Pub Date : 2024-05-14DOI: 10.1142/s021797922550064x
K. Gangadhar, M. Sangeetha Rani, A. Wakif
This study of electro-magneto-hydrodynamics has great significance due to its numerous applications like chromatography, fluid pumping, micro coolers and fluid stirring thermal reactors and flow regulation in fluidics systems. Subject to upper functions on electrical magnetic field, the consequences of electromagnetic initiation into ternary nanofluids flow through the Riga plate were noticed. Furthermore, this ternary hybrid nanofluid flow was based on the effect on slip condition, uniform heat source, convective energy and thermal radiation. The ternary hybrid nanofluid was built from the scattering of silver, copper and copper oxide nanoparticles by this base fluid blood. This phenomenon had been formed by the model of the system in partial differential equations; it was made easy in the dimensionless nonlinear structure of ordinary differential equations by employing comparison substitutions. This result on the acquired set of the differential equations was simulated over the bvp4c method. It has been discovered that the ternary hybrid nanofluid velocity is essentially lower along the differing numbers of permeable media, although it amplifies along the upshot on the Hartmann number. Moreover, an enhanced heat transport rate of up to 14% was marked for the triple nanoparticle nanofluid by relating it to another nanofluid and establishing an excellent behavior on triple nanoparticle nanofluids.
{"title":"Improved slip mechanism and convective heat impact for ternary nanofluidic flowing past a riga surface","authors":"K. Gangadhar, M. Sangeetha Rani, A. Wakif","doi":"10.1142/s021797922550064x","DOIUrl":"https://doi.org/10.1142/s021797922550064x","url":null,"abstract":"This study of electro-magneto-hydrodynamics has great significance due to its numerous applications like chromatography, fluid pumping, micro coolers and fluid stirring thermal reactors and flow regulation in fluidics systems. Subject to upper functions on electrical magnetic field, the consequences of electromagnetic initiation into ternary nanofluids flow through the Riga plate were noticed. Furthermore, this ternary hybrid nanofluid flow was based on the effect on slip condition, uniform heat source, convective energy and thermal radiation. The ternary hybrid nanofluid was built from the scattering of silver, copper and copper oxide nanoparticles by this base fluid blood. This phenomenon had been formed by the model of the system in partial differential equations; it was made easy in the dimensionless nonlinear structure of ordinary differential equations by employing comparison substitutions. This result on the acquired set of the differential equations was simulated over the bvp4c method. It has been discovered that the ternary hybrid nanofluid velocity is essentially lower along the differing numbers of permeable media, although it amplifies along the upshot on the Hartmann number. Moreover, an enhanced heat transport rate of up to 14% was marked for the triple nanoparticle nanofluid by relating it to another nanofluid and establishing an excellent behavior on triple nanoparticle nanofluids.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1142/s0217979225500535
R. K. Bhuyan, S. K. Parida
This paper outlines the investigation of structural, dielectric, complex impedance and optical properties of lanthanum-modified (Bi[Formula: see text]La[Formula: see text]Fe)[Formula: see text](Bi[Formula: see text]Na[Formula: see text]Ti)[Formula: see text]O3 (BLF–BNT) single perovskite oxide synthesized by conventional solid-state reaction method. From Rietveld refinement, the crystal structure of the BLF–BNT ceramic has confirmed a tetragonal and the estimated average crystallite size is found to be 43.6[Formula: see text]nm. The dielectric properties of the La-doped BLF–BNT ceramic reveal the presence of Maxwell–Wagner-type dielectric dispersion. This suggests the occurrence of charge accumulation at grain boundaries and interfaces within the material. The complex impedance and complex electric modulus studies were employed to gain insight into the microscopic dielectric relaxations and conduction processes of the material. The electric modulus spectroscopy reveals the existence of nonDebye-type relaxation processes, including localized and long-range relaxation processes. The Nyquist and Cole–Cole plots show the semiconducting nature of the BLF–BNT ceramic. With the help of the Arrhenius method based on the imaginary portion of the electrical impedance and modulus, activation energies and relaxation times have been estimated. These parameters contribute to a deeper understanding of the electrical properties and conduction mechanisms within the material. Further, Raman spectroscopy, a nondestructive chemical analysis technique, was conducted to confirm the composition and structural integrity of the proposed system through its atomic vibrations. Also, the bandgap energy of the material has been estimated using Tauc’s relation and is found to be 1.69[Formula: see text]eV. This signifies that the BLF–BNT ceramic possesses a suitable bandgap for certain device applications, making it a promising candidate in various technological fields. Moreover, the overall comprehensive study of the proposed ceramic provides valuable insight and opens new possibilities for its potential applications in various electronic devices.
{"title":"Investigation of structural, dielectric and optical properties of the (Bi0.5La0.5Fe)0.5(Bi0.5Na0.5Ti)0.5O3perovskite for some electronic devices","authors":"R. K. Bhuyan, S. K. Parida","doi":"10.1142/s0217979225500535","DOIUrl":"https://doi.org/10.1142/s0217979225500535","url":null,"abstract":"This paper outlines the investigation of structural, dielectric, complex impedance and optical properties of lanthanum-modified (Bi[Formula: see text]La[Formula: see text]Fe)[Formula: see text](Bi[Formula: see text]Na[Formula: see text]Ti)[Formula: see text]O3 (BLF–BNT) single perovskite oxide synthesized by conventional solid-state reaction method. From Rietveld refinement, the crystal structure of the BLF–BNT ceramic has confirmed a tetragonal and the estimated average crystallite size is found to be 43.6[Formula: see text]nm. The dielectric properties of the La-doped BLF–BNT ceramic reveal the presence of Maxwell–Wagner-type dielectric dispersion. This suggests the occurrence of charge accumulation at grain boundaries and interfaces within the material. The complex impedance and complex electric modulus studies were employed to gain insight into the microscopic dielectric relaxations and conduction processes of the material. The electric modulus spectroscopy reveals the existence of nonDebye-type relaxation processes, including localized and long-range relaxation processes. The Nyquist and Cole–Cole plots show the semiconducting nature of the BLF–BNT ceramic. With the help of the Arrhenius method based on the imaginary portion of the electrical impedance and modulus, activation energies and relaxation times have been estimated. These parameters contribute to a deeper understanding of the electrical properties and conduction mechanisms within the material. Further, Raman spectroscopy, a nondestructive chemical analysis technique, was conducted to confirm the composition and structural integrity of the proposed system through its atomic vibrations. Also, the bandgap energy of the material has been estimated using Tauc’s relation and is found to be 1.69[Formula: see text]eV. This signifies that the BLF–BNT ceramic possesses a suitable bandgap for certain device applications, making it a promising candidate in various technological fields. Moreover, the overall comprehensive study of the proposed ceramic provides valuable insight and opens new possibilities for its potential applications in various electronic devices.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1142/s0217979225500663
H. Baaziz, T. Ghellab, Z. Charifi
In this work, we delve into the investigation of the structural, electronic, and optical properties of Ba2NbBiS6 and Ba2TaSbS6 chalcogenide-based double perovskites, which are structured in the cubic space group [Formula: see text] form. We have performed first-principles calculations using density functional theory (DFT) to study the above properties. The electronic band structure and density of states of this compound have been investigated, and their results show that Ba2NbBiS6 and Ba2TaSbS6 exhibit a semiconducting nature with an indirect energy gap of 1.680[Formula: see text]eV and 1.529[Formula: see text]eV, respectively. Furthermore, an investigation was conducted on the optical properties of the compounds throughout the energy range spanning from 0[Formula: see text]eV to 55[Formula: see text]eV. This investigation focused on many parameters, including dielectric functions, optical reflectivity, refractive index, extinction coefficient, optical conductivity, and electron energy loss. The optical data obtained from the calculations reveals that all compounds demonstrate isotropy in optical polarization. Furthermore, it has been noted that our compounds exhibit absorption properties inside the ultraviolet (UV) region. Consequently, these materials hold promise as potential candidates for various applications, such as UV photodetectors, UV light emitters, and power electronics. This is primarily attributed to their inherent absorption limits and the presence of prominent absorption peaks in this spectral range. In brief, chemical mutation techniques have been employed to manipulate the characteristics of double-sulfide perovskites to develop durable and environmentally friendly perovskite materials suitable for solar purposes.
{"title":"Properties of the chalcogenide-based double perovskites Ba2NbBiS6 and Ba2TaSbS6 with respect to structural, electronic and optical aspects","authors":"H. Baaziz, T. Ghellab, Z. Charifi","doi":"10.1142/s0217979225500663","DOIUrl":"https://doi.org/10.1142/s0217979225500663","url":null,"abstract":"In this work, we delve into the investigation of the structural, electronic, and optical properties of Ba2NbBiS6 and Ba2TaSbS6 chalcogenide-based double perovskites, which are structured in the cubic space group [Formula: see text] form. We have performed first-principles calculations using density functional theory (DFT) to study the above properties. The electronic band structure and density of states of this compound have been investigated, and their results show that Ba2NbBiS6 and Ba2TaSbS6 exhibit a semiconducting nature with an indirect energy gap of 1.680[Formula: see text]eV and 1.529[Formula: see text]eV, respectively. Furthermore, an investigation was conducted on the optical properties of the compounds throughout the energy range spanning from 0[Formula: see text]eV to 55[Formula: see text]eV. This investigation focused on many parameters, including dielectric functions, optical reflectivity, refractive index, extinction coefficient, optical conductivity, and electron energy loss. The optical data obtained from the calculations reveals that all compounds demonstrate isotropy in optical polarization. Furthermore, it has been noted that our compounds exhibit absorption properties inside the ultraviolet (UV) region. Consequently, these materials hold promise as potential candidates for various applications, such as UV photodetectors, UV light emitters, and power electronics. This is primarily attributed to their inherent absorption limits and the presence of prominent absorption peaks in this spectral range. In brief, chemical mutation techniques have been employed to manipulate the characteristics of double-sulfide perovskites to develop durable and environmentally friendly perovskite materials suitable for solar purposes.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140981437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Material scientists have stepped up their search for efficient materials in low-cost, high-stability, nontoxic energy conversion devices. In this paper, emerging materials inspire us to study one of the perovskite chalcogens made from alkaline-earth metals (Barelium). Therefore, we determined some fundamental properties with some application-based properties, which explained their applicability in energy conversion device fabrication by first-principles calculation within the WIEN2K Code. Structure stability has been verified by Birch–Murnaghan fits and thermal stability at different temperatures and pressure ranges is explained by Gibbs function in thermodynamic properties. By using modified Becke–Johnson (mBJ) potential, electronic and optical characteristics of these materials provide insight into their nature: they were revealed to be direct bandgap semiconductors with the calculated values of 1.77[Formula: see text]eV (1.25[Formula: see text]eV) for BaZrS3(BaZrSe3), respectively. Both materials exhibit transparency on low-energy striking photons and demonstrate absorption and optical conduction in the UV region. Both materials exhibit transparency on low-energy striking photons and demonstrate absorption and optical conduction in the UV region. In the thermoelectric parameter, the figure of merit (ZT) is unity at room temperature and decreases up to 0.98 with temperature increment which reveals that these materials will be helpful in thermoelectric devices. As per the application part, we carried out the calculation of the spectroscopic limited maximum efficiency (SLME) and found that efficiency increases from 6.5% to 27.1% (8.1% to 31.9%) for BaZrS3 (BaZrSe3), respectively. The film thickness increased from 100[Formula: see text]nm to 1[Formula: see text][Formula: see text]m at room temperature and then stabilized. This emerging study shows that these materials can be used as an alert substance in energy conversion device fabrications and the proposed outcomes are in good acceptance with the experimental and other theoretical data. As per the optical and thermoelectric parameters of these materials, we infer that both are promising candidates in energy conversion device fabrication.
{"title":"Effect of anion (S−2 & Se−2) replacement on photovoltaic properties in transition metal (Ba-Barium) chalcogenide perovskites","authors":"Naincy Pandit, Anusha Dubey, T. Joshi, Akash Shukla, Upasana Rani, Peeyush Kumar Kamlesh, Rajeev Gupta, Tanuj Kumar, Kulwinder Kaur, Ajay Singh Verma","doi":"10.1142/s0217979225500596","DOIUrl":"https://doi.org/10.1142/s0217979225500596","url":null,"abstract":"Material scientists have stepped up their search for efficient materials in low-cost, high-stability, nontoxic energy conversion devices. In this paper, emerging materials inspire us to study one of the perovskite chalcogens made from alkaline-earth metals (Barelium). Therefore, we determined some fundamental properties with some application-based properties, which explained their applicability in energy conversion device fabrication by first-principles calculation within the WIEN2K Code. Structure stability has been verified by Birch–Murnaghan fits and thermal stability at different temperatures and pressure ranges is explained by Gibbs function in thermodynamic properties. By using modified Becke–Johnson (mBJ) potential, electronic and optical characteristics of these materials provide insight into their nature: they were revealed to be direct bandgap semiconductors with the calculated values of 1.77[Formula: see text]eV (1.25[Formula: see text]eV) for BaZrS3(BaZrSe3), respectively. Both materials exhibit transparency on low-energy striking photons and demonstrate absorption and optical conduction in the UV region. Both materials exhibit transparency on low-energy striking photons and demonstrate absorption and optical conduction in the UV region. In the thermoelectric parameter, the figure of merit (ZT) is unity at room temperature and decreases up to 0.98 with temperature increment which reveals that these materials will be helpful in thermoelectric devices. As per the application part, we carried out the calculation of the spectroscopic limited maximum efficiency (SLME) and found that efficiency increases from 6.5% to 27.1% (8.1% to 31.9%) for BaZrS3 (BaZrSe3), respectively. The film thickness increased from 100[Formula: see text]nm to 1[Formula: see text][Formula: see text]m at room temperature and then stabilized. This emerging study shows that these materials can be used as an alert substance in energy conversion device fabrications and the proposed outcomes are in good acceptance with the experimental and other theoretical data. As per the optical and thermoelectric parameters of these materials, we infer that both are promising candidates in energy conversion device fabrication.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140981075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1142/s0217979225500493
Shuguang Li, H. Gul, Muhammad Ramzan, Seifedien Kadry, C. Saleel
In many engineering systems, hybrid and nanofluids are influenced by their respective thermophysical characteristics. Lately, several models have been envisaged to foresee the hybrid and nanofluid attributes. The properties of hybrid nanofluids (HNFs) as potential heat transfer fluids are controlled by numerous aspects such as solid part size, volume fraction, and temperature. Considering the interesting facts of the hybrid and nanofluid flows, we in this exploration examined the thermal performance comparison of both types of fluid flows. The nanofluid and HNF are composed of molybdenum disulfide (MoS[Formula: see text]/kerosene oil and silicon dioxide–molybdenum disulfide (SiO2–MoS[Formula: see text]/kerosene oil, respectively. The flows are taken in a canonical gap between the cone and the disk. Both the cone and the disk may be rotating or stationary. The novelty of the computational model is enhanced by discussing the effects of viscous dissipation, Joule heating, and the variable thermal conductivity with convective condition. The Tawari and Das model is designed to analyze the heat transfer performance of the assumed fluid flows. The assumed fluid model is transmuted into the set of differential equations that are dealt numerically with the bvp4c MATLAB approach. The results are displayed in tables and graphical forms. For elevating estimations of the Eckert number, the heat transmission rate is found to be more significant in the disk than cone. It is also learned that hybrid nanoliquid heat transfer performance outperforms nanoliquid. The fluid velocity increases by raising the nanoparticle volume fraction [Formula: see text], and is decreasing for a higher magnetic field parameter. With the elevating estimates of thermal conductivity, it is shown that the cone transmits heat more quickly whereas the disc transmits heat more slowly. The thermal conductivity parameter increases the probability of collision of the liquid particles, that ultimately upsurges fluid heat transmission rate.
在许多工程系统中,混合流体和纳米流体受到各自热物理特性的影响。最近,人们设想了一些模型来预测混合流体和纳米流体的属性。混合纳米流体(HNFs)作为潜在的传热流体,其特性受到固体部分尺寸、体积分数和温度等诸多方面的控制。考虑到混合流体和纳米流体流动的有趣事实,我们在本研究中探讨了这两种流体流动的热性能比较。纳米流体和 HNF 分别由二硫化钼(MoS[式:见正文]/煤油)和二氧化硅-二硫化钼(SiO2-MoS[式:见正文]/煤油)组成。气流在锥体和圆盘之间的典型间隙中流动。锥体和圆盘可以是旋转的,也可以是静止的。通过讨论粘性耗散、焦耳加热和具有对流条件的可变热导率的影响,增强了计算模型的新颖性。Tawari 和 Das 模型旨在分析假定流体流动的传热性能。假定的流体模型被转换成一组微分方程,并通过 bvp4c MATLAB 方法进行数值处理。结果以表格和图形形式显示。为了提高埃克特数的估算值,发现热传导率在圆盘中比在圆锥中更重要。此外,还发现混合纳米液体的传热性能优于纳米液体。流体速度随着纳米粒子体积分数的增加而增加[计算公式:见正文],并随着磁场参数的增加而减小。随着热导率估计值的提高,锥形传热更快,而圆盘传热更慢。热导率参数增加了液体颗粒碰撞的概率,最终提高了流体的传热速度。
{"title":"Thermal performance appraisal of hybrid and nanofluid flow between a cone and a disk with variable thermal conductivity, viscous dissipation, and Joule heating","authors":"Shuguang Li, H. Gul, Muhammad Ramzan, Seifedien Kadry, C. Saleel","doi":"10.1142/s0217979225500493","DOIUrl":"https://doi.org/10.1142/s0217979225500493","url":null,"abstract":"In many engineering systems, hybrid and nanofluids are influenced by their respective thermophysical characteristics. Lately, several models have been envisaged to foresee the hybrid and nanofluid attributes. The properties of hybrid nanofluids (HNFs) as potential heat transfer fluids are controlled by numerous aspects such as solid part size, volume fraction, and temperature. Considering the interesting facts of the hybrid and nanofluid flows, we in this exploration examined the thermal performance comparison of both types of fluid flows. The nanofluid and HNF are composed of molybdenum disulfide (MoS[Formula: see text]/kerosene oil and silicon dioxide–molybdenum disulfide (SiO2–MoS[Formula: see text]/kerosene oil, respectively. The flows are taken in a canonical gap between the cone and the disk. Both the cone and the disk may be rotating or stationary. The novelty of the computational model is enhanced by discussing the effects of viscous dissipation, Joule heating, and the variable thermal conductivity with convective condition. The Tawari and Das model is designed to analyze the heat transfer performance of the assumed fluid flows. The assumed fluid model is transmuted into the set of differential equations that are dealt numerically with the bvp4c MATLAB approach. The results are displayed in tables and graphical forms. For elevating estimations of the Eckert number, the heat transmission rate is found to be more significant in the disk than cone. It is also learned that hybrid nanoliquid heat transfer performance outperforms nanoliquid. The fluid velocity increases by raising the nanoparticle volume fraction [Formula: see text], and is decreasing for a higher magnetic field parameter. With the elevating estimates of thermal conductivity, it is shown that the cone transmits heat more quickly whereas the disc transmits heat more slowly. The thermal conductivity parameter increases the probability of collision of the liquid particles, that ultimately upsurges fluid heat transmission rate.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1142/s0217979224400289
Mrutyunjaya Sahoo, S. Chakraverty
Nonlinear partial differential equations (NLPDEs) have emerged as a major focus of study in a variety of nonlinear science disciplines. This is because in general, mathematical, physics and engineering problems may be stated by NLPDEs. It may be noted that a specific kind of exact/analytical solution called traveling wave solutions for NLPDEs has great significance. In this regard, this paper addresses the traveling wave solution to the new coupled Konno–Oono equation (NCKOE), a set of NLPDE. A traveling wave transformation and the Riccati–Bernoulli sub-ode method (RBSOM) are used here to retrieve the exact/analytical traveling wave solution of the NCKOE. By using the above-mentioned approach, NLPDEs can be updated toward a collection of algebraic equations. Further, different types of solitary wave solitons, Trigonometric function solutions, Hyperbolic soliton solutions and dark bright solitons to the NCKOE have been successfully retrieved. Importantly, the newly derived solutions adhere to the main equation when they are inserted into the governing equations. Furthermore, through an appropriate selection of parameters, three-dimensional and two-dimensional figures are presented for physical illustration of the obtained solutions. These visual representations serve to showcase the effectiveness, conciseness and efficiency of the applied techniques.
{"title":"Riccati–Bernoulli sub-ode method-based exact solution of new coupled Konno–Oono equation","authors":"Mrutyunjaya Sahoo, S. Chakraverty","doi":"10.1142/s0217979224400289","DOIUrl":"https://doi.org/10.1142/s0217979224400289","url":null,"abstract":"Nonlinear partial differential equations (NLPDEs) have emerged as a major focus of study in a variety of nonlinear science disciplines. This is because in general, mathematical, physics and engineering problems may be stated by NLPDEs. It may be noted that a specific kind of exact/analytical solution called traveling wave solutions for NLPDEs has great significance. In this regard, this paper addresses the traveling wave solution to the new coupled Konno–Oono equation (NCKOE), a set of NLPDE. A traveling wave transformation and the Riccati–Bernoulli sub-ode method (RBSOM) are used here to retrieve the exact/analytical traveling wave solution of the NCKOE. By using the above-mentioned approach, NLPDEs can be updated toward a collection of algebraic equations. Further, different types of solitary wave solitons, Trigonometric function solutions, Hyperbolic soliton solutions and dark bright solitons to the NCKOE have been successfully retrieved. Importantly, the newly derived solutions adhere to the main equation when they are inserted into the governing equations. Furthermore, through an appropriate selection of parameters, three-dimensional and two-dimensional figures are presented for physical illustration of the obtained solutions. These visual representations serve to showcase the effectiveness, conciseness and efficiency of the applied techniques.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1142/s0217979225500195
A. Magesh, P. Tamizharasi, O. D. Makinde, S. Srinivas
Activation energy and thermal radiation as a means of heat transfer are significant and fascinating phenomena for scientists and researchers because of their significance in cancer treatment. As a result, heat kills cancer cells and shrinks tumors, making hyperthermia therapy a cutting-edge cancer treatment. This paper examines the peristaltic motion of a Johnson–Segalman nanofluid across an asymmetric pliable microchannel under the impact of activation energy. We obtained the governing equations for the non-Newtonian nanofluid. Partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) under the assumption of large wavelengths and tiny Reynolds number assumptions. The flow patterns and trapping phenomena were numerically generated using the NDSolve command of the computational mathematical software Mathematica. The influence of important liquid parameters was examined with graphical representations of the results. The current study reveals an enhancement in the heat generation parameter, an enhancement in the temperature and a reduction in the concentration.
{"title":"Analysis of activation energy on the Johnson–Segalman nanofluid through an asymmetric microchannel: Numerical study","authors":"A. Magesh, P. Tamizharasi, O. D. Makinde, S. Srinivas","doi":"10.1142/s0217979225500195","DOIUrl":"https://doi.org/10.1142/s0217979225500195","url":null,"abstract":"Activation energy and thermal radiation as a means of heat transfer are significant and fascinating phenomena for scientists and researchers because of their significance in cancer treatment. As a result, heat kills cancer cells and shrinks tumors, making hyperthermia therapy a cutting-edge cancer treatment. This paper examines the peristaltic motion of a Johnson–Segalman nanofluid across an asymmetric pliable microchannel under the impact of activation energy. We obtained the governing equations for the non-Newtonian nanofluid. Partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) under the assumption of large wavelengths and tiny Reynolds number assumptions. The flow patterns and trapping phenomena were numerically generated using the NDSolve command of the computational mathematical software Mathematica. The influence of important liquid parameters was examined with graphical representations of the results. The current study reveals an enhancement in the heat generation parameter, an enhancement in the temperature and a reduction in the concentration.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1142/s0217979225500183
K. Gangadhar, K. S. Reddy, A. Wakif
Cancer is one of the universal popular healthcare problems, and there is a struggle to find advanced fresh medicines andidentify superior ways of distributing medications. Cancer is harmful and deadly to maximum of its patients. Cytotoxic agents are carried by cancer cells, to increase efficacy and protection. This reminds us that nanotechnology can be utilized for medicine. This current allegation has built into gold nanomaterials which could conquer and heal — it being the material considered like gold (atomic number 79). It gives a large amount of heat and contributes to the therapy of malignant tumors. Therefore, it is urgent to investigate the flow of blood-based gold nanoparticles over the porous medium for injection/suction effects. Time-dependent viscosity was used in Reynolds exponential model. The existence of magnetic field and nonlinear thermal radiation was integrated into the system. Ensuing equations were interpreted by its nondimensional model by applying comparison renovation. This Lobatto IIIA formula (known as bvp4c) was working to acquire multiple solutions. This findings indicate that temperature increases due to magnetic and radiation effects. Temperature and velocity profiles by injection are greater although related to the suction phenomenon. Further, the temperature and velocity augment by the inclusion of gold nanoparticles into blood flow.
{"title":"Thermal energy enhancement in blood conveying gold nanoparticles with temperature-dependent viscosity","authors":"K. Gangadhar, K. S. Reddy, A. Wakif","doi":"10.1142/s0217979225500183","DOIUrl":"https://doi.org/10.1142/s0217979225500183","url":null,"abstract":"Cancer is one of the universal popular healthcare problems, and there is a struggle to find advanced fresh medicines andidentify superior ways of distributing medications. Cancer is harmful and deadly to maximum of its patients. Cytotoxic agents are carried by cancer cells, to increase efficacy and protection. This reminds us that nanotechnology can be utilized for medicine. This current allegation has built into gold nanomaterials which could conquer and heal — it being the material considered like gold (atomic number 79). It gives a large amount of heat and contributes to the therapy of malignant tumors. Therefore, it is urgent to investigate the flow of blood-based gold nanoparticles over the porous medium for injection/suction effects. Time-dependent viscosity was used in Reynolds exponential model. The existence of magnetic field and nonlinear thermal radiation was integrated into the system. Ensuing equations were interpreted by its nondimensional model by applying comparison renovation. This Lobatto IIIA formula (known as bvp4c) was working to acquire multiple solutions. This findings indicate that temperature increases due to magnetic and radiation effects. Temperature and velocity profiles by injection are greater although related to the suction phenomenon. Further, the temperature and velocity augment by the inclusion of gold nanoparticles into blood flow.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1142/s0217979225500420
D. Nagaraju, P. Raja Shekar, D. Madhavi Latha
Ferroelectric triglycine sulphate (TGS) single crystals were grown by slow evaporation technique over a period of 30–40 days. The Vickers microhardness studies have been carried out on (001), (010), (101), ([Formula: see text][Formula: see text]1) and ([Formula: see text]11) faces of the TGS crystal. The as-grown (001) face and (010) face with the ferroelectric phase were used to study the temperature dependence of hardness. The indentation size effect (ISE) described using the five theoretical models viz., Meyer’s law, Hays–Kendall, elastic/plastic deformation (EPD), proportional specimen resistance (PSR) and modified PSR model has been investigated on all the crystal faces under study. The experimental results show that the modified PSR model is more accurate at generating load-independent hardness data and also for explaining the origin of ISE.
硫酸甘氨酸铁电体(TGS)单晶是通过 30-40 天的缓慢蒸发技术生长出来的。对 TGS 晶体的(001)、(010)、(101)、([式:见正文][式:见正文]1)和([式:见正文]11)面进行了维氏硬度研究。我们利用铁电相的(001)面和(010)面来研究硬度的温度依赖性。使用五种理论模型,即 Meyer 定律、Hays-Kendall、弹性/塑性变形 (EPD)、试样电阻比例 (PSR) 和修正 PSR 模型,对所有研究晶面的压痕尺寸效应 (ISE) 进行了研究。实验结果表明,改进的 PSR 模型在生成与载荷无关的硬度数据以及解释 ISE 的起源方面更为精确。
{"title":"Investigations on theoretical models describing the load-indentation size dependence for (001), (010), (101), (1̄1̄1) and (1̄11) faces of triglycine sulphate","authors":"D. Nagaraju, P. Raja Shekar, D. Madhavi Latha","doi":"10.1142/s0217979225500420","DOIUrl":"https://doi.org/10.1142/s0217979225500420","url":null,"abstract":"Ferroelectric triglycine sulphate (TGS) single crystals were grown by slow evaporation technique over a period of 30–40 days. The Vickers microhardness studies have been carried out on (001), (010), (101), ([Formula: see text][Formula: see text]1) and ([Formula: see text]11) faces of the TGS crystal. The as-grown (001) face and (010) face with the ferroelectric phase were used to study the temperature dependence of hardness. The indentation size effect (ISE) described using the five theoretical models viz., Meyer’s law, Hays–Kendall, elastic/plastic deformation (EPD), proportional specimen resistance (PSR) and modified PSR model has been investigated on all the crystal faces under study. The experimental results show that the modified PSR model is more accurate at generating load-independent hardness data and also for explaining the origin of ISE.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140366800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1142/s0217979225500262
K. Gangadhar, M. Sangeetha Rani, A. Wakif
The control of temperature distribution and management of heat energy are key problems in an industry. In this study, free convective flow with ternary nanoparticles (Cu, Ag, MgO) was equipped to analyze the impact on magnetic field and thermal radiation through a moving wedge surface. This volumetric concentration by Cu, Ag and MgO nanoparticles is selected by the most 4% to prevent the instability on the nanofluid. A set of applicable modifications was expressed as a change in the nonlinear partial differential equations and the nonlinear ordinary differential equations and it was undertaken mathematically for applying bvp4c on MATLAB package. These outcomes on ternary nanoparticles (Cu–Ag–MgO/blood), and hybrid nanoparticles (Cu–Ag/blood) and copper (Cu) nanoparticles had again correlated. The outcomes display that connecting Cu, Ag and MgO nanofluid raises the drug friction to 3.9% than the hybrid nanofluid. Also, the combination of Cu and Ag nanofluid increases skin friction by 19.58% than Cu nanofluid. This analysis was particularly useful in drug transportation and biomedical study.
控制温度分布和管理热能是工业中的关键问题。本研究采用三元纳米粒子(Cu、Ag、MgO)进行自由对流,分析通过移动楔面对磁场和热辐射的影响。为防止纳米流体的不稳定性,Cu、Ag 和 MgO 纳米粒子的体积浓度以 4% 为限。一组适用的修改被表述为非线性偏微分方程和非线性常微分方程的变化,并应用 MATLAB 软件包中的 bvp4c 进行了数学计算。这些结果对三元纳米粒子(Cu-Ag-MgO/blood)、混合纳米粒子(Cu-Ag/blood)和铜(Cu)纳米粒子有再次关联。结果表明,与混合纳米流体相比,连接铜、银和氧化镁的纳米流体可将药物摩擦力提高到 3.9%。此外,Cu 和 Ag 纳米流体的组合比 Cu 纳米流体增加了 19.58% 的皮肤摩擦力。这项分析对药物运输和生物医学研究特别有用。
{"title":"Ternary nanofluids due to moving wedge with strong magnetic field and convective condition","authors":"K. Gangadhar, M. Sangeetha Rani, A. Wakif","doi":"10.1142/s0217979225500262","DOIUrl":"https://doi.org/10.1142/s0217979225500262","url":null,"abstract":"The control of temperature distribution and management of heat energy are key problems in an industry. In this study, free convective flow with ternary nanoparticles (Cu, Ag, MgO) was equipped to analyze the impact on magnetic field and thermal radiation through a moving wedge surface. This volumetric concentration by Cu, Ag and MgO nanoparticles is selected by the most 4% to prevent the instability on the nanofluid. A set of applicable modifications was expressed as a change in the nonlinear partial differential equations and the nonlinear ordinary differential equations and it was undertaken mathematically for applying bvp4c on MATLAB package. These outcomes on ternary nanoparticles (Cu–Ag–MgO/blood), and hybrid nanoparticles (Cu–Ag/blood) and copper (Cu) nanoparticles had again correlated. The outcomes display that connecting Cu, Ag and MgO nanofluid raises the drug friction to 3.9% than the hybrid nanofluid. Also, the combination of Cu and Ag nanofluid increases skin friction by 19.58% than Cu nanofluid. This analysis was particularly useful in drug transportation and biomedical study.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}