct research on different timescales (HM-scale, ET-scale, and EF-scale). First, time series are constructed by excluding seasonal patterns from the statistics of general aviation accidents. Secondly, the chaotic properties of multi-timescale series are determined by the 0–1 test and Lyapunov exponent. Finally, by introducing the sparrow search algorithm and tent chaotic mapping, a CSSA-LSSVM prediction model is proposed. The accident data of the National Transportation Safety Board (NTSB) of the United States in the past 15 years is selected for case analysis. The results show that the phase diagram of the 0–1 test presents Brownian motion characteristics, and the maximum Lyapunov exponents of the three scales are all positive, proving the chaotic characteristics of multi-timescale series. The CSSA-LSSVM prediction model’s testing results illustrate its superiority in time series predicting, and when the timescale declines, the prediction error reduces gradually while the fitting effect strengthens and then decreases. This study uncovers the nonlinear chaotic features of general aviation accidents and demonstrates the significance of multi-timescale research in time series analysis and prediction.
{"title":"Nonlinear Time Series Analysis and Prediction of General Aviation Accidents Based on Multi-Timescales","authors":"Yufei Wang, Honghai Zhang, Zongbei Shi, Jinlun Zhou, Wenquan Liu","doi":"10.3390/aerospace10080714","DOIUrl":"https://doi.org/10.3390/aerospace10080714","url":null,"abstract":"General aviation accidents have complex interactions and influences within them that cannot be simply explained and predicted by linear models. This study is based on chaos theory and uses general aviation accident data to conduct research on different timescales (HM-scale, ET-scale, and EF-scale). First, time series are constructed by excluding seasonal patterns from the statistics of general aviation accidents. Secondly, the chaotic properties of multi-timescale series are determined by the 0–1 test and Lyapunov exponent. Finally, by introducing the sparrow search algorithm and tent chaotic mapping, a CSSA-LSSVM prediction model is proposed. The accident data of the National Transportation Safety Board (NTSB) of the United States in the past 15 years is selected for case analysis. The results show that the phase diagram of the 0–1 test presents Brownian motion characteristics, and the maximum Lyapunov exponents of the three scales are all positive, proving the chaotic characteristics of multi-timescale series. The CSSA-LSSVM prediction model’s testing results illustrate its superiority in time series predicting, and when the timescale declines, the prediction error reduces gradually while the fitting effect strengthens and then decreases. This study uncovers the nonlinear chaotic features of general aviation accidents and demonstrates the significance of multi-timescale research in time series analysis and prediction.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"21 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91151235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.3390/aerospace10080719
A. Vinokhodova, V. Gushin, P. Kuznetsova, A. Yusupova
Detection of the extent of common values in a cohesive space crew has become an important trend in modern space psychology. It is known from the works of Ch. Osgood that the semantic differential scale is a reliable way to obtain objective information on the emotional attitudes towards a topic of interest. Within the frame of the Russian space experiment “Interactions” on the International Space Station (ISS), a computerized survey, the Personal Self-Perception and Attitudes (PSPA), was developed for analyzing the subjects’ emotional attitudes toward their social environment. In the course of the PSPA procedure, the crewmembers rate each other and themselves (in the past, present, and future) using the criteria previously personally chosen. These criteria should be regarded as their personal values. A total of 30 subjects have already completed the study on board the ISS. The main tasks of the study are: (1) to define individual and group values and the extent of group identification reflected in sharing these values; (2) to determine the impact of cross-cultural factors on mutual perceptions and self-perceptions in space crews and with the Mission Control Center (MCC); (3) to study changes in the space crews’ group cohesiveness and structure as they are exposed to the stress of the extended space mission environment. The data obtained indicate an increase in a “psychological distance” between the crew and the MCC personnel versus increased crew cohesion. The results gained made it possible to identify the most significant categories of values common to the subjects from the professional cosmonaut group. The priority of these shared values for each subject is an important condition for the formation of a cohesive crew.
{"title":"Crew Interaction in Extended Space Missions","authors":"A. Vinokhodova, V. Gushin, P. Kuznetsova, A. Yusupova","doi":"10.3390/aerospace10080719","DOIUrl":"https://doi.org/10.3390/aerospace10080719","url":null,"abstract":"Detection of the extent of common values in a cohesive space crew has become an important trend in modern space psychology. It is known from the works of Ch. Osgood that the semantic differential scale is a reliable way to obtain objective information on the emotional attitudes towards a topic of interest. Within the frame of the Russian space experiment “Interactions” on the International Space Station (ISS), a computerized survey, the Personal Self-Perception and Attitudes (PSPA), was developed for analyzing the subjects’ emotional attitudes toward their social environment. In the course of the PSPA procedure, the crewmembers rate each other and themselves (in the past, present, and future) using the criteria previously personally chosen. These criteria should be regarded as their personal values. A total of 30 subjects have already completed the study on board the ISS. The main tasks of the study are: (1) to define individual and group values and the extent of group identification reflected in sharing these values; (2) to determine the impact of cross-cultural factors on mutual perceptions and self-perceptions in space crews and with the Mission Control Center (MCC); (3) to study changes in the space crews’ group cohesiveness and structure as they are exposed to the stress of the extended space mission environment. The data obtained indicate an increase in a “psychological distance” between the crew and the MCC personnel versus increased crew cohesion. The results gained made it possible to identify the most significant categories of values common to the subjects from the professional cosmonaut group. The priority of these shared values for each subject is an important condition for the formation of a cohesive crew.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"113 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73926828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.3390/aerospace10080717
Yuki Kishi, Risato Yashiro, Masahiro Kanazaki
Forward-swept wings can be expected to be lower-boom planforms with similar amount of drag as backward-swept wings because of their good lift distributions. In this study, the equivalent area distribution of a ten-seater supersonic forward-swept wing aircraft with a canard was designed to obtain design knowledge for leading boom reduction. The equivalent area distribution of the aircraft was calculated by solving the compressible Euler equation. A feasible target equivalent area distribution was generated based on Darden’s method and compared with the equivalent area distribution. To achieve a closer match in terms of lift and geometry with the target, the main wing planform and the position of the main wing along the body and vertical axes were modified. The low-boom performances were evaluated using the extended Burgers equation. The design results indicated that the forward-swept wing configuration with a canard could divide the single peak of the leading boom into two peaks. Thus, the sonic boom strength of the canard configuration was 2.5 PLdB lower than that of the configuration without the canard wing.
{"title":"Low-Boom Design for Supersonic Transport with Canard and Forward-Swept Wings Using Equivalent Area Design Method","authors":"Yuki Kishi, Risato Yashiro, Masahiro Kanazaki","doi":"10.3390/aerospace10080717","DOIUrl":"https://doi.org/10.3390/aerospace10080717","url":null,"abstract":"Forward-swept wings can be expected to be lower-boom planforms with similar amount of drag as backward-swept wings because of their good lift distributions. In this study, the equivalent area distribution of a ten-seater supersonic forward-swept wing aircraft with a canard was designed to obtain design knowledge for leading boom reduction. The equivalent area distribution of the aircraft was calculated by solving the compressible Euler equation. A feasible target equivalent area distribution was generated based on Darden’s method and compared with the equivalent area distribution. To achieve a closer match in terms of lift and geometry with the target, the main wing planform and the position of the main wing along the body and vertical axes were modified. The low-boom performances were evaluated using the extended Burgers equation. The design results indicated that the forward-swept wing configuration with a canard could divide the single peak of the leading boom into two peaks. Thus, the sonic boom strength of the canard configuration was 2.5 PLdB lower than that of the configuration without the canard wing.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"40 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79883376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-16DOI: 10.3390/aerospace10080716
Kai Cao, Renyuan Xie, Jianmin Zhou, Xiaowei Zhang, Jingji Wang, Shuanglin Li
To address the challenge of optimizing the placement of actuators on an asymmetric spacecraft continuum system, this paper develops a rigid–flexible electromechanical coupling dynamic model that integrates the interactions among rigidity, flexibility, and electromechanical coupling effects. The model is constructed using ordinary differential equations and partial differential equations (ODE–PDEs) and considers the effects of the installation position and physical characteristics (mass and stiffness) of the piezoelectric (PZT) actuator on an asymmetric flexible spacecraft continuum system. The proposed model aims to accurately capture the complex interactions among the rigid body, flexible appendages, and PZT actuators. Based on the developed model, the installation location of the actuators is optimized using a genetic algorithm with a hybrid optimization criterion. In the numerical simulations, the proposed optimization algorithm is employed to determine the optimal installation position for the actuators. Then, the influence of the actuator’s physical characteristics and installation position on the dynamic properties of the spacecraft and the performance of the control system is investigated. The numerical simulation results demonstrate that the optimization algorithm can effectively identify the appropriate actuator installation location for the desired application. Utilizing the actuator with the optimized position allows for effective vibration suppression while consuming less energy.
{"title":"Optimizing the Location of the Piezoelectric Actuator and Analyzing Its Effect on the Dynamics of Asymmetric Flexible Spacecraft","authors":"Kai Cao, Renyuan Xie, Jianmin Zhou, Xiaowei Zhang, Jingji Wang, Shuanglin Li","doi":"10.3390/aerospace10080716","DOIUrl":"https://doi.org/10.3390/aerospace10080716","url":null,"abstract":"To address the challenge of optimizing the placement of actuators on an asymmetric spacecraft continuum system, this paper develops a rigid–flexible electromechanical coupling dynamic model that integrates the interactions among rigidity, flexibility, and electromechanical coupling effects. The model is constructed using ordinary differential equations and partial differential equations (ODE–PDEs) and considers the effects of the installation position and physical characteristics (mass and stiffness) of the piezoelectric (PZT) actuator on an asymmetric flexible spacecraft continuum system. The proposed model aims to accurately capture the complex interactions among the rigid body, flexible appendages, and PZT actuators. Based on the developed model, the installation location of the actuators is optimized using a genetic algorithm with a hybrid optimization criterion. In the numerical simulations, the proposed optimization algorithm is employed to determine the optimal installation position for the actuators. Then, the influence of the actuator’s physical characteristics and installation position on the dynamic properties of the spacecraft and the performance of the control system is investigated. The numerical simulation results demonstrate that the optimization algorithm can effectively identify the appropriate actuator installation location for the desired application. Utilizing the actuator with the optimized position allows for effective vibration suppression while consuming less energy.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"64 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83393704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.3390/aerospace10080709
Zeyang Wang, Jun Huang, M. Yi
Unmanned aerial helicopters (UAHs) have been widely used recently for reconnaissance operations and other risky missions. Meanwhile, the threats to UAHs have been becoming more and more serious, mainly from radar and flights. It is essential for a UAH to select a safe flight path, as well as proper flying attitudes, to evade detection operations, and the stealth abilities of the UAH can be helpful for this. In this paper, a stealth–distance dynamic weight Deep Q-Network (SDDW-DQN) algorithm is proposed for path planning in a UAH. Additionally, the dynamic weight is applied in the reward function, which can reflect the priorities of target distance and stealth in different flight states. For the path-planning simulation, the dynamic model of UAHs and the guidance model of flight are put forward, and the stealth model of UAHs, including the radar cross-section (RCS) and the infrared radiation (IR) intensity of UAHs, is established. The simulation results show that the SDDW-DQN algorithm can be helpful in the evasion by UAHs of radar detection and flight operations, and the dynamic weight can contribute to better path-planning results.
{"title":"A Stealth–Distance Dynamic Weight Deep Q-Network Algorithm for Three-Dimensional Path Planning of Unmanned Aerial Helicopter","authors":"Zeyang Wang, Jun Huang, M. Yi","doi":"10.3390/aerospace10080709","DOIUrl":"https://doi.org/10.3390/aerospace10080709","url":null,"abstract":"Unmanned aerial helicopters (UAHs) have been widely used recently for reconnaissance operations and other risky missions. Meanwhile, the threats to UAHs have been becoming more and more serious, mainly from radar and flights. It is essential for a UAH to select a safe flight path, as well as proper flying attitudes, to evade detection operations, and the stealth abilities of the UAH can be helpful for this. In this paper, a stealth–distance dynamic weight Deep Q-Network (SDDW-DQN) algorithm is proposed for path planning in a UAH. Additionally, the dynamic weight is applied in the reward function, which can reflect the priorities of target distance and stealth in different flight states. For the path-planning simulation, the dynamic model of UAHs and the guidance model of flight are put forward, and the stealth model of UAHs, including the radar cross-section (RCS) and the infrared radiation (IR) intensity of UAHs, is established. The simulation results show that the SDDW-DQN algorithm can be helpful in the evasion by UAHs of radar detection and flight operations, and the dynamic weight can contribute to better path-planning results.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"18 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84477824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.3390/aerospace10080713
Tsuyoshi Oishi, Mitsuru Tamari, Takashi Sakurai
Hybrid rockets are safe and inexpensive; however, boundary-layer combustion poses a problem in achieving a fuel regression rate equivalent to that of solid propellants. The fundamental combustion conditions, such as the fuel regression rate of LT421, a paraffin-based low-melting-point thermoplastic fuel, were investigated using a swirling-flow combustion method. Firing tests were conducted using the oxygen mass flow rate and burn time parameters. The LT fuel exhibited an ignition delay compared to polypropylene, and the pressure increased slowly relative to the thrust. The combustion pressure increased or remained constant with time, suggesting that the fuel regression rate was more dependent on the oxygen mass flow rate than the oxidizer mass flux. The shear force generated in the grain owing to the swirling flow caused fuel-grain separation when the oxygen mass flow rate exceeded 100 g/s. Fuel-grain separation was prevented by modifying the case geometry. The maximum fuel regression rate obtained in the tests was 4.88 mm/s at an oxygen mass flow rate of 190 g/s and mass flux of 72.4 kg/(m2s), which was four times higher than that of polypropylene at the same oxidizer mass flux. The fuel regression rate correlation was obtained using the oxygen mass-flow-rate-based parameter, although further modification was necessary to apply this correlation when the burning time was varied.
{"title":"Experimental Investigation of a Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine Using Low-Melting-Point Thermoplastic Fuel and Oxygen","authors":"Tsuyoshi Oishi, Mitsuru Tamari, Takashi Sakurai","doi":"10.3390/aerospace10080713","DOIUrl":"https://doi.org/10.3390/aerospace10080713","url":null,"abstract":"Hybrid rockets are safe and inexpensive; however, boundary-layer combustion poses a problem in achieving a fuel regression rate equivalent to that of solid propellants. The fundamental combustion conditions, such as the fuel regression rate of LT421, a paraffin-based low-melting-point thermoplastic fuel, were investigated using a swirling-flow combustion method. Firing tests were conducted using the oxygen mass flow rate and burn time parameters. The LT fuel exhibited an ignition delay compared to polypropylene, and the pressure increased slowly relative to the thrust. The combustion pressure increased or remained constant with time, suggesting that the fuel regression rate was more dependent on the oxygen mass flow rate than the oxidizer mass flux. The shear force generated in the grain owing to the swirling flow caused fuel-grain separation when the oxygen mass flow rate exceeded 100 g/s. Fuel-grain separation was prevented by modifying the case geometry. The maximum fuel regression rate obtained in the tests was 4.88 mm/s at an oxygen mass flow rate of 190 g/s and mass flux of 72.4 kg/(m2s), which was four times higher than that of polypropylene at the same oxidizer mass flux. The fuel regression rate correlation was obtained using the oxygen mass-flow-rate-based parameter, although further modification was necessary to apply this correlation when the burning time was varied.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"1 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90595134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.3390/aerospace10080712
Arinc Tutku Altun, M. Hasanzade, Emre Saldiran, Guney Guner, Mevlut Uzun, Rodolphe Fremond, Yiwen Tang, Prithiviraj Bhundoo, Yu Su, Yan Xu, G. Inalhan, Michael W. Hardt, A. Fransoy, A. Modha, Jose Antonio Tena, Cesar Nieto, M. Vilaplana, M. Tojal, V. Gordo, Pablo Menendez, A. Gonzalez
The emerging field of Advanced Air Mobility (AAM) holds great promise for revolutionizing transportation by enabling the efficient, safe, and sustainable movement of people and goods in urban and regional environments. AAM encompasses a wide range of electric vertical take-off and landing (eVTOL) aircraft and infrastructure that support their operations. In this work, we first present a new airspace structure by considering different layers for standard-performing vehicles (SPVs) and high-performing vehicles (HPVs), new AAM services for accommodating such a structure, and a holistic contingency management concept for a safe and efficient traffic environment. We then identify the requirements and development process of a testing and simulation infrastructure for AAM demonstrations, which specifically aim to explore the decentralized architecture of the proposed concept and its use cases. To demonstrate the full capability of AAM, we develop an infrastructure that includes advanced U-space services, real and simulated platforms that are suitable for future AAM use cases such as air cargo delivery and air taxi operations, and a co-simulation environment that allows all of the AAM elements to interact with each other in harmony. The considered infrastructure is envisioned to be used in AAM integration-related efforts, especially those focusing on U-space service deployment over a complex traffic environment and those analyzing the interaction between the operator, the U-space service provider (USSP), and the air traffic controller (ATC).
{"title":"The Development of an Advanced Air Mobility Flight Testing and Simulation Infrastructure","authors":"Arinc Tutku Altun, M. Hasanzade, Emre Saldiran, Guney Guner, Mevlut Uzun, Rodolphe Fremond, Yiwen Tang, Prithiviraj Bhundoo, Yu Su, Yan Xu, G. Inalhan, Michael W. Hardt, A. Fransoy, A. Modha, Jose Antonio Tena, Cesar Nieto, M. Vilaplana, M. Tojal, V. Gordo, Pablo Menendez, A. Gonzalez","doi":"10.3390/aerospace10080712","DOIUrl":"https://doi.org/10.3390/aerospace10080712","url":null,"abstract":"The emerging field of Advanced Air Mobility (AAM) holds great promise for revolutionizing transportation by enabling the efficient, safe, and sustainable movement of people and goods in urban and regional environments. AAM encompasses a wide range of electric vertical take-off and landing (eVTOL) aircraft and infrastructure that support their operations. In this work, we first present a new airspace structure by considering different layers for standard-performing vehicles (SPVs) and high-performing vehicles (HPVs), new AAM services for accommodating such a structure, and a holistic contingency management concept for a safe and efficient traffic environment. We then identify the requirements and development process of a testing and simulation infrastructure for AAM demonstrations, which specifically aim to explore the decentralized architecture of the proposed concept and its use cases. To demonstrate the full capability of AAM, we develop an infrastructure that includes advanced U-space services, real and simulated platforms that are suitable for future AAM use cases such as air cargo delivery and air taxi operations, and a co-simulation environment that allows all of the AAM elements to interact with each other in harmony. The considered infrastructure is envisioned to be used in AAM integration-related efforts, especially those focusing on U-space service deployment over a complex traffic environment and those analyzing the interaction between the operator, the U-space service provider (USSP), and the air traffic controller (ATC).","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"44 1","pages":""},"PeriodicalIF":0.1,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75213178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}