With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the predictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state deviation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life (RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the proposed method.
随着四旋翼无人飞行器(UAV)的广泛应用,对其安全性和可靠性的要求也越来越严格。本文基于机身性能健康感知信息反馈和预测功能控制策略,实现了多执行器退化的四旋翼无人机的自主维护。自主维护架构由预测维护(PdM)思想和拉盖尔函数模型预测控制(LF-MPC)策略构建。基于已建立的无人机退化模型,采用两阶段卡尔曼滤波器(TSKF)方法,同时预测飞机状态和作动器退化状态。在系统健康度预测感知方面,一方面,根据机体状态与预期状态的偏离程度,定义基于马哈拉诺比距离的系统健康度(HD),进而得到无人机的故障阈值。另一方面,根据每个作动器的退化状态,利用融合了多个作动器退化的不同权重系数的综合退化变量,得到剩余使用寿命(RUL)预测的概率密度函数(PDF)。为自主维护系统健康,根据 HD 评估结果实时自适应调整 LF-MPC 权重矩阵,实现无人机性能与控制效果的折中平衡,大大延长了无人机的工作时间。仿真结果验证了所提方法的有效性。
{"title":"Autonomous predictive maintenance of quadrotor UAV with multi-actuator degradation","authors":"F.-y. Shen, W. Li, D.-n. Jiang, H.-j. Mao","doi":"10.1017/aer.2024.8","DOIUrl":"https://doi.org/10.1017/aer.2024.8","url":null,"abstract":"\u0000 With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the predictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state deviation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life (RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the proposed method.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":" 28","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139791712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aerodynamic response of a NACA0012 wing section was investigated at a Reynolds number of 100,000 in an open return wind tunnel in the presence of a second wing in tandem. The angle-of-attack of the front wing ranged from −5° to 90° while the rear wing remained at zero incidence. The presence of the downstream wing significantly altered the post-stall behaviour of the upstream wing in the form of a secondary stall characterised by a sudden drop in lift and drag for a specific combination of angle-of-attack and the spacing between the wings. The secondary stall was found to be insensitive to the Reynolds number and the aspect ratio of the downstream wing and did not affect the lift-to-drag ratio. Flow visualisation in the water tunnel indicated that the downstream wing effectively suppressed vortex shedding and lift fluctuations of the upstream wing.
{"title":"On the secondary stall of a wing in tandem configuration","authors":"S.H.R. Shah, A. Ahmed","doi":"10.1017/aer.2024.7","DOIUrl":"https://doi.org/10.1017/aer.2024.7","url":null,"abstract":"\u0000 The aerodynamic response of a NACA0012 wing section was investigated at a Reynolds number of 100,000 in an open return wind tunnel in the presence of a second wing in tandem. The angle-of-attack of the front wing ranged from −5° to 90° while the rear wing remained at zero incidence. The presence of the downstream wing significantly altered the post-stall behaviour of the upstream wing in the form of a secondary stall characterised by a sudden drop in lift and drag for a specific combination of angle-of-attack and the spacing between the wings. The secondary stall was found to be insensitive to the Reynolds number and the aspect ratio of the downstream wing and did not affect the lift-to-drag ratio. Flow visualisation in the water tunnel indicated that the downstream wing effectively suppressed vortex shedding and lift fluctuations of the upstream wing.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139850668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stray light from the sun is one of the most significant factors affecting image quality for the optical system of a spacecraft. This paper proposes a method to design a deployable supporting mechanism for the sunshield based on origami. Firstly, a new type of space mechanism with single-closed loop was proposed according to thick-panel origami, and its mobility was analysed by using the screw theory. In order to design a deployable structure with high controllability, the tetrahedral constraint was introduced to reduce the degree of freedom (DOF), and a corresponding deployable unit named tetrahedral deployable unit (TDU) was obtained. Secondly, the process to constructing a large space deployable mechanism with infinite number of units was explained based on the characteristics of motion and planar mosaic array, and kinematics analysis and folding ratio of supporting mechanism were conducted. A physical prototype was constructed to demonstrate the mobility and deployment of the supporting mechanism. Finally, based on the Lagrange method, a dynamic model of supporting mechanism was established, and the influence of the torsion spring parameters on the deployment process was analysed.
{"title":"Design and dynamic analysis of supporting mechanism for large scale space deployable membrane sunshield","authors":"B.Y. Chang, X. Guan, D. Liang, S.J. Yan, G.G. Jin","doi":"10.1017/aer.2024.1","DOIUrl":"https://doi.org/10.1017/aer.2024.1","url":null,"abstract":"\u0000 Stray light from the sun is one of the most significant factors affecting image quality for the optical system of a spacecraft. This paper proposes a method to design a deployable supporting mechanism for the sunshield based on origami. Firstly, a new type of space mechanism with single-closed loop was proposed according to thick-panel origami, and its mobility was analysed by using the screw theory. In order to design a deployable structure with high controllability, the tetrahedral constraint was introduced to reduce the degree of freedom (DOF), and a corresponding deployable unit named tetrahedral deployable unit (TDU) was obtained. Secondly, the process to constructing a large space deployable mechanism with infinite number of units was explained based on the characteristics of motion and planar mosaic array, and kinematics analysis and folding ratio of supporting mechanism were conducted. A physical prototype was constructed to demonstrate the mobility and deployment of the supporting mechanism. Finally, based on the Lagrange method, a dynamic model of supporting mechanism was established, and the influence of the torsion spring parameters on the deployment process was analysed.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139854193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist scheme is recommended.
{"title":"Use of VEGA data to analyse balloon options for possible subsequent long endurance Venus cloud layer missions","authors":"G. dorrington","doi":"10.1017/aer.2023.105","DOIUrl":"https://doi.org/10.1017/aer.2023.105","url":null,"abstract":"\u0000 The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist scheme is recommended.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"20 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139853871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the predictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state deviation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life (RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the proposed method.
随着四旋翼无人飞行器(UAV)的广泛应用,对其安全性和可靠性的要求也越来越严格。本文基于机身性能健康感知信息反馈和预测功能控制策略,实现了多执行器退化的四旋翼无人机的自主维护。自主维护架构由预测维护(PdM)思想和拉盖尔函数模型预测控制(LF-MPC)策略构建。基于已建立的无人机退化模型,采用两阶段卡尔曼滤波器(TSKF)方法,同时预测飞机状态和作动器退化状态。在系统健康度预测感知方面,一方面,根据机体状态与预期状态的偏离程度,定义基于马哈拉诺比距离的系统健康度(HD),进而得到无人机的故障阈值。另一方面,根据每个作动器的退化状态,利用融合了多个作动器退化的不同权重系数的综合退化变量,得到剩余使用寿命(RUL)预测的概率密度函数(PDF)。为自主维护系统健康,根据 HD 评估结果实时自适应调整 LF-MPC 权重矩阵,实现无人机性能与控制效果的折中平衡,大大延长了无人机的工作时间。仿真结果验证了所提方法的有效性。
{"title":"Autonomous predictive maintenance of quadrotor UAV with multi-actuator degradation","authors":"F.-y. Shen, W. Li, D.-n. Jiang, H.-j. Mao","doi":"10.1017/aer.2024.8","DOIUrl":"https://doi.org/10.1017/aer.2024.8","url":null,"abstract":"\u0000 With the wide application of quadrotor unmanned aerial vehicles (UAVs), the requirements for their safety and reliability are becoming increasingly stringent. In this paper, based on the feedback of airframe performance health perception information and the predictive function control strategy, the autonomous maintenance of a quadrotor UAV with multi-actuator degradation is realised. Autonomous maintenance architecture is constructed by the predictive maintenance (PdM) idea and the Laguerre function model predictive pontrol (LF-MPC) strategy. Using the two-stage Kalman filter (TSKF) method, based on the established UAV degradation model, the aircraft state and actuator degradation state are predicted simultaneously. For the predictive perception of system health, on the one hand, the system health degree (HD) based on Mahalanobis distance is defined by the degree of airframe state deviation from the expected state, and then the failure threshold of the UAV is obtained. On the other hand, according to the degradation state of each actuator, a comprehensive degradation variable fused with different weight coefficients of multiple actuators degradation is used to obtain the probability density function (PDF) of remaining useful life (RUL) prediction. For the autonomous maintenance of system health, the LF-MPC weight matrixes are adjusted adaptively in real-time based on the HD evaluation, to achieve a compromise balance between UAV performance and control effect, and greatly extend the working time of UAV. Simulation results verified the effectiveness of the proposed method.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"8 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139851400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist scheme is recommended.
{"title":"Use of VEGA data to analyse balloon options for possible subsequent long endurance Venus cloud layer missions","authors":"G. dorrington","doi":"10.1017/aer.2023.105","DOIUrl":"https://doi.org/10.1017/aer.2023.105","url":null,"abstract":"\u0000 The vertical motions and buoyancy variations of the two VEGA super-pressure balloons, flown in the middle cloud layer of Venus, are discussed. Using data derived from these 1985 nightside flights, estimates are made of the energy required to operate some alternative balloon platform schemes under consideration for future-proposed Venus-atmosphere in situ science missions. Despite the dissimilarity of these alternative platform schemes, the energy inputs required to operate each scheme on the Venus nightside are found to be similar. Estimates of the associated mass penalties of the associated energy sources are also made. Further investigation of a vertical propulsive assist scheme is recommended.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"29 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139794052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In fighter pilot training, much of upgrade pilots’ (UPs’) learning takes place during mission debriefs. A debrief provides instructor pilots (IPs) the opportunity to correct situation awareness (SA) upon which the UPs base their tactical decisions. Unless the debrief is conducted with proper depth and breadth, the IPs’ feedback on UPs’ SA and tactical decision-making may be incomplete or false, resulting in poor, or even negative learning. In this study, a new debrief protocol based on the Critical Decision Method (CDM) is introduced. The protocol specifically addresses the SA of UPs. An evaluation was conducted to examine if a short CDM training programme to IPs would enhance their ability to provide performance feedback to UPs regarding their SA and tactical decision-making. The IPs were qualified flying instructors and the UPs were air force cadets completing their air combat training with BAe Hawk jet trainer aircraft. The impact of the training intervention was evaluated using Kirkpatrick’s four-level model. The first three levels of evaluation (Reactions, Learning and Behaviour) focused on the IPs, whereas the fourth level (Results) focused on the UPs. The training intervention had a positive impact on the Reactions, Learning and debrief Behaviour of the IPs. In air combat training missions, the UPs whose debriefs were based on the CDM protocol, had superior SA and overall performance compared to a control group.
在战斗机飞行员训练中,升级飞行员(UPs)的大部分学习都是在任务汇报中进行的。汇报为教官飞行员(IP)提供了纠正情况意识(SA)的机会,而情况意识是升级飞行员做出战术决策的基础。除非汇报具有适当的深度和广度,否则教官对飞行学员的态势感知和战术决策的反馈可能是不完整或错误的,从而导致学习效果不佳,甚至产生负面影响。本研究介绍了一种基于关键决策法(CDM)的新汇报规程。该方案专门针对 UPs 的 SA 问题。研究人员进行了一项评估,以研究为飞行指导员提供的短期 CDM 培训课程能否提高他们就飞行学员的安全保障和战术决策向飞行学员提供绩效反馈的能力。IP是合格的飞行教官,而UP是空军学员,他们正在使用BAe Hawk喷气式教练机完成空战训练。培训干预的影响采用柯克帕特里克的四级模型进行评估。前三个评估层次(反应、学习和行为)主要针对学员,而第四个层次(结果)主要针对学员。培训干预对执行人员的反应、学习和汇报行为产生了积极影响。在空战训练任务中,与对照组相比,根据 CDM 协议进行汇报的 UPs 在 SA 和总体表现方面更胜一筹。
{"title":"Improving pilots’ tactical decisions in air combat training using the critical decision method","authors":"H. Mansikka, K. Virtanen, T. Lipponen, D. Harris","doi":"10.1017/aer.2024.3","DOIUrl":"https://doi.org/10.1017/aer.2024.3","url":null,"abstract":"\u0000 In fighter pilot training, much of upgrade pilots’ (UPs’) learning takes place during mission debriefs. A debrief provides instructor pilots (IPs) the opportunity to correct situation awareness (SA) upon which the UPs base their tactical decisions. Unless the debrief is conducted with proper depth and breadth, the IPs’ feedback on UPs’ SA and tactical decision-making may be incomplete or false, resulting in poor, or even negative learning. In this study, a new debrief protocol based on the Critical Decision Method (CDM) is introduced. The protocol specifically addresses the SA of UPs. An evaluation was conducted to examine if a short CDM training programme to IPs would enhance their ability to provide performance feedback to UPs regarding their SA and tactical decision-making. The IPs were qualified flying instructors and the UPs were air force cadets completing their air combat training with BAe Hawk jet trainer aircraft. The impact of the training intervention was evaluated using Kirkpatrick’s four-level model. The first three levels of evaluation (Reactions, Learning and Behaviour) focused on the IPs, whereas the fourth level (Results) focused on the UPs. The training intervention had a positive impact on the Reactions, Learning and debrief Behaviour of the IPs. In air combat training missions, the UPs whose debriefs were based on the CDM protocol, had superior SA and overall performance compared to a control group.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"57 44","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139685931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aerodynamic design of a high-efficiency two-stage axial turbine is carried out using a hybrid method through implantation of a two-step design procedure. In the first step, the well-known streamline curvature (SLC) and free vortex (FV) methods are properly combined to establish three-dimensional geometries of the blades at each row and to obtain the flow field properties. The second step is provided to obtain the highest aerodynamic efficiency by optimum clocking of the second stator blades relative to the first ones through executing steady and unsteady computational fluid dynamics (CFD) of three-dimensional viscous flow. Slight discrepancies were observed between gas dynamics results of the SLC and those of CFD. Total pressure and temperature at the turbine outlet, obtained from SLC method, differed from those obtained by 3D-CFD technique by 13.06% and 1.88% respectively. Aerodynamic efficiency of the turbine is obtained about 91.83%, based on 3D-CFD. Time-averaged results showed that under the optimum clocking of the second row stator blades, inlet total pressure and output power of the second rotor increase by 0.23%, and 0.93%, respectively, in comparison to the worst clocking case. These augmentations resulted in increased total to total efficiency of the second stage by 0.444%. Additionally, the total output power of the two stages increased by 0.71% through the optimum clocking. Modeling the unsteady wake flow trajectory within the blades passages confirmed that all of these beneficial effects happen if the upstream wake impinges on the leading edge region of the second stator blades.
{"title":"Aerodynamic design of a high-efficiency two-stage axial turbine, using streamline curvature method and performance optimisation by clocking of stator blades","authors":"R. Taghavi Zenouz, S. Abiri","doi":"10.1017/aer.2024.5","DOIUrl":"https://doi.org/10.1017/aer.2024.5","url":null,"abstract":"\u0000 Aerodynamic design of a high-efficiency two-stage axial turbine is carried out using a hybrid method through implantation of a two-step design procedure. In the first step, the well-known streamline curvature (SLC) and free vortex (FV) methods are properly combined to establish three-dimensional geometries of the blades at each row and to obtain the flow field properties. The second step is provided to obtain the highest aerodynamic efficiency by optimum clocking of the second stator blades relative to the first ones through executing steady and unsteady computational fluid dynamics (CFD) of three-dimensional viscous flow. Slight discrepancies were observed between gas dynamics results of the SLC and those of CFD. Total pressure and temperature at the turbine outlet, obtained from SLC method, differed from those obtained by 3D-CFD technique by 13.06% and 1.88% respectively. Aerodynamic efficiency of the turbine is obtained about 91.83%, based on 3D-CFD. Time-averaged results showed that under the optimum clocking of the second row stator blades, inlet total pressure and output power of the second rotor increase by 0.23%, and 0.93%, respectively, in comparison to the worst clocking case. These augmentations resulted in increased total to total efficiency of the second stage by 0.444%. Additionally, the total output power of the two stages increased by 0.71% through the optimum clocking. Modeling the unsteady wake flow trajectory within the blades passages confirmed that all of these beneficial effects happen if the upstream wake impinges on the leading edge region of the second stator blades.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"29 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139885838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aerodynamic design of a high-efficiency two-stage axial turbine is carried out using a hybrid method through implantation of a two-step design procedure. In the first step, the well-known streamline curvature (SLC) and free vortex (FV) methods are properly combined to establish three-dimensional geometries of the blades at each row and to obtain the flow field properties. The second step is provided to obtain the highest aerodynamic efficiency by optimum clocking of the second stator blades relative to the first ones through executing steady and unsteady computational fluid dynamics (CFD) of three-dimensional viscous flow. Slight discrepancies were observed between gas dynamics results of the SLC and those of CFD. Total pressure and temperature at the turbine outlet, obtained from SLC method, differed from those obtained by 3D-CFD technique by 13.06% and 1.88% respectively. Aerodynamic efficiency of the turbine is obtained about 91.83%, based on 3D-CFD. Time-averaged results showed that under the optimum clocking of the second row stator blades, inlet total pressure and output power of the second rotor increase by 0.23%, and 0.93%, respectively, in comparison to the worst clocking case. These augmentations resulted in increased total to total efficiency of the second stage by 0.444%. Additionally, the total output power of the two stages increased by 0.71% through the optimum clocking. Modeling the unsteady wake flow trajectory within the blades passages confirmed that all of these beneficial effects happen if the upstream wake impinges on the leading edge region of the second stator blades.
{"title":"Aerodynamic design of a high-efficiency two-stage axial turbine, using streamline curvature method and performance optimisation by clocking of stator blades","authors":"R. Taghavi Zenouz, S. Abiri","doi":"10.1017/aer.2024.5","DOIUrl":"https://doi.org/10.1017/aer.2024.5","url":null,"abstract":"\u0000 Aerodynamic design of a high-efficiency two-stage axial turbine is carried out using a hybrid method through implantation of a two-step design procedure. In the first step, the well-known streamline curvature (SLC) and free vortex (FV) methods are properly combined to establish three-dimensional geometries of the blades at each row and to obtain the flow field properties. The second step is provided to obtain the highest aerodynamic efficiency by optimum clocking of the second stator blades relative to the first ones through executing steady and unsteady computational fluid dynamics (CFD) of three-dimensional viscous flow. Slight discrepancies were observed between gas dynamics results of the SLC and those of CFD. Total pressure and temperature at the turbine outlet, obtained from SLC method, differed from those obtained by 3D-CFD technique by 13.06% and 1.88% respectively. Aerodynamic efficiency of the turbine is obtained about 91.83%, based on 3D-CFD. Time-averaged results showed that under the optimum clocking of the second row stator blades, inlet total pressure and output power of the second rotor increase by 0.23%, and 0.93%, respectively, in comparison to the worst clocking case. These augmentations resulted in increased total to total efficiency of the second stage by 0.444%. Additionally, the total output power of the two stages increased by 0.71% through the optimum clocking. Modeling the unsteady wake flow trajectory within the blades passages confirmed that all of these beneficial effects happen if the upstream wake impinges on the leading edge region of the second stator blades.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"35 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139825900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a composite non-singular fast terminal sliding mode attitude control scheme based on a reduced-order extended state observer for the stratospheric airship’s attitude system affected by multiple disturbances. First, the feedback linearisation method is applied to address the nonlinearity of the attitude motion model and achieve decoupling of the model in three channels. Second, the overall disturbances, encompassing airship parameter perturbations and external disturbances, are treated as an aggregate. A reduced-order extended state observer is designed for each channel to formulate a composite non-singular fast terminal sliding mode surface. In the control design phase, the hyperbolic sine function is adopted as replacement for the sign function to ensure the continuity of the control signal. The estimated disturbances are incorporated in the control law design to directly offset the effects of multiple disturbances on the attitude motion of the airship. Third, based on Lyapunov theory, it has been proven that the control law can drive the attitude tracking error to converge to zero within a finite time. Simulation results demonstrate that the proposed control scheme exhibits favorable disturbance rejection capability, as well as higher tracking accuracy and faster response speed.
{"title":"Finite-time attitude tracking control of stratospheric airship in the presence of multiple disturbances","authors":"Z.B. Li, D. He, J.Q. Zhang, X.R. Meng","doi":"10.1017/aer.2024.4","DOIUrl":"https://doi.org/10.1017/aer.2024.4","url":null,"abstract":"\u0000 This paper proposes a composite non-singular fast terminal sliding mode attitude control scheme based on a reduced-order extended state observer for the stratospheric airship’s attitude system affected by multiple disturbances. First, the feedback linearisation method is applied to address the nonlinearity of the attitude motion model and achieve decoupling of the model in three channels. Second, the overall disturbances, encompassing airship parameter perturbations and external disturbances, are treated as an aggregate. A reduced-order extended state observer is designed for each channel to formulate a composite non-singular fast terminal sliding mode surface. In the control design phase, the hyperbolic sine function is adopted as replacement for the sign function to ensure the continuity of the control signal. The estimated disturbances are incorporated in the control law design to directly offset the effects of multiple disturbances on the attitude motion of the airship. Third, based on Lyapunov theory, it has been proven that the control law can drive the attitude tracking error to converge to zero within a finite time. Simulation results demonstrate that the proposed control scheme exhibits favorable disturbance rejection capability, as well as higher tracking accuracy and faster response speed.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"19 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139889599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}