Pub Date : 2023-02-07DOI: 10.1007/s10563-023-09389-9
Salma Aman, Naseeb Ahmad, Sumaira Manzoor, Meznah M. Alanazi, Shaimaa A. M. Abdelmohsen, Rabia Yasmin Khosa, Abdullah G. Al-Sehemi, Ruimao Hua, Huda A. Alzahrani, Adeel Hussain Chughtai
The fabrication of a proficient and durable electrocatalyst for the OER process is the most crucial parameter in the water splitting process. A simple and basic procedure was used in this study to create Cu-substituted ZnMn2O4/rGO spinel nanosized composite as an electrode for OER. The morphological and structural investigations indicate that the carbon based spinel successfully bonds, and the addition of copper into rGO results in a substantial change in its electrocatalytic process for the oxygen evolution process. Zn1−xCuxMn2O4/rGO with x = 0.6 has a minimal overpotential of 150 mV at a current density of 10 mAcm−2, low onset potential of 1.40 V and a smaller Tafel slope of 31 mV dec−1 than other substitution. The electrocatalyst also exhibits high ECSA (632.5 cm2), Rf (1580), and exceptional stability, all of which improve OER performance. These analysis confirm the enhanced electrocatalytic efficiency of the hybrid material to catalyze OER for energy generation, and other fields.
{"title":"Effect of Copper Substitution on the Electrocatalytic Activity of ZnMn2O4 Spinel Embedded on Reduced Graphene Oxide Nanosheet for the Oxygen Evolution Process","authors":"Salma Aman, Naseeb Ahmad, Sumaira Manzoor, Meznah M. Alanazi, Shaimaa A. M. Abdelmohsen, Rabia Yasmin Khosa, Abdullah G. Al-Sehemi, Ruimao Hua, Huda A. Alzahrani, Adeel Hussain Chughtai","doi":"10.1007/s10563-023-09389-9","DOIUrl":"10.1007/s10563-023-09389-9","url":null,"abstract":"<div><p>The fabrication of a proficient and durable electrocatalyst for the OER process is the most crucial parameter in the water splitting process. A simple and basic procedure was used in this study to create Cu-substituted ZnMn<sub>2</sub>O<sub>4</sub>/rGO spinel nanosized composite as an electrode for OER. The morphological and structural investigations indicate that the carbon based spinel successfully bonds, and the addition of copper into rGO results in a substantial change in its electrocatalytic process for the oxygen evolution process. Zn<sub>1−x</sub>Cu<sub>x</sub>Mn<sub>2</sub>O<sub>4</sub>/rGO with x = 0.6 has a minimal overpotential of 150 mV at a current density of 10 mAcm<sup>−2</sup>, low onset potential of 1.40 V and a smaller Tafel slope of 31 mV dec<sup>−1</sup> than other substitution. The electrocatalyst also exhibits high ECSA (632.5 cm<sup>2</sup>), R<sub>f</sub> (1580), and exceptional stability, all of which improve OER performance. These analysis confirm the enhanced electrocatalytic efficiency of the hybrid material to catalyze OER for energy generation, and other fields.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 2","pages":"165 - 179"},"PeriodicalIF":3.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4297506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-10DOI: 10.1007/s10563-023-09387-x
Márcio José da Silva, Pedro Henrique da Silva Andrade
In this work, we report for the first time, the tungstic acid-catalyzed oxidation of terpene alcohols with hydrogen peroxide. This simple, solid, and commercially available catalyst efficiently promoted the conversion of borneol, geraniol and nerol to camphor and epoxide products, respectively. Effects of main reaction parameters, such as catalyst load, the molar ratio of oxidant to the substrate, time, and reaction temperature were investigated. Conversions and selectivity greater than 90% were achieved using 1.0 mol % of H2WO4 after 2 h of reaction at 90 °C. The activation energy was equal to 66 kJmol−1. We propose a reaction mechanism based on the experimental results. This solid catalyst was easily recovered and reused without loss of activity. As far as we know, it is the first time that tungstic acid was used as the catalyst in the oxidation reactions of terpene alcohols.