Isaure Scavezzoni, Michela M. Johnson, Stéphane Jouve, Valentin Fischer
Crocodylomorphs have colonized various environments from fully terrestrial to fully aquatic, making it an important clade among archosaurs. A remarkable example of the rich past diversity of Crocodylomorpha Hay, 1930 is the marine colonization undergone by several crocodylomorph lineages, particularly Thalattosuchia Fraas, 1901 during the Early Jurassic–Early Cretaceous, and Dyrosauridae de Stefano, 1903 during the Late Cretaceous–Early Eocene. Thalattosuchia represents the most impressive and singular marine radiation among Crocodylomorpha, occupying various ecological niches, before enigmatically disappearing in the Cretaceous. Dyrosauridae, on the other hand, is known for surviving the end-Cretaceous mass extinction in abundance but subsequently vanished. The evolutionary path undertaken by crocodylomorphs into the aquatic environments and the reasons for their disappearance outside marine extinction events during the Mesozoic remains a mystery. Despite a well-preserved fossil record, attention has primarily centered on craniodental adaptations, overlooking the swimming-related adaptations recorded in the postcranial skeleton. This research primarily involves a comprehensive examination of the pectoral girdle of the most representative members of Thalattosuchia and Dyrosauridae, highlighting their evolutionary trajectories over time. Additionally, this work aims to test the phylogenetic signal residing in the postcranial anatomy of Crocodylomorpha. As such, the most recent and complete Crocodylomorpha phylogenetic dataset has been repurposed: 42 new postcranial characters have been added and several others have been revised to address our phylogenetic question. We stress that postcranial anatomy constitutes an important tool supply to better understand the relations of extinct crocodyliforms, but also offers insights on their development, ecology, and biomechanics.
鳄形目动物曾在从完全陆生到完全水生的各种环境中定居,使其成为古龙中的一个重要支系。鳄形目过去丰富多样性的一个显著例子是几个鳄形目品系的海洋殖民化,特别是早侏罗世-早白垩世期间的Thalattosuchia Fraas, 1901年,以及晚白垩世-早始新世期间的Dyrosauridae de Stefano, 1903年。齿龙科(Thalattosuchia)是鳄形目(Crocodylomorpha)中最令人印象深刻和最奇特的海洋生物,占据了各种生态位,后来在白垩纪神秘地消失了。另一方面,恐龙科(Dyrosauridae)因在白垩纪末的大灭绝中大量幸存而闻名,但随后消失了。鳄科动物进入水生环境的进化路径以及它们在中生代海洋生物大灭绝事件之外消失的原因仍然是一个谜。尽管化石记录保存完好,但人们的注意力主要集中在颅骨适应性上,而忽视了颅后骨骼中记录的与游泳相关的适应性。这项研究主要涉及对最有代表性的巨齿龙科(Thalattosuchia)和棘龙科(Dyrosauridae)成员的胸腰部进行全面检查,突出它们随着时间推移的进化轨迹。此外,这项工作还旨在检验鳄形目颅后解剖学中的系统发育信号。因此,我们重新使用了最新、最完整的鳄形目系统发育数据集:新增了 42 个颅后特征,并对其他几个特征进行了修订,以解决我们的系统发育问题。我们强调,颅后解剖学是更好地理解已灭绝鳄形目之间关系的重要工具,同时也为它们的发育、生态学和生物力学提供了见解。
{"title":"Functional and phylogenetic signals in the pectoral girdle of Thalattosuchia and Dyrosauridae (Crocodylomorpha)","authors":"Isaure Scavezzoni, Michela M. Johnson, Stéphane Jouve, Valentin Fischer","doi":"10.1002/ar.25596","DOIUrl":"10.1002/ar.25596","url":null,"abstract":"<p>Crocodylomorphs have colonized various environments from fully terrestrial to fully aquatic, making it an important clade among archosaurs. A remarkable example of the rich past diversity of Crocodylomorpha Hay, 1930 is the marine colonization undergone by several crocodylomorph lineages, particularly Thalattosuchia Fraas, 1901 during the Early Jurassic–Early Cretaceous, and Dyrosauridae de Stefano, 1903 during the Late Cretaceous–Early Eocene. Thalattosuchia represents the most impressive and singular marine radiation among Crocodylomorpha, occupying various ecological niches, before enigmatically disappearing in the Cretaceous. Dyrosauridae, on the other hand, is known for surviving the end-Cretaceous mass extinction in abundance but subsequently vanished. The evolutionary path undertaken by crocodylomorphs into the aquatic environments and the reasons for their disappearance outside marine extinction events during the Mesozoic remains a mystery. Despite a well-preserved fossil record, attention has primarily centered on craniodental adaptations, overlooking the swimming-related adaptations recorded in the postcranial skeleton. This research primarily involves a comprehensive examination of the pectoral girdle of the most representative members of Thalattosuchia and Dyrosauridae, highlighting their evolutionary trajectories over time. Additionally, this work aims to test the phylogenetic signal residing in the postcranial anatomy of Crocodylomorpha. As such, the most recent and complete Crocodylomorpha phylogenetic dataset has been repurposed: 42 new postcranial characters have been added and several others have been revised to address our phylogenetic question. We stress that postcranial anatomy constitutes an important tool supply to better understand the relations of extinct crocodyliforms, but also offers insights on their development, ecology, and biomechanics.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":"308 2","pages":"412-573"},"PeriodicalIF":1.8,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brodsky Dantas Macedo de Farias, Thiago Carlisbino, Bianca Martins Mastrantonio, Julia Brenda Desojo, Cesar Leandro Schultz, Marina Bento Soares
Prestosuchus chiniquensis is an iconic non-crocodylomorph loricatan from the Brazilian Triassic beds and the best-known taxon, represented by several specimens. The completeness and preservation of its skeleton make it a valuable taxon for paleobiological studies. We explore the microstructure of bone tissues of appendicular elements and ribs of three specimens of Prestosuchus to access a variety of aspects of its paleobiology, such as histovariability, ontogeny, and growth patterns. Integrating our data and other osteohistologically studied P. chiniquensis specimens, we proposed for the first time an ontogenetic model for non-crocodylomorph loricatans. The model encompasses six distinct age classes (I–VI) that allow us to infer the growth patterns of P. chiniquensis and possibly expand to other phylogenetically close taxa. During early ontogeny (age classes I–II), sustained fast growth was maintained by a fibrolamellar complex. In mid ontogeny (age classes III–IV), highly vascularized parallel-fibered bone predominates, suggesting intermediary growth rates. A change for a poorly vascularized parallel-fibered/lamellar bone would mark the attainment of sexual (age classes IV–V) and skeletal maturity, comprising the age class VI. An external fundamental system (EFS) present in the outermost cortex is the main histological feature that characterize the age class VI. Major histovariability features are present between appendicular bones and ribs of skeletally immature individuals. The most prominent of them is the presence of fibrolamellar complex and highly vascularized parallel-fibered bone in appendicular bones and poorly vascularized parallel-fibered bone in ribs. In advanced ontogenetic stages, the histovariability between appendicular bones and ribs tends to be minor. Our data also support previous hypothesis of the presence of one new taxon among the specimens assigned to P. chiniquensis, increasing the diversity of non-crocodylomorph loricatans. The new taxon, represented by the specimen UFRGS-PV-0152-T, awaits a formal anatomical description. Our study advances the preliminary understand of the ontogeny and growth patterns of non-crocodylomorphs loricatans and Pseudosuchia as a whole.
Prestosuchus chiniquensis是巴西三叠纪地层中一种标志性的非鳄形长颈龙,也是最著名的类群,有多个标本。其骨骼的完整性和保存性使其成为古生物学研究的宝贵类群。我们探讨了三件雷石龙标本的附肢和肋骨骨组织的显微结构,以了解其古生物学的各个方面,如组织变异性、本体和生长模式。综合我们的数据和其他骨组织学研究的奇尼库斯龙(P. chiniquensis)标本,我们首次提出了非鳄形鼻蜥的个体发育模型。该模型包括六个不同的年龄段(I-VI),使我们能够推断出 P. chiniquensis 的生长模式,并有可能扩展到其他系统发育相近的类群。在本体发育早期(I-II龄级),持续的快速生长是由纤维绒毛复合体维持的。在本体中期(III-IV类年龄),高血管化的平行纤维骨占主导地位,表明生长速度处于中间水平。在达到性成熟(IV-V 年龄段)和骨骼成熟(VI 年龄段)时,血管化程度较低的平行纤维/扁平层骨骼将发生变化。存在于最外层皮质的外部基本系统(EFS)是第六年龄段的主要组织学特征。骨骼未成熟个体的附骨和肋骨之间存在主要的组织变异特征。其中最突出的是,在阑尾骨中存在纤维细胞复合体和高血管化的平行纤维骨,而在肋骨中则存在低血管化的平行纤维骨。在高级个体发育阶段,阑尾骨和肋骨之间的组织变异性往往很小。我们的数据还支持之前的假设,即在归属于 P. chiniquensis 的标本中存在一个新类群,从而增加了非鳄形鼻蜥的多样性。以 UFRGS-PV-0152-T 标本为代表的新类群正在等待正式的解剖描述。我们的研究推动了对非鳄形鼻蜥和伪蜥的本体和生长模式的初步了解。
{"title":"The first ontogenetic model for non-crocodylomorph loricatans, based on osteohistology of the ontogenetic series of Prestosuchus chiniquensis from the Middle Triassic of Brazil","authors":"Brodsky Dantas Macedo de Farias, Thiago Carlisbino, Bianca Martins Mastrantonio, Julia Brenda Desojo, Cesar Leandro Schultz, Marina Bento Soares","doi":"10.1002/ar.25598","DOIUrl":"10.1002/ar.25598","url":null,"abstract":"<p><i>Prestosuchus chiniquensis</i> is an iconic non-crocodylomorph loricatan from the Brazilian Triassic beds and the best-known taxon, represented by several specimens. The completeness and preservation of its skeleton make it a valuable taxon for paleobiological studies. We explore the microstructure of bone tissues of appendicular elements and ribs of three specimens of <i>Prestosuchus</i> to access a variety of aspects of its paleobiology, such as histovariability, ontogeny, and growth patterns. Integrating our data and other osteohistologically studied <i>P. chiniquensis</i> specimens, we proposed for the first time an ontogenetic model for non-crocodylomorph loricatans. The model encompasses six distinct age classes (I–VI) that allow us to infer the growth patterns of <i>P. chiniquensis</i> and possibly expand to other phylogenetically close taxa. During early ontogeny (age classes I–II), sustained fast growth was maintained by a fibrolamellar complex. In mid ontogeny (age classes III–IV), highly vascularized parallel-fibered bone predominates, suggesting intermediary growth rates. A change for a poorly vascularized parallel-fibered/lamellar bone would mark the attainment of sexual (age classes IV–V) and skeletal maturity, comprising the age class VI. An external fundamental system (EFS) present in the outermost cortex is the main histological feature that characterize the age class VI. Major histovariability features are present between appendicular bones and ribs of skeletally immature individuals. The most prominent of them is the presence of fibrolamellar complex and highly vascularized parallel-fibered bone in appendicular bones and poorly vascularized parallel-fibered bone in ribs. In advanced ontogenetic stages, the histovariability between appendicular bones and ribs tends to be minor. Our data also support previous hypothesis of the presence of one new taxon among the specimens assigned to <i>P. chiniquensis</i>, increasing the diversity of non-crocodylomorph loricatans. The new taxon, represented by the specimen UFRGS-PV-0152-T, awaits a formal anatomical description. Our study advances the preliminary understand of the ontogeny and growth patterns of non-crocodylomorphs loricatans and Pseudosuchia as a whole.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":"308 2","pages":"598-628"},"PeriodicalIF":1.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William G. Parker, Michelle R. Stocker, William A. Reyes, Sarah Werning
A newly referred specimen of Coahomasuchus kahleorum (TMM 31100-437) from the lower part of the Upper Triassic Dockum Group of Texas preserves much of the skeleton including the majority of the skull. Introduced in the literature in the 1980s as the “carnivorous aetosaur”, TMM 31100-437 bears recurved teeth that previously were considered unique among aetosaurs. The small size of the individual led to speculation that it represents a skeletally immature individual that retains a plesiomorphic dentition for Archosauromorpha. We provide a detailed evaluation of the anatomy and phylogenetic relationships of this specimen. Apomorphies of the osteoderms and braincase support the referral of the specimen to C. kahleorum. Histological analysis of the femur demonstrates that TMM 31100-437 does not represent a juvenile form of another known aetosaur. Thus, TMM 31000-437 provides another case demonstrating that aetosaur species spanned a wide range of maximum body sizes, from approximately 1.5 m to over 5 m in length. Reanalysis of the type specimen of C. kahleorum, along with information from TMM 31000-437, demonstrates that the lateral osteoderms are not autapomorphic as previously described and have distinct lateral and medial flanges as well as a dorsal eminence. Overall, this specimen provides key details regarding body size and diet in an early occurring aetosaur.
{"title":"Anatomy and ontogeny of the “carnivorous aetosaur”: New information on Coahomasuchus kahleorum (Archosauria: Pseudosuchia) from the Upper Triassic Dockum Group of Texas","authors":"William G. Parker, Michelle R. Stocker, William A. Reyes, Sarah Werning","doi":"10.1002/ar.25600","DOIUrl":"10.1002/ar.25600","url":null,"abstract":"<p>A newly referred specimen of <i>Coahomasuchus kahleorum</i> (TMM 31100-437) from the lower part of the Upper Triassic Dockum Group of Texas preserves much of the skeleton including the majority of the skull. Introduced in the literature in the 1980s as the “carnivorous aetosaur”, TMM 31100-437 bears recurved teeth that previously were considered unique among aetosaurs. The small size of the individual led to speculation that it represents a skeletally immature individual that retains a plesiomorphic dentition for Archosauromorpha. We provide a detailed evaluation of the anatomy and phylogenetic relationships of this specimen. Apomorphies of the osteoderms and braincase support the referral of the specimen to <i>C. kahleorum</i>. Histological analysis of the femur demonstrates that TMM 31100-437 does not represent a juvenile form of another known aetosaur. Thus, TMM 31000-437 provides another case demonstrating that aetosaur species spanned a wide range of maximum body sizes, from approximately 1.5 m to over 5 m in length. Reanalysis of the type specimen of <i>C. kahleorum</i>, along with information from TMM 31000-437, demonstrates that the lateral osteoderms are not autapomorphic as previously described and have distinct lateral and medial flanges as well as a dorsal eminence. Overall, this specimen provides key details regarding body size and diet in an early occurring aetosaur.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":"308 2","pages":"671-735"},"PeriodicalIF":1.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although toothed whales have dentition peculiar to mammals, little attention has been paid to the periodontal tissues that support these characteristic teeth. In this study, we clarified the anatomical characteristics of the periodontal tissue in several species of Delphinidae through three-dimensional observation using micro-computed tomography, histological observations using decalcified sections, and immunohistochemical analysis. The results indicated that the teeth and the periodontal tissues of dolphins are morphologically unique among mammals. The alveolar bone was both crude and spongy. The lamina dura, a radiopaque line observed in the alveolar bone of common mammals, was thin in dolphins, and the teeth were attached to the trabeculae with the periodontal ligament (PDL). The alveolar sockets were massive for the size of the teeth. The PDL, a collagen fiber that fills the periodontal space, was well-developed and peculiarly divided into two layers. The inner layer fibers radially spread out from the cementum, similar to the PDL in common mammals. However, the outer layer fibers penetrate the spongy bone in a complicated manner. The interstitial space between the inner and outer layers contained nerve fiber bundles that were thicker than those found in the PDL of other mammals. Sensory receptor-like structures were observed at the terminal ends of the nerve fibers. These findings indicated that the dolphin PDL is more sensitive to dental stimuli than those of other mammals, suggesting that the dolphin dentition plays a functional role as a sensory receptor, similar to tactile hair.
{"title":"Morphological characteristics of the unique periodontal structure in dolphins.","authors":"Ryo Kodera, Yukiko Kajinishi, Yasuhiro Uekusa, Kai Ito, Haruto Kodera, Misao Ishikawa, Noriyuki Kuroda, Kazunari Shiozaki, Hideki Endo","doi":"10.1002/ar.25601","DOIUrl":"https://doi.org/10.1002/ar.25601","url":null,"abstract":"<p><p>Although toothed whales have dentition peculiar to mammals, little attention has been paid to the periodontal tissues that support these characteristic teeth. In this study, we clarified the anatomical characteristics of the periodontal tissue in several species of Delphinidae through three-dimensional observation using micro-computed tomography, histological observations using decalcified sections, and immunohistochemical analysis. The results indicated that the teeth and the periodontal tissues of dolphins are morphologically unique among mammals. The alveolar bone was both crude and spongy. The lamina dura, a radiopaque line observed in the alveolar bone of common mammals, was thin in dolphins, and the teeth were attached to the trabeculae with the periodontal ligament (PDL). The alveolar sockets were massive for the size of the teeth. The PDL, a collagen fiber that fills the periodontal space, was well-developed and peculiarly divided into two layers. The inner layer fibers radially spread out from the cementum, similar to the PDL in common mammals. However, the outer layer fibers penetrate the spongy bone in a complicated manner. The interstitial space between the inner and outer layers contained nerve fiber bundles that were thicker than those found in the PDL of other mammals. Sensory receptor-like structures were observed at the terminal ends of the nerve fibers. These findings indicated that the dolphin PDL is more sensitive to dental stimuli than those of other mammals, suggesting that the dolphin dentition plays a functional role as a sensory receptor, similar to tactile hair.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142631828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malo Roze, Stanislav N Gorb, Timo Zeimet, Wencke Krings
Insects process their food with their cuticle-based mouthparts. These feeding structures reflect their diversity and can, in some cases, showcase adaptations in material composition, mechanical properties, and shape to suit their specific dietary preferences. To pave the way to deeply understand the interaction between mouthparts and food and to determine potential adaptations of the structures to the food, this study focuses on the mandibles of two praying mantis species. Gongylus gongylodes feeds mainly on Diptera, and Sphodromantis lineola forages on larger prey. Employing scanning electron microscopy, the mandibular morphologies were analyzed. The degree of the cuticle tanning was tested using confocal laser scanning microscopy. Furthermore, the contents of transition and alkaline earth metals in the mandible cuticle were studied using energy-dispersive X-ray spectroscopy and the mechanical properties tested by nanoindentation. We found that S. lineola mandibles show pronounced gradients of Young's modulus and hardness from the basis to the tip, which might be an adaptation against high stresses during biting and chewing. G. gongylodes, in contrast, did not show pronounced gradients, which may indicate that there is less stress involved in feeding-necessary to test in future studies. The mechanical properties of manidibles in both species are related to the degree of cuticle tanning but also positively correlate with the content of magnesium. These findings enrich our understanding of insect cuticle biology but also present new sets of data on praying mantis structures.
昆虫用以角质层为基础的口器加工食物。这些进食结构反映了昆虫的多样性,在某些情况下,这些结构在材料成分、机械性能和形状上都能显示出适应性,以适应它们特定的食物偏好。为了深入了解口器与食物之间的相互作用,并确定口器结构对食物的潜在适应性,本研究重点关注两种螳螂的下颚。Gongylus gongylodes主要捕食双翅目昆虫,而Sphodromantis lineola则捕食大型猎物。利用扫描电子显微镜对下颚形态进行了分析。共聚焦激光扫描显微镜检测了角质层的鞣制程度。此外,还利用能量色散 X 射线光谱研究了下颚角质层中过渡金属和碱土金属的含量,并利用纳米压痕测试了其机械性能。我们发现,S. lineola 下颌骨的杨氏模量和硬度从基部到顶端有明显的梯度,这可能是为了适应咬合和咀嚼时的高应力。与此相反,锣锣虫没有显示出明显的梯度,这可能表明在进食过程中涉及的应力较小,有必要在今后的研究中进行测试。这两种昆虫鬃毛的机械特性都与角质层的鞣制程度有关,但也与镁的含量呈正相关。这些发现丰富了我们对昆虫角质层生物学的了解,同时也为螳螂的结构提供了新的数据。
{"title":"Mandible composition and properties in two selected praying mantises (Insecta, Mantodea).","authors":"Malo Roze, Stanislav N Gorb, Timo Zeimet, Wencke Krings","doi":"10.1002/ar.25602","DOIUrl":"https://doi.org/10.1002/ar.25602","url":null,"abstract":"<p><p>Insects process their food with their cuticle-based mouthparts. These feeding structures reflect their diversity and can, in some cases, showcase adaptations in material composition, mechanical properties, and shape to suit their specific dietary preferences. To pave the way to deeply understand the interaction between mouthparts and food and to determine potential adaptations of the structures to the food, this study focuses on the mandibles of two praying mantis species. Gongylus gongylodes feeds mainly on Diptera, and Sphodromantis lineola forages on larger prey. Employing scanning electron microscopy, the mandibular morphologies were analyzed. The degree of the cuticle tanning was tested using confocal laser scanning microscopy. Furthermore, the contents of transition and alkaline earth metals in the mandible cuticle were studied using energy-dispersive X-ray spectroscopy and the mechanical properties tested by nanoindentation. We found that S. lineola mandibles show pronounced gradients of Young's modulus and hardness from the basis to the tip, which might be an adaptation against high stresses during biting and chewing. G. gongylodes, in contrast, did not show pronounced gradients, which may indicate that there is less stress involved in feeding-necessary to test in future studies. The mechanical properties of manidibles in both species are related to the degree of cuticle tanning but also positively correlate with the content of magnesium. These findings enrich our understanding of insect cuticle biology but also present new sets of data on praying mantis structures.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thiago Carlisbino, Brodsky Dantas Macedo de Farias, Fernando Antonio Sedor, Cesar Leandro Schultz
Osteohistological evidence is widely used to infer paleobiological traits of fossil vertebrates, such as ontogeny and growth rates. Mesosaurs, an enigmatic group of aquatic reptiles from the early Permian, are the most well-known Paleozoic amniotes from Africa and South America. Their fossils are abundant in South America, ranging from the central-west region of Brazil to the southernmost areas, as well as parts of Paraguay and Uruguay. In this contribution, we examined the bone microstructure of Mesosaurus tenuidens by analyzing thin sections of axial and appendicular elements of several specimens collected from various Brazilian sites. The microstructure of the bones showed minimal histological variability among elements, predominantly composed of parallel-fibered tissues, indicating slow growth rhythm, along with increased bone density attributed to pachyosteosclerosis. The cortical area consists of poorly vascularized parallel-fibered bone tissue, which was interrupted by multiple cyclical growth marks, some of them being supernumerary, suggesting a strong influence of seasonality. Moreover, the organization of growth marks suggests distinct life history trajectories among individuals collected from different outcrops, reflecting environmental heterogeneity throughout the basin. Internally, the endosteal domain exhibits greater vascularization compared to the cortices and frequently contained calcified cartilage. In the ontogenetic series, there was a progressive filling of the medullary region from small to large individuals. The presence of the External Fundamental System (a proxy indicating somatic maturity) was observed in femora and ribs, suggesting that determinate growth was already occurring in Permian mesosaurs and may not be an exclusive specialization of crown amniotes.
{"title":"Bone microstructure analyses in ontogenetic series of Mesosaurus tenuidens from the early Permian of Brazil.","authors":"Thiago Carlisbino, Brodsky Dantas Macedo de Farias, Fernando Antonio Sedor, Cesar Leandro Schultz","doi":"10.1002/ar.25591","DOIUrl":"https://doi.org/10.1002/ar.25591","url":null,"abstract":"<p><p>Osteohistological evidence is widely used to infer paleobiological traits of fossil vertebrates, such as ontogeny and growth rates. Mesosaurs, an enigmatic group of aquatic reptiles from the early Permian, are the most well-known Paleozoic amniotes from Africa and South America. Their fossils are abundant in South America, ranging from the central-west region of Brazil to the southernmost areas, as well as parts of Paraguay and Uruguay. In this contribution, we examined the bone microstructure of Mesosaurus tenuidens by analyzing thin sections of axial and appendicular elements of several specimens collected from various Brazilian sites. The microstructure of the bones showed minimal histological variability among elements, predominantly composed of parallel-fibered tissues, indicating slow growth rhythm, along with increased bone density attributed to pachyosteosclerosis. The cortical area consists of poorly vascularized parallel-fibered bone tissue, which was interrupted by multiple cyclical growth marks, some of them being supernumerary, suggesting a strong influence of seasonality. Moreover, the organization of growth marks suggests distinct life history trajectories among individuals collected from different outcrops, reflecting environmental heterogeneity throughout the basin. Internally, the endosteal domain exhibits greater vascularization compared to the cortices and frequently contained calcified cartilage. In the ontogenetic series, there was a progressive filling of the medullary region from small to large individuals. The presence of the External Fundamental System (a proxy indicating somatic maturity) was observed in femora and ribs, suggesting that determinate growth was already occurring in Permian mesosaurs and may not be an exclusive specialization of crown amniotes.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.
{"title":"Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development.","authors":"Vasily Borisov, Fedor Shkil","doi":"10.1002/ar.25592","DOIUrl":"https://doi.org/10.1002/ar.25592","url":null,"abstract":"<p><p>The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In women and animal models, hypothyroidism induces hypercholesterolemia, pancreatitis, and insulitis. We investigated whether lipids are involved in the effects of hypothyroidism in the pancreas. Control (n = 6) and hypothyroid (n = 6) adult female rabbits were used. We quantified serum and pancreatic triacylglycerol and total cholesterol levels, the oxidative and antioxidant status, and the expression of low-density lipoprotein cholesterol receptor (LDLR) in the pancreas. Inflammation of the pancreas was evaluated by infiltration of immune cells positive to CD163 and α-farnesoid receptor (FXRα). Other lipid players involved in both inflammation and insulin secretion of the pancreas, such as lanosterol 14-α-demethylase (CYP51A1), β-farnesoid receptor (FXRβ), 3β-hydroxysteroid dehydrogenase (3β-HSD), and peroxisome proliferator-activated receptor β (PPARβ/δ), were quantified. Groups were compared by t-Student or U-Mann-Whitney tests (p ≤ 0.05). Hypothyroidism induced hypercholesterolemia and a high cholesterol accumulation in the pancreas of female rabbits, without affecting oxidative or antioxidative status nor the expression of LDLR. The pancreas of hypothyroid females showed inflammation identified by a great infiltration of immune cells, macrophages CD163+, and loss of expression of FXRα+ in immune cells. Moreover, a reduced expression of CYP51A1, FXRβ, and PPARβ/δ, but not 3β-HSD, in the hypothyroid pancreas was found. Pancreatitis and insulitis promoted by hypothyroidism may be related to the accumulation of cholesterol, lanosterol actions, and the activation of PPARβ/δ. All inflammatory markers evaluated in this study are related to glucose regulation, suggesting the link between hypothyroidism and diabetes.
{"title":"Pancreatic inflammation induced by hypothyroidism in female rabbits is associated with cholesterol accumulation and a reduced expression of CYP51A1, FXRβ, and PPARβ/δ.","authors":"Rubicela Rojas-Juárez, Julia Rodríguez-Castelán, Ismael Cuatecontzi-Fuentes, Maribel Mendez-Tepepa, Rosalía Cruz-Lumbreras, Jorge Rodríguez-Antolín, Omar Elind Arroyo-Helguera, Estela Cuevas-Romero","doi":"10.1002/ar.25590","DOIUrl":"https://doi.org/10.1002/ar.25590","url":null,"abstract":"<p><p>In women and animal models, hypothyroidism induces hypercholesterolemia, pancreatitis, and insulitis. We investigated whether lipids are involved in the effects of hypothyroidism in the pancreas. Control (n = 6) and hypothyroid (n = 6) adult female rabbits were used. We quantified serum and pancreatic triacylglycerol and total cholesterol levels, the oxidative and antioxidant status, and the expression of low-density lipoprotein cholesterol receptor (LDLR) in the pancreas. Inflammation of the pancreas was evaluated by infiltration of immune cells positive to CD163 and α-farnesoid receptor (FXRα). Other lipid players involved in both inflammation and insulin secretion of the pancreas, such as lanosterol 14-α-demethylase (CYP51A1), β-farnesoid receptor (FXRβ), 3β-hydroxysteroid dehydrogenase (3β-HSD), and peroxisome proliferator-activated receptor β (PPARβ/δ), were quantified. Groups were compared by t-Student or U-Mann-Whitney tests (p ≤ 0.05). Hypothyroidism induced hypercholesterolemia and a high cholesterol accumulation in the pancreas of female rabbits, without affecting oxidative or antioxidative status nor the expression of LDLR. The pancreas of hypothyroid females showed inflammation identified by a great infiltration of immune cells, macrophages CD163+, and loss of expression of FXRα+ in immune cells. Moreover, a reduced expression of CYP51A1, FXRβ, and PPARβ/δ, but not 3β-HSD, in the hypothyroid pancreas was found. Pancreatitis and insulitis promoted by hypothyroidism may be related to the accumulation of cholesterol, lanosterol actions, and the activation of PPARβ/δ. All inflammatory markers evaluated in this study are related to glucose regulation, suggesting the link between hypothyroidism and diabetes.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew F Bonnan, Lexi Moore Crisp, Ashley Barton, Jenna Dizinno, Kelly Muller, Justine Smith, Jenna Walker
The functional morphology and kinematics of the elbow joint remain relatively understudied in squamates. Previous investigations of lizard elbow morphology and kinematics suggest long-axis rotation (LAR) of the radius and ulna during stance allows the manus to remain pronated during forelimb retraction. Using XROMM (X-ray Reconstruction of Moving Morphology), we explored the range of 3D movements and kinematics of the humerus, radius, and ulna in three adult male Central bearded dragons (Pogona vitticeps) during trackway walking. Our data indicate that the elbow joint of P. vitticeps experiences significant rotations in all three dimensions and that the radius and ulna adduct and rotate laterally on their long axes relative to the elbow joint and to one another during stance. These movements allow the distal ends of the radius and ulna to remain in a configuration necessary for manus pronation. These data support previous inferences that the radius and ulna of lizards move independently at the wrist joint. We suggest that independent LAR of the radius and ulna relative to the elbow joint and to one another may be an ancestral mechanism in lizards and perhaps more broadly across non-avian reptiles.
{"title":"Exploring elbow kinematics in the central bearded dragon (Pogona vitticeps) using XROMM: Implications for the role of forearm long-axis rotation in non-avian reptile posture and mobility.","authors":"Matthew F Bonnan, Lexi Moore Crisp, Ashley Barton, Jenna Dizinno, Kelly Muller, Justine Smith, Jenna Walker","doi":"10.1002/ar.25588","DOIUrl":"https://doi.org/10.1002/ar.25588","url":null,"abstract":"<p><p>The functional morphology and kinematics of the elbow joint remain relatively understudied in squamates. Previous investigations of lizard elbow morphology and kinematics suggest long-axis rotation (LAR) of the radius and ulna during stance allows the manus to remain pronated during forelimb retraction. Using XROMM (X-ray Reconstruction of Moving Morphology), we explored the range of 3D movements and kinematics of the humerus, radius, and ulna in three adult male Central bearded dragons (Pogona vitticeps) during trackway walking. Our data indicate that the elbow joint of P. vitticeps experiences significant rotations in all three dimensions and that the radius and ulna adduct and rotate laterally on their long axes relative to the elbow joint and to one another during stance. These movements allow the distal ends of the radius and ulna to remain in a configuration necessary for manus pronation. These data support previous inferences that the radius and ulna of lizards move independently at the wrist joint. We suggest that independent LAR of the radius and ulna relative to the elbow joint and to one another may be an ancestral mechanism in lizards and perhaps more broadly across non-avian reptiles.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While being the largest living terrestrial mammals, elephants are best known for their highly modified and uniquely elaborate craniofacial anatomy-most notably with respect to their often-massive tusks and intricately muscular, multifunctional proboscis (i.e., trunk). For over a century, studies of extinct proboscidean relatives of today's elephants have presented hypotheses regarding the evolutionary history of the crania and tusks of these animals and their bearing on the evolution of the proboscis. Herein, I explore major functional characteristics of the proboscidean head. I give a brief review of the anatomy of tusks and dentition, the feeding apparatus, and proboscis in extant elephants and explore their overall bearing in elephant feeding behavior as well as other aspects of their ecology. I also review the evolution of the proboscidean head, with a synthetic analysis of studies and further speculation exploring the interconnected evolutionary roles of tusk morphology and use, feeding anatomy and functional implications thereof, and proboscis anatomy and use in the ancestry of elephants. Notable emphasis is given to the evolutionary role of initial elongation of the mandibular symphysis in the development of the proboscis in many proboscideans. Subsequent secondary shortening of the symphysis and elevation of the temporal region and occiput allowed for a pendulous trunk and proal feeding in living elephants and other proboscidean groups with highly lophodont dentition.
{"title":"Of tusks and trunks: A review of craniofacial evolutionary anatomy in elephants and extinct Proboscidea.","authors":"Ali Nabavizadeh","doi":"10.1002/ar.25578","DOIUrl":"https://doi.org/10.1002/ar.25578","url":null,"abstract":"<p><p>While being the largest living terrestrial mammals, elephants are best known for their highly modified and uniquely elaborate craniofacial anatomy-most notably with respect to their often-massive tusks and intricately muscular, multifunctional proboscis (i.e., trunk). For over a century, studies of extinct proboscidean relatives of today's elephants have presented hypotheses regarding the evolutionary history of the crania and tusks of these animals and their bearing on the evolution of the proboscis. Herein, I explore major functional characteristics of the proboscidean head. I give a brief review of the anatomy of tusks and dentition, the feeding apparatus, and proboscis in extant elephants and explore their overall bearing in elephant feeding behavior as well as other aspects of their ecology. I also review the evolution of the proboscidean head, with a synthetic analysis of studies and further speculation exploring the interconnected evolutionary roles of tusk morphology and use, feeding anatomy and functional implications thereof, and proboscis anatomy and use in the ancestry of elephants. Notable emphasis is given to the evolutionary role of initial elongation of the mandibular symphysis in the development of the proboscis in many proboscideans. Subsequent secondary shortening of the symphysis and elevation of the temporal region and occiput allowed for a pendulous trunk and proal feeding in living elephants and other proboscidean groups with highly lophodont dentition.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}