Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.
{"title":"Update on the Basic Understanding of Fusarium graminearum Virulence Factors in Common Wheat Research","authors":"Zeeshan Ali Buttar, Mengquan Cheng, Panqin Wei, Ziwei Zhang, Chunlei Lv, Chenjia Zhu, Nida Fatima Ali, Guozhang Kang, Daowen Wang, Kunpu Zhang","doi":"10.3390/plants13081159","DOIUrl":"https://doi.org/10.3390/plants13081159","url":null,"abstract":"Wheat is one of the most important food crops, both in China and worldwide. Wheat production is facing extreme stresses posed by different diseases, including Fusarium head blight (FHB), which has recently become an increasingly serious concerns. FHB is one of the most significant and destructive diseases affecting wheat crops all over the world. Recent advancements in genomic tools provide a new avenue for the study of virulence factors in relation to the host plants. The current review focuses on recent progress in the study of different strains of Fusarium infection. The presence of genome-wide repeat-induced point (RIP) mutations causes genomic mutations, eventually leading to host plant susceptibility against Fusarium invasion. Furthermore, effector proteins disrupt the host plant resistance mechanism. In this study, we proposed systematic modification of the host genome using modern biological tools to facilitate plant resistance against foreign invasion. We also suggested a number of scientific strategies, such as gene cloning, developing more powerful functional markers, and using haplotype marker-assisted selection, to further improve FHB resistance and associated breeding methods.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"91 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3′H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network.
{"title":"A Regulatory Mechanism on Pathways: Modulating Roles of MYC2 and BBX21 in the Flavonoid Network","authors":"Nan Li, Yunzhang Xu, Yingqing Lu","doi":"10.3390/plants13081156","DOIUrl":"https://doi.org/10.3390/plants13081156","url":null,"abstract":"Genes of metabolic pathways are individually or collectively regulated, often via unclear mechanisms. The anthocyanin pathway, well known for its regulation by the MYB/bHLH/WDR (MBW) complex but less well understood in its connections to MYC2, BBX21, SPL9, PIF3, and HY5, is investigated here for its direct links to the regulators. We show that MYC2 can activate the structural genes of the anthocyanin pathway but also suppress them (except F3′H) in both Arabidopsis and Oryza when a local MBW complex is present. BBX21 or SPL9 can activate all or part of the structural genes, respectively, but the effects can be largely overwritten by the local MBW complex. HY5 primarily influences expressions of the early genes (CHS, CHI, and F3H). TF-TF relationships can be complex here: PIF3, BBX21, or SPL9 can mildly activate MYC2; MYC2 physically interacts with the bHLH (GL3) of the MBW complex and/or competes with strong actions of BBX21 to lessen a stimulus to the anthocyanin pathway. The dual role of MYC2 in regulating the anthocyanin pathway and a similar role of BBX21 in regulating BAN reveal a network-level mechanism, in which pathways are modulated locally and competing interactions between modulators may tone down strong environmental signals before they reach the network.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"25 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.
{"title":"Differentially Expressed Genes Identification of Kohlrabi Seedlings (Brassica oleracea var. caulorapa L.) under Polyethylene Glycol Osmotic Stress and AP2/ERF Transcription Factor Family Analysis","authors":"Shuanling Bian, Mengliang Zhao, Huijuan Zhang, Yanjing Ren","doi":"10.3390/plants13081167","DOIUrl":"https://doi.org/10.3390/plants13081167","url":null,"abstract":"Osmotic stress is a condition in which plants do not get enough water due to changes in environmental factors. Plant response to osmotic stress is a complex process involving the interaction of different stress-sensitive mechanisms. Differentially expressed genes and response mechanisms of kohlrabi have not been reported under osmotic stress. A total of 196,642 unigenes and 33,040 differentially expressed unigenes were identified in kohlrabi seedlings under polyethylene glycol osmotic stress. AP2/ERF, NAC and eight other transcription factor family members with a high degree of interaction with CAT and SOD antioxidant enzyme activity were identified. Subsequently, 151 AP2/ERF genes were identified and analyzed. Twelve conserved motifs were searched and all AP2/ERF genes were clustered into four groups. A total of 149 AP2/ERF genes were randomly distributed on the chromosome, and relative expression level analysis showed that BocAP2/ERF genes of kohlrabi have obvious specificity in different tissues. This study lays a foundation for explaining the osmotic stress resistance mechanism of kohlrabi and provides a theoretical basis for the functional analysis of BocAP2/ERF transcription factor family members.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"73 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dominik Bleša, P. Matušinský, Milan Baláž, Zdeněk Nesvadba, Marta Zavřelová
In recent years, recurrent droughts have significantly affected spring barley production, reducing the quantity and quality of grain. This study aims to identify genotype-specific traits and the drought resilience of six different Hordeum vulgare L. (spring barley) genotypes, while also examining the potential of potassium application and fungal endophyte Serendipita indica inoculation to mitigate the negative effects of dry periods during the growing season. Field experiments were conducted over a three-year period from 2020 to 2022, measuring physiological, growth, and yield parameters. To get insight into the physiological state of the plants, we measured the soluble sugars content and the ratio of stable carbon isotopes in the flag leaf tissue, which reflects conditions during its formation. The dominant factors that influenced the measured parameters were the genotypes and seasons, as well as their interaction, rather than other experimental factors. The results showed that the Spitfire and Accordine varieties were the best performing in both the 2020 and 2021 seasons, as indicated by their yield. However, in the drier 2022 season, the yield of these two varieties decreased significantly (to 55% for Spitfire and to 69% for Accordine of their yield in 2021), while for the arid-region genotypes, it remained at the same level as the previous year. This study sheds light on the potential of various genotypes to withstand periods of drought and the effectiveness of using potassium application and S. indica inoculation as mitigation approaches.
{"title":"Endophyte Inoculation and Elevated Potassium Supply on Productivity, Growth and Physiological Parameters of Spring Barley (Hordeum vulgare L.) Genotypes over Contrasting Seasons","authors":"Dominik Bleša, P. Matušinský, Milan Baláž, Zdeněk Nesvadba, Marta Zavřelová","doi":"10.3390/plants13081168","DOIUrl":"https://doi.org/10.3390/plants13081168","url":null,"abstract":"In recent years, recurrent droughts have significantly affected spring barley production, reducing the quantity and quality of grain. This study aims to identify genotype-specific traits and the drought resilience of six different Hordeum vulgare L. (spring barley) genotypes, while also examining the potential of potassium application and fungal endophyte Serendipita indica inoculation to mitigate the negative effects of dry periods during the growing season. Field experiments were conducted over a three-year period from 2020 to 2022, measuring physiological, growth, and yield parameters. To get insight into the physiological state of the plants, we measured the soluble sugars content and the ratio of stable carbon isotopes in the flag leaf tissue, which reflects conditions during its formation. The dominant factors that influenced the measured parameters were the genotypes and seasons, as well as their interaction, rather than other experimental factors. The results showed that the Spitfire and Accordine varieties were the best performing in both the 2020 and 2021 seasons, as indicated by their yield. However, in the drier 2022 season, the yield of these two varieties decreased significantly (to 55% for Spitfire and to 69% for Accordine of their yield in 2021), while for the arid-region genotypes, it remained at the same level as the previous year. This study sheds light on the potential of various genotypes to withstand periods of drought and the effectiveness of using potassium application and S. indica inoculation as mitigation approaches.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"22 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongkun Ouyang, Lingling Tang, Jinglong Ma, Tao Pang
Sugar content is an essential indicator for evaluating crisp pear quality and categorization, being used for fruit quality identification and market sales prediction. In this study, we paired a support vector machine (SVM) algorithm with genetic algorithm optimization to reliably estimate the sugar content in crisp pears. We evaluated the spectral data and actual sugar content in crisp pears, then applied three preprocessing methods to the spectral data: standard normal variable transformation (SNV), multivariate scattering correction (MSC), and convolution smoothing (SG). Support vector regression (SVR) models were built using processing approaches. According to the findings, the SVM model preprocessed with convolution smoothing (SG) was the most accurate, with a correlation coefficient 0.0742 higher than that of the raw spectral data. Based on this finding, we used competitive adaptive reweighting (CARS) and the continuous projection algorithm (SPA) to select key representative wavelengths from the spectral data. Finally, we used the retrieved characteristic wavelength data to create a support vector machine model (GASVR) that was genetically tuned. The correlation coefficient of the SG–GASVR model in the prediction set was higher by 0.0321 and the root mean square prediction error (RMSEP) was lower by 0.0267 compared with those of the SG–SVR model. The SG–CARS–GASVR model had the highest correlation coefficient, at 0.8992. In conclusion, the developed SG–CARS–GASVR model provides a reliable method for detecting the sugar content in crisp pear using hyperspectral technology, thereby increasing the accuracy and efficiency of the quality assessment of crisp pear.
{"title":"Application of Hyperspectral Technology with Machine Learning for Brix Detection of Pastry Pears","authors":"Hongkun Ouyang, Lingling Tang, Jinglong Ma, Tao Pang","doi":"10.3390/plants13081163","DOIUrl":"https://doi.org/10.3390/plants13081163","url":null,"abstract":"Sugar content is an essential indicator for evaluating crisp pear quality and categorization, being used for fruit quality identification and market sales prediction. In this study, we paired a support vector machine (SVM) algorithm with genetic algorithm optimization to reliably estimate the sugar content in crisp pears. We evaluated the spectral data and actual sugar content in crisp pears, then applied three preprocessing methods to the spectral data: standard normal variable transformation (SNV), multivariate scattering correction (MSC), and convolution smoothing (SG). Support vector regression (SVR) models were built using processing approaches. According to the findings, the SVM model preprocessed with convolution smoothing (SG) was the most accurate, with a correlation coefficient 0.0742 higher than that of the raw spectral data. Based on this finding, we used competitive adaptive reweighting (CARS) and the continuous projection algorithm (SPA) to select key representative wavelengths from the spectral data. Finally, we used the retrieved characteristic wavelength data to create a support vector machine model (GASVR) that was genetically tuned. The correlation coefficient of the SG–GASVR model in the prediction set was higher by 0.0321 and the root mean square prediction error (RMSEP) was lower by 0.0267 compared with those of the SG–SVR model. The SG–CARS–GASVR model had the highest correlation coefficient, at 0.8992. In conclusion, the developed SG–CARS–GASVR model provides a reliable method for detecting the sugar content in crisp pear using hyperspectral technology, thereby increasing the accuracy and efficiency of the quality assessment of crisp pear.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"40 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climate change (CC) threatens Mediterranean viticulture. Rhizospheric microorganisms may be crucial for the adaptation of plants to CC. Our objective was to assess whether the association of two grapevine varieties with arbuscular mycorrhizal fungi (AMF) increases grapevine’s resilience to environmental conditions that combine elevated atmospheric CO2, increased air temperatures, and water deficit. Tempranillo (T) and Cabernet Sauvignon (CS) plants, grafted onto R110 rootstocks, either inoculated (+M) or not (−M) with AMF, were grown in temperature-gradient greenhouses under two environmental conditions: (i) current conditions (ca. 400 ppm air CO2 concentration plus ambient air temperature, CATA) and (ii) climate change conditions predicted by the year 2100 (700 ppm of CO2 plus ambient air temperature +4 °C, CETE). From veraison to maturity, for plants of each variety, inoculation treatment and environmental conditions were also subjected to two levels of water availability: full irrigation (WW) or drought cycles (D). Therefore, the number of treatments applied to each grapevine variety was eight, resulting from the combination of two inoculation treatments (+M and −M), two environmental conditions (CATA and CETE), and two water availabilities (WW and D). In both grapevine varieties, early drought decreased leaf conductance and transpiration under both CATA and CETE conditions and more markedly in +M plants. Photosynthesis did not decrease very much, so the instantaneous water use efficiency (WUE) increased, especially in drought +M plants under CETE conditions. The increase in WUE coincided with a lower intercellular-to-atmospheric CO2 concentration ratio and reduced plant hydraulic conductance. In the long term, mycorrhization induced changes in the stomatal anatomy under water deficit and CETE conditions: density increased in T and decreased in CS, with smaller stomata in the latter. Although some responses were genotype-dependent, the interaction of the rootstock with AMF appeared to be a key factor in the acclimation of the grapevine to water deficit under both current and future CO2 and temperature conditions.
{"title":"Arbuscular Mycorrhizal Fungi Improve the Performance of Tempranillo and Cabernet Sauvignon Facing Water Deficit under Current and Future Climatic Conditions","authors":"Daria Kozikova, I. Pascual, N. Goicoechea","doi":"10.3390/plants13081155","DOIUrl":"https://doi.org/10.3390/plants13081155","url":null,"abstract":"Climate change (CC) threatens Mediterranean viticulture. Rhizospheric microorganisms may be crucial for the adaptation of plants to CC. Our objective was to assess whether the association of two grapevine varieties with arbuscular mycorrhizal fungi (AMF) increases grapevine’s resilience to environmental conditions that combine elevated atmospheric CO2, increased air temperatures, and water deficit. Tempranillo (T) and Cabernet Sauvignon (CS) plants, grafted onto R110 rootstocks, either inoculated (+M) or not (−M) with AMF, were grown in temperature-gradient greenhouses under two environmental conditions: (i) current conditions (ca. 400 ppm air CO2 concentration plus ambient air temperature, CATA) and (ii) climate change conditions predicted by the year 2100 (700 ppm of CO2 plus ambient air temperature +4 °C, CETE). From veraison to maturity, for plants of each variety, inoculation treatment and environmental conditions were also subjected to two levels of water availability: full irrigation (WW) or drought cycles (D). Therefore, the number of treatments applied to each grapevine variety was eight, resulting from the combination of two inoculation treatments (+M and −M), two environmental conditions (CATA and CETE), and two water availabilities (WW and D). In both grapevine varieties, early drought decreased leaf conductance and transpiration under both CATA and CETE conditions and more markedly in +M plants. Photosynthesis did not decrease very much, so the instantaneous water use efficiency (WUE) increased, especially in drought +M plants under CETE conditions. The increase in WUE coincided with a lower intercellular-to-atmospheric CO2 concentration ratio and reduced plant hydraulic conductance. In the long term, mycorrhization induced changes in the stomatal anatomy under water deficit and CETE conditions: density increased in T and decreased in CS, with smaller stomata in the latter. Although some responses were genotype-dependent, the interaction of the rootstock with AMF appeared to be a key factor in the acclimation of the grapevine to water deficit under both current and future CO2 and temperature conditions.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"82 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140675473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunming Xu, Weicheng Bu, Yuchao Xu, Han Fei, Yiming Zhu, Irshad Ahmad, N. Nimir, Guisheng Zhou, G. Zhu
Salinity is one of the major constraints to crop production. Rice is a main staple food and is highly sensitive to salinity. This study aimed to elucidate the effects of salt stress on physiological and agronomic traits of rice genotypes with contrasting salt tolerance. Six contrasting rice genotypes (DJWJ, JFX, NSIC, HKN, XD2H and HHZ), including three salt-tolerant and three salt-sensitive rice genotypes, were grown under two different salt concentrations (0 and 100 mmol L−1 NaCl solution). The results showed that growth, physiological and yield-related traits of both salt-sensitive and salt-tolerant rice were significantly affected by salt stress. In general, plant height, tiller number, dry weight and relative growth rate showed 15.7%, 11.2%, 25.2% and 24.6% more reduction in salt-sensitive rice than in salt-tolerant rice, respectively. On the contrary, antioxidant enzyme activity (superoxide dismutase, peroxidase, catalase), osmotic adjustment substances (proline, soluble protein, malondialdehyde (MDA)) and Na+ content were significantly increased under salt stress, and the increase was far higher in salt-tolerant rice except for MDA. Furthermore, grain yield and yield components significantly decreased under salt stress. Overall, the salt-sensitive rice genotypes showed a 15.3% greater reduction in grain yield, 5.1% reduction in spikelets per panicle, 7.4% reduction in grain-filling percentage and 6.1% reduction in grain weight compared to salt-tolerant genotypes under salt stress. However, a modest gap showed a decline in panicles (22.2% vs. 22.8%) and total spikelets (45.4% vs. 42.1%) between salt-sensitive and salt-tolerant rice under salinity conditions. This study revealed that the yield advantage of salt-tolerant rice was partially caused by more biomass accumulation, growth rate, strong antioxidant capacity and osmotic adjustment ability under salt stress, which contributed to more spikelets per panicle, high grain-filling percentage and grain weight. The results of this study could be helpful in understanding the physiological mechanism of contrasting rice genotypes’ responses to salt stress and to the breeding of salt-tolerant rice.
{"title":"Effects of Salt Stress on Physiological and Agronomic Traits of Rice Genotypes with Contrasting Salt Tolerance","authors":"Yunming Xu, Weicheng Bu, Yuchao Xu, Han Fei, Yiming Zhu, Irshad Ahmad, N. Nimir, Guisheng Zhou, G. Zhu","doi":"10.3390/plants13081157","DOIUrl":"https://doi.org/10.3390/plants13081157","url":null,"abstract":"Salinity is one of the major constraints to crop production. Rice is a main staple food and is highly sensitive to salinity. This study aimed to elucidate the effects of salt stress on physiological and agronomic traits of rice genotypes with contrasting salt tolerance. Six contrasting rice genotypes (DJWJ, JFX, NSIC, HKN, XD2H and HHZ), including three salt-tolerant and three salt-sensitive rice genotypes, were grown under two different salt concentrations (0 and 100 mmol L−1 NaCl solution). The results showed that growth, physiological and yield-related traits of both salt-sensitive and salt-tolerant rice were significantly affected by salt stress. In general, plant height, tiller number, dry weight and relative growth rate showed 15.7%, 11.2%, 25.2% and 24.6% more reduction in salt-sensitive rice than in salt-tolerant rice, respectively. On the contrary, antioxidant enzyme activity (superoxide dismutase, peroxidase, catalase), osmotic adjustment substances (proline, soluble protein, malondialdehyde (MDA)) and Na+ content were significantly increased under salt stress, and the increase was far higher in salt-tolerant rice except for MDA. Furthermore, grain yield and yield components significantly decreased under salt stress. Overall, the salt-sensitive rice genotypes showed a 15.3% greater reduction in grain yield, 5.1% reduction in spikelets per panicle, 7.4% reduction in grain-filling percentage and 6.1% reduction in grain weight compared to salt-tolerant genotypes under salt stress. However, a modest gap showed a decline in panicles (22.2% vs. 22.8%) and total spikelets (45.4% vs. 42.1%) between salt-sensitive and salt-tolerant rice under salinity conditions. This study revealed that the yield advantage of salt-tolerant rice was partially caused by more biomass accumulation, growth rate, strong antioxidant capacity and osmotic adjustment ability under salt stress, which contributed to more spikelets per panicle, high grain-filling percentage and grain weight. The results of this study could be helpful in understanding the physiological mechanism of contrasting rice genotypes’ responses to salt stress and to the breeding of salt-tolerant rice.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"33 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Jasinskas, G. Šiaudinis, D. Karčauskienė, R. Bielska, Marek Marks, S. Bielski, Ramūnas Mieldažys, K. Romaneckas, E. Šarauskis
Field studies with the large-stemmed plant Artemisia dubia (A. dubia) have been carried out at the Vėžaičiai Branch of LAMMC since 2018. According to three years of experimental results, annual dry matter (DM) yield varied from 7.94 to 10.14 t ha−1. Growing conditions, nitrogen application level, and harvesting time had statistically significant impacts on A. dubia productivity. The most important tasks of this article were to investigate and determine the factors influencing A. dubia plant biomass productivity and the evaluation of technological, power, and environmental parameters of plant biomass utilization for energy conversion and the production of high-quality solid biofuel pellets. For the experiments, six variants of A. dubia samples were used, which were grown in 2021. Plants were cut three times and two fertilization options were used: (1) no fertilization and (2) fertilization with 180 kg ha−1 of nitrogen fertilizer. These harvested plants were chopped, milled, and pressed into pellets. The physical–mechanical characteristics (moisture content, density, and strength) of the A. dubia pellets were investigated. During this study, it was found that the density in the dry mass (DM) of the pellets ranged from 1119.86 to 1192.44 kg m−3. The pellet moisture content ranged from 8.80 to 10.49%. After testing pellet strength, it was found that the pellets which were made from plant biomass PK-1-1 (first harvest without N fertilization) were the most resistant to compression, and they withstood 560.36 N of pressure. The dry fuel lower heating value (LHV) of the pellets was sufficiently high and was very close to that of the pine sawdust pellets; it varied from 17.46 ± 0.25 MJ kg−1 to 18.14 ± 0.28 MJ kg−1. The ash content of the burned pellets ranged from 3.62 ± 0.02% to 6.47 ± 0.09%. Emissions of harmful pollutants—CO2, CO, NOx, and unburnt hydrocarbons (CxHy)—did not exceed the maximum permissible levels. Summarizing the results for the investigated properties of the combustion and emissions of the A. dubia pellets, it can be concluded that this biofuel can be used for the production of pressed biofuel, and it is characterized by sufficiently high quality, efficient combustion, and permissible emissions to the environment.
{"title":"Evaluation of the Productivity and Potential Utilization of Artemisia dubia Plant Biomass for Energy Conversion","authors":"A. Jasinskas, G. Šiaudinis, D. Karčauskienė, R. Bielska, Marek Marks, S. Bielski, Ramūnas Mieldažys, K. Romaneckas, E. Šarauskis","doi":"10.3390/plants13081158","DOIUrl":"https://doi.org/10.3390/plants13081158","url":null,"abstract":"Field studies with the large-stemmed plant Artemisia dubia (A. dubia) have been carried out at the Vėžaičiai Branch of LAMMC since 2018. According to three years of experimental results, annual dry matter (DM) yield varied from 7.94 to 10.14 t ha−1. Growing conditions, nitrogen application level, and harvesting time had statistically significant impacts on A. dubia productivity. The most important tasks of this article were to investigate and determine the factors influencing A. dubia plant biomass productivity and the evaluation of technological, power, and environmental parameters of plant biomass utilization for energy conversion and the production of high-quality solid biofuel pellets. For the experiments, six variants of A. dubia samples were used, which were grown in 2021. Plants were cut three times and two fertilization options were used: (1) no fertilization and (2) fertilization with 180 kg ha−1 of nitrogen fertilizer. These harvested plants were chopped, milled, and pressed into pellets. The physical–mechanical characteristics (moisture content, density, and strength) of the A. dubia pellets were investigated. During this study, it was found that the density in the dry mass (DM) of the pellets ranged from 1119.86 to 1192.44 kg m−3. The pellet moisture content ranged from 8.80 to 10.49%. After testing pellet strength, it was found that the pellets which were made from plant biomass PK-1-1 (first harvest without N fertilization) were the most resistant to compression, and they withstood 560.36 N of pressure. The dry fuel lower heating value (LHV) of the pellets was sufficiently high and was very close to that of the pine sawdust pellets; it varied from 17.46 ± 0.25 MJ kg−1 to 18.14 ± 0.28 MJ kg−1. The ash content of the burned pellets ranged from 3.62 ± 0.02% to 6.47 ± 0.09%. Emissions of harmful pollutants—CO2, CO, NOx, and unburnt hydrocarbons (CxHy)—did not exceed the maximum permissible levels. Summarizing the results for the investigated properties of the combustion and emissions of the A. dubia pellets, it can be concluded that this biofuel can be used for the production of pressed biofuel, and it is characterized by sufficiently high quality, efficient combustion, and permissible emissions to the environment.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"40 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the past 30 years, there has been a growing belief in and promotion of agroecosystem diversity for pest management and future food production as an agroecological or nature-based approach. Monoculture agriculture, which produces most of our food, is considered to be highly vulnerable to pests in contrast to plant species-diverse agroecosystems which may possess a greater abundance of natural enemies, keeping pest populations under control. In this paper, we question the role of crop diversity for pest management and explore the relationship between crop and associated diversity and pests through the following processes: environmental stresses that favor monodominance; evolutionary adaptations that resist insect herbivores (genetic resistance response); mechanisms of spatial escape from insect herbivores (escape response); and the role of crop-associated biodiversity. We present strong evidence that not only questions the high vulnerability of monocultures to pest damage but also supports why monocultures continue to produce most of the world’s food. Reference is made to the importance of targeted plant breeding and the role of trans-continental crop introduction supported by efficient quarantine for pest management. We conclude that—with the exception of irrigated rice—much more research is needed to better understand the role of crop diversity in agroecosystems for pest management and food production.
{"title":"Crop Diversity in Agroecosystems for Pest Management and Food Production","authors":"Jillian Lenné, David Wood","doi":"10.3390/plants13081164","DOIUrl":"https://doi.org/10.3390/plants13081164","url":null,"abstract":"During the past 30 years, there has been a growing belief in and promotion of agroecosystem diversity for pest management and future food production as an agroecological or nature-based approach. Monoculture agriculture, which produces most of our food, is considered to be highly vulnerable to pests in contrast to plant species-diverse agroecosystems which may possess a greater abundance of natural enemies, keeping pest populations under control. In this paper, we question the role of crop diversity for pest management and explore the relationship between crop and associated diversity and pests through the following processes: environmental stresses that favor monodominance; evolutionary adaptations that resist insect herbivores (genetic resistance response); mechanisms of spatial escape from insect herbivores (escape response); and the role of crop-associated biodiversity. We present strong evidence that not only questions the high vulnerability of monocultures to pest damage but also supports why monocultures continue to produce most of the world’s food. Reference is made to the importance of targeted plant breeding and the role of trans-continental crop introduction supported by efficient quarantine for pest management. We conclude that—with the exception of irrigated rice—much more research is needed to better understand the role of crop diversity in agroecosystems for pest management and food production.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"32 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Hernández-Pérez, Salvadora Martínez-López, M. Martínez-Sánchez, L. Martínez-Martínez, M. García-Lorenzo, Carmen Perez Sirvent
This paper evaluates an experimental wetland as part of a pilot soil reclamation project in a mining area. The wetland was constructed using materials of mining origin from the area; most reactive materials of acid pH were stabilised using limestone filler. The study selected macrophytes that are tolerant to potentially toxic elements (PTEs) and resistant to salinity, namely Phragmites australis, Juncus effusus, and Iris pseudacorus. These macrophytes were then placed in pots containing substrates composed of different mixtures of topsoil, peat, and mining waste (black or yellow sand). A thorough analysis of the physicochemical and mineralogical characteristics of the materials included studies of PTE mobilisation. This study emphasises the significance of the rhizosphere in directing the transfer of PTEs to the plant and the correlation between the substrate and the development of plant defence mechanisms, such as the formation of Fe-plates. Scanning electron microscopy was used to highlight these aspects and validate the results of the analytical determinations. These wetlands can be proposed as a phytoremediation strategy for areas affected by mining and maritime influence. They are easy to construct and remain stable, providing important ecosystem services such as the natural attenuation of acid mine drainage, support for vegetation development and fauna, and a clean ecosystem.
{"title":"In Situ Use of Mining Substrates for Wetland Construction: Results of a Pilot Experiment","authors":"C. Hernández-Pérez, Salvadora Martínez-López, M. Martínez-Sánchez, L. Martínez-Martínez, M. García-Lorenzo, Carmen Perez Sirvent","doi":"10.3390/plants13081161","DOIUrl":"https://doi.org/10.3390/plants13081161","url":null,"abstract":"This paper evaluates an experimental wetland as part of a pilot soil reclamation project in a mining area. The wetland was constructed using materials of mining origin from the area; most reactive materials of acid pH were stabilised using limestone filler. The study selected macrophytes that are tolerant to potentially toxic elements (PTEs) and resistant to salinity, namely Phragmites australis, Juncus effusus, and Iris pseudacorus. These macrophytes were then placed in pots containing substrates composed of different mixtures of topsoil, peat, and mining waste (black or yellow sand). A thorough analysis of the physicochemical and mineralogical characteristics of the materials included studies of PTE mobilisation. This study emphasises the significance of the rhizosphere in directing the transfer of PTEs to the plant and the correlation between the substrate and the development of plant defence mechanisms, such as the formation of Fe-plates. Scanning electron microscopy was used to highlight these aspects and validate the results of the analytical determinations. These wetlands can be proposed as a phytoremediation strategy for areas affected by mining and maritime influence. They are easy to construct and remain stable, providing important ecosystem services such as the natural attenuation of acid mine drainage, support for vegetation development and fauna, and a clean ecosystem.","PeriodicalId":509472,"journal":{"name":"Plants","volume":"15 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140674140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}