Pub Date : 2024-09-02DOI: 10.1109/LCA.2024.3452699
Rui Xie;Asad Ul Haq;Linsen Ma;Krystal Sun;Sanchari Sen;Swagath Venkataramani;Liu Liu;Tong Zhang
Recent studies have revealed that, during the inference on generative AI models such as transformer, the importance of different weights exhibits substantial context-dependent variations. This naturally manifests a promising potential of adaptively configuring weight quantization to improve the generative AI inference efficiency. Although configurable weight quantization can readily leverage the hardware support of variable-precision arithmetics in modern GPU and AI accelerators, little prior research has studied how one could exploit variable weight quantization to proportionally improve the AI model memory access speed and energy efficiency. Motivated by the rapidly maturing CXL ecosystem, this work develops a CXL-based design solution to fill this gap. The key is to allow CXL memory controllers play an active role in supporting and exploiting runtime configurable weight quantization. Using transformer as a representative generative AI model, we carried out experiments that well demonstrate the effectiveness of the proposed design solution.
{"title":"SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization","authors":"Rui Xie;Asad Ul Haq;Linsen Ma;Krystal Sun;Sanchari Sen;Swagath Venkataramani;Liu Liu;Tong Zhang","doi":"10.1109/LCA.2024.3452699","DOIUrl":"10.1109/LCA.2024.3452699","url":null,"abstract":"Recent studies have revealed that, during the inference on generative AI models such as transformer, the importance of different weights exhibits substantial context-dependent variations. This naturally manifests a promising potential of adaptively configuring weight quantization to improve the generative AI inference efficiency. Although configurable weight quantization can readily leverage the hardware support of variable-precision arithmetics in modern GPU and AI accelerators, little prior research has studied how one could exploit variable weight quantization to proportionally improve the AI model memory access speed and energy efficiency. Motivated by the rapidly maturing CXL ecosystem, this work develops a CXL-based design solution to fill this gap. The key is to allow CXL memory controllers play an active role in supporting and exploiting runtime configurable weight quantization. Using transformer as a representative generative AI model, we carried out experiments that well demonstrate the effectiveness of the proposed design solution.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"23 2","pages":"199-202"},"PeriodicalIF":1.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1109/LCA.2024.3445948
Haeyoon Cho;Hyojun Son;Jungmin Choi;Byungil Koh;Minho Ha;John Kim
Deep learning recommendation model (DLRM) is an important class of deep learning networks that are commonly used in many applications. DRLM presents unique challenges, especially for scale-out training since it not only has compute and memory-intensive components but the communication between the multiple GPUs is also on the critical path. In this work, we propose how cold