Yanna Ren, Yawei Hou, Jiayu Huang, Fanghong Li, Tao Wang, Yanling Ren, Weiping Yang
The modulation of attentional load on the perception of auditory and visual information has been widely reported; however, whether attentional load alters audiovisual integration (AVI) has seldom been investigated. Here, to explore the effect of sustained auditory attentional load on AVI and the effects of aging, nineteen older and 20 younger adults performed an AV discrimination task with a rapid serial auditory presentation task competing for attentional resources. The results showed that responses to audiovisual stimuli were significantly faster than those to auditory and visual stimuli (AV > V ≥ A, all p < 0.001), and the younger adults were significantly faster than the older adults under all attentional load conditions (all p < 0.001). The analysis of the race model showed that AVI was decreased and delayed with the addition of auditory sustained attention (no_load > load_1 > load_2 > load_3 > load_4) for both older and younger adults. In addition, AVI was lower and more delayed in older adults than in younger adults in all attentional load conditions. These results suggested that auditory sustained attentional load decreased AVI and that AVI was reduced in older adults.
{"title":"Sustained Auditory Attentional Load Decreases Audiovisual Integration in Older and Younger Adults.","authors":"Yanna Ren, Yawei Hou, Jiayu Huang, Fanghong Li, Tao Wang, Yanling Ren, Weiping Yang","doi":"10.1155/2021/4516133","DOIUrl":"https://doi.org/10.1155/2021/4516133","url":null,"abstract":"<p><p>The modulation of attentional load on the perception of auditory and visual information has been widely reported; however, whether attentional load alters audiovisual integration (AVI) has seldom been investigated. Here, to explore the effect of sustained auditory attentional load on AVI and the effects of aging, nineteen older and 20 younger adults performed an AV discrimination task with a rapid serial auditory presentation task competing for attentional resources. The results showed that responses to audiovisual stimuli were significantly faster than those to auditory and visual stimuli (AV > V ≥ A, all <i>p</i> < 0.001), and the younger adults were significantly faster than the older adults under all attentional load conditions (all <i>p</i> < 0.001). The analysis of the race model showed that AVI was decreased and delayed with the addition of auditory sustained attention (no_load > load_1 > load_2 > load_3 > load_4) for both older and younger adults. In addition, AVI was lower and more delayed in older adults than in younger adults in all attentional load conditions. These results suggested that auditory sustained attentional load decreased AVI and that AVI was reduced in older adults.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2021 ","pages":"4516133"},"PeriodicalIF":3.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10173308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milo R Smith, Priscilla Yevoo, Masato Sadahiro, Ben Readhead, Brian Kidd, Joel T Dudley, Hirofumi Morishita
The tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals. Using an integrative bioinformatics approach, we systematically scanned 2001 environmental chemicals and identified 50 chemicals that consistently dysregulate two transcriptional signatures of critical period plasticity. These chemicals included pesticides (e.g., pyridaben), antimicrobials (e.g., bacitracin), metals (e.g., mercury), anesthetics (e.g., halothane), and other chemicals and mixtures (e.g., vehicle emissions). Application of a chemogenomic enrichment analysis and hierarchical clustering across these diverse chemicals identified two clusters of chemicals with one that mimicked an immune response to pathogen, implicating inflammatory pathways and microglia as a common chemically induced neuropathological process. Thus, we established an integrative bioinformatics approach to systematically scan thousands of environmental chemicals for their ability to dysregulate molecular signatures relevant to critical periods of development.
{"title":"Systematic Analysis of Environmental Chemicals That Dysregulate Critical Period Plasticity-Related Gene Expression Reveals Common Pathways That Mimic Immune Response to Pathogen.","authors":"Milo R Smith, Priscilla Yevoo, Masato Sadahiro, Ben Readhead, Brian Kidd, Joel T Dudley, Hirofumi Morishita","doi":"10.1155/2020/1673897","DOIUrl":"https://doi.org/10.1155/2020/1673897","url":null,"abstract":"<p><p>The tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals. Using an integrative bioinformatics approach, we systematically scanned 2001 environmental chemicals and identified 50 chemicals that consistently dysregulate two transcriptional signatures of critical period plasticity. These chemicals included pesticides (e.g., pyridaben), antimicrobials (e.g., bacitracin), metals (e.g., mercury), anesthetics (e.g., halothane), and other chemicals and mixtures (e.g., vehicle emissions). Application of a chemogenomic enrichment analysis and hierarchical clustering across these diverse chemicals identified two clusters of chemicals with one that mimicked an immune response to pathogen, implicating inflammatory pathways and microglia as a common chemically induced neuropathological process. Thus, we established an integrative bioinformatics approach to systematically scan thousands of environmental chemicals for their ability to dysregulate molecular signatures relevant to critical periods of development.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2020 ","pages":"1673897"},"PeriodicalIF":3.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1673897","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9159914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Yin Zheng, Lihong Kui, Fuyi Xu, Tihua Zheng, Bo Li, Melinda McCarty, Zehua Sun, Aizheng Zhang, Luying Liu, Athena Starlard-Davenport, Ruben Stepanyan, Bo Hua Hu, Lu Lu
Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function-protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in Cdh23. The cadherin 23 (Cdh23) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old-an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (ahp) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the ahp locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.
近交系小鼠模型被广泛用于研究年龄相关性听力损失(AHL)。许多与AHL相关的基因已在各种菌株中被定位。然而,人们对具有相反功能的基因变体知之甚少,这些基因具有对听力损失的强大抵抗力。此前,我们报道了C57BL/6J (B6)和DBA/2J (D2)菌株在Cdh23中具有共同的听力损失等位基因。钙粘蛋白23 (Cdh23)基因是人类早发性听力损失的关键因素。在这项研究中,我们测试了由B6到D2杂交产生的54个BXD菌株的听力。54株中有5株甚至在2岁时仍保持正常阈值(20 dB SPL),而在2岁时,两株亲本基本上都是聋子。进一步分析发现,16号染色体(Chr 16)上有一个年龄相关的听力保护(ahp)位点,位于57~76 Mb,最大LOD为5.7。少数2岁时听力良好的BXD菌株大致相当于90岁时听力良好的人的百分比。进一步研究确定ahp位点的候选基因和与年龄相关的AHL恢复力或抗性相关的分子机制是必要的。
{"title":"An Age-Related Hearing Protection Locus on Chromosome 16 of BXD Strain Mice.","authors":"Qing Yin Zheng, Lihong Kui, Fuyi Xu, Tihua Zheng, Bo Li, Melinda McCarty, Zehua Sun, Aizheng Zhang, Luying Liu, Athena Starlard-Davenport, Ruben Stepanyan, Bo Hua Hu, Lu Lu","doi":"10.1155/2020/8889264","DOIUrl":"https://doi.org/10.1155/2020/8889264","url":null,"abstract":"<p><p>Inbred mouse models are widely used to study age-related hearing loss (AHL). Many genes associated with AHL have been mapped in a variety of strains. However, little is known about gene variants that have the converse function-protective genes that confer strong resistance to hearing loss. Previously, we reported that C57BL/6J (B6) and DBA/2J (D2) strains share a common hearing loss allele in <i>Cdh23</i>. The cadherin 23 (<i>Cdh23</i>) gene is a key contributor to early-onset hearing loss in humans. In this study, we tested hearing across a large family of 54 BXD strains generated from B6 to D2 crosses. Five of 54 strains maintain the normal threshold (20 dB SPL) even at 2 years old-an age at which both parental strains are essentially deaf. Further analyses revealed an age-related hearing protection (<i>ahp</i>) locus on chromosome 16 (Chr 16) at 57~76 Mb with a maximum LOD of 5.7. A small number of BXD strains at 2 years with good hearing correspond roughly to the percentage of humans who have good hearing at 90 years old. Further studies to define candidate genes in the <i>ahp</i> locus and related molecular mechanisms involved in age-related resilience or resistance to AHL are warranted.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2020 ","pages":"8889264"},"PeriodicalIF":3.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8889264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9214830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-16eCollection Date: 2019-01-01DOI: 10.1155/2019/3608386
Lin Xia, Wenjuan Zhu, Yunfeng Wang, Shuangba He, Renjie Chai
The transplantation of neural stem cells (NSCs) has become an emerging treatment for neural degeneration. A key factor in such treatments is to manipulate NSC behaviors such as proliferation and differentiation, resulting in the eventual regulation of NSC fate. Novel bionanomaterials have shown usefulness in guiding the proliferation and differentiation of NSCs due to the materials' unique morphological and topological properties. Among the nanomaterials, graphene has drawn increasing attention for neural regeneration applications based on the material's excellent physicochemical properties, surface modifications, and biocompatibility. In this review, we summarize recent works on the use of graphene-based biomaterials for regulating NSC behaviors and the potential use of these materials in clinical treatment. We also discuss the limitations of graphene-based nanomaterials for use in clinical practice. Finally, we provide some future prospects for graphene-based biomaterial applications in neural regeneration.
{"title":"Regulation of Neural Stem Cell Proliferation and Differentiation by Graphene-Based Biomaterials.","authors":"Lin Xia, Wenjuan Zhu, Yunfeng Wang, Shuangba He, Renjie Chai","doi":"10.1155/2019/3608386","DOIUrl":"https://doi.org/10.1155/2019/3608386","url":null,"abstract":"<p><p>The transplantation of neural stem cells (NSCs) has become an emerging treatment for neural degeneration. A key factor in such treatments is to manipulate NSC behaviors such as proliferation and differentiation, resulting in the eventual regulation of NSC fate. Novel bionanomaterials have shown usefulness in guiding the proliferation and differentiation of NSCs due to the materials' unique morphological and topological properties. Among the nanomaterials, graphene has drawn increasing attention for neural regeneration applications based on the material's excellent physicochemical properties, surface modifications, and biocompatibility. In this review, we summarize recent works on the use of graphene-based biomaterials for regulating NSC behaviors and the potential use of these materials in clinical treatment. We also discuss the limitations of graphene-based nanomaterials for use in clinical practice. Finally, we provide some future prospects for graphene-based biomaterial applications in neural regeneration.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2019 ","pages":"3608386"},"PeriodicalIF":3.1,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3608386","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-16eCollection Date: 2019-01-01DOI: 10.1155/2019/6430596
Nicholas J Snow, Katie P Wadden, Arthur R Chaves, Michelle Ploughman
Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.
{"title":"Transcranial Magnetic Stimulation as a Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future Research.","authors":"Nicholas J Snow, Katie P Wadden, Arthur R Chaves, Michelle Ploughman","doi":"10.1155/2019/6430596","DOIUrl":"10.1155/2019/6430596","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2019 ","pages":"6430596"},"PeriodicalIF":3.0,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6766108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-03eCollection Date: 2019-01-01DOI: 10.1155/2019/6067871
Hinke N Halbertsma, Koen V Haak, Frans W Cornelissen
Damage to the visual system can result in (a partial) loss of vision, in response to which the visual system may functionally reorganize. Yet the timing, extent, and conditions under which this occurs are not well understood. Hence, studies in individuals with diverse congenital and acquired conditions and using various methods are needed to better understand this. In the present study, we examined the visual system of a young girl who received a hemispherectomy at the age of three and who consequently suffered from hemianopia. We did so by evaluating the corticocortical and retinocortical projections in the visual system of her remaining hemisphere. For the examination of these aspects, we analyzed the characteristics of the connective fields ("neural-referred" receptive fields) based on both resting-state (RS) and retinotopy data. The evaluation of RS data, reflecting brain activity independent from visual stimulation, is of particular interest as it is not biased by the patient's atypical visual percept. We found that, primarily when the patient was at rest, the connective fields between V1 and both early and late visual areas were larger than normal. These abnormally large connective fields could be a sign either of functional reorganization or of unmasked suppressive feedback signals that are normally masked by interhemispheric signals. Furthermore, we confirmed our previous finding of abnormal retinocortical or "stimulus-referred" projections in both early and late visual areas. More specifically, we found an enlarged foveal representation and smaller population receptive fields. These differences could also be a sign of functional reorganization or rather a reflection of the interruption visual information that travels, via the remainder of the visual pathway, from the retina to the visual cortex. To conclude, while we do find indications for relatively subtle changes in visual field map properties, we found no evidence of large-scale reorganization-even though the patient could have benefitted from this. Our work suggests that at a later developmental stage, large-scale reorganization of the visual system no longer occurs, while small-scale properties may still change to facilitate adaptive processing and viewing strategies.
{"title":"Stimulus- and Neural-Referred Visual Receptive Field Properties following Hemispherectomy: A Case Study Revisited.","authors":"Hinke N Halbertsma, Koen V Haak, Frans W Cornelissen","doi":"10.1155/2019/6067871","DOIUrl":"https://doi.org/10.1155/2019/6067871","url":null,"abstract":"<p><p>Damage to the visual system can result in (a partial) loss of vision, in response to which the visual system may functionally reorganize. Yet the timing, extent, and conditions under which this occurs are not well understood. Hence, studies in individuals with diverse congenital and acquired conditions and using various methods are needed to better understand this. In the present study, we examined the visual system of a young girl who received a hemispherectomy at the age of three and who consequently suffered from hemianopia. We did so by evaluating the corticocortical and retinocortical projections in the visual system of her remaining hemisphere. For the examination of these aspects, we analyzed the characteristics of the connective fields (\"neural-referred\" receptive fields) based on both resting-state (RS) and retinotopy data. The evaluation of RS data, reflecting brain activity independent from visual stimulation, is of particular interest as it is not biased by the patient's atypical visual percept. We found that, primarily when the patient was at rest, the connective fields between V1 and both early and late visual areas were larger than normal. These abnormally large connective fields could be a sign either of functional reorganization or of unmasked suppressive feedback signals that are normally masked by interhemispheric signals. Furthermore, we confirmed our previous finding of abnormal retinocortical or \"stimulus-referred\" projections in both early and late visual areas. More specifically, we found an enlarged foveal representation and smaller population receptive fields. These differences could also be a sign of functional reorganization or rather a reflection of the interruption visual information that travels, via the remainder of the visual pathway, from the retina to the visual cortex. To conclude, while we do find indications for relatively subtle changes in visual field map properties, we found no evidence of large-scale reorganization-even though the patient could have benefitted from this. Our work suggests that at a later developmental stage, large-scale reorganization of the visual system no longer occurs, while small-scale properties may still change to facilitate adaptive processing and viewing strategies.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2019 ","pages":"6067871"},"PeriodicalIF":3.1,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6067871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-18eCollection Date: 2018-01-01DOI: 10.1155/2018/1281657
Chenxi Huang, Johan Mårtensson, Ismail Gögenur, Mohammad Sohail Asghar
Surgical patients are at high risk of developing postoperative cognitive dysfunction (POCD) and postoperative delirium (POD). POCD and POD are associated with increased morbidity and mortality and worsening functional outcomes leading to severe socioeconomic consequences for the patient and the society in general. Magnetic resonance imaging (MRI) offers a unique opportunity to study the anatomy and function of the brain. MRI thus plays an important role in elucidating the neuronal component of POCD and POD. Our aim has been to systematically gather MRI findings that are related to POCD and POD. Systematic searches were conducted in PubMed, EMBASE, and PsycINFO: MRI studies investigating patients with POCD as identified by perioperative cognitive testing or patients with delirium identified postoperatively by the Confusion Assessment Method. A total of ten eligible papers were included with a total of 269 surgical patients, 36 patient controls, and 55 healthy controls who all underwent MRI examination. These studies suggested that reduction of thalamic and hippocampal volumes and reduction of cerebral blood flow may be associated with POCD, while presurgery/preexisting and postoperative white matter pathology may be associated with POD. However, the evidence from these studies is rather weak. Future MRI studies are warranted to verify the current findings.
手术患者术后出现认知功能障碍(POCD)和术后谵妄(POD)的风险很高。认知功能障碍和术后谵妄与发病率和死亡率的增加以及功能障碍的恶化有关,会给患者和整个社会带来严重的社会经济后果。磁共振成像(MRI)为研究大脑的解剖结构和功能提供了独特的机会。因此,磁共振成像在阐明 POCD 和 POD 的神经元组成部分方面发挥着重要作用。我们的目的是系统地收集与 POCD 和 POD 相关的 MRI 研究结果。我们在 PubMed、EMBASE 和 PsycINFO 中进行了系统检索:通过围手术期认知测试确定的 POCD 患者或通过意识模糊评估法确定的术后谵妄患者的磁共振成像研究。共收录了 10 篇符合条件的论文,共有 269 名手术患者、36 名患者对照组和 55 名健康对照组接受了磁共振成像检查。这些研究表明,丘脑和海马体积缩小和脑血流量减少可能与 POCD 有关,而手术前/术前和术后白质病变可能与 POD 有关。然而,这些研究的证据还很薄弱。今后有必要进行磁共振成像研究,以验证目前的研究结果。
{"title":"Exploring Postoperative Cognitive Dysfunction and Delirium in Noncardiac Surgery Using MRI: A Systematic Review.","authors":"Chenxi Huang, Johan Mårtensson, Ismail Gögenur, Mohammad Sohail Asghar","doi":"10.1155/2018/1281657","DOIUrl":"10.1155/2018/1281657","url":null,"abstract":"<p><p>Surgical patients are at high risk of developing postoperative cognitive dysfunction (POCD) and postoperative delirium (POD). POCD and POD are associated with increased morbidity and mortality and worsening functional outcomes leading to severe socioeconomic consequences for the patient and the society in general. Magnetic resonance imaging (MRI) offers a unique opportunity to study the anatomy and function of the brain. MRI thus plays an important role in elucidating the neuronal component of POCD and POD. Our aim has been to systematically gather MRI findings that are related to POCD and POD. Systematic searches were conducted in PubMed, EMBASE, and PsycINFO: MRI studies investigating patients with POCD as identified by perioperative cognitive testing or patients with delirium identified postoperatively by the Confusion Assessment Method. A total of ten eligible papers were included with a total of 269 surgical patients, 36 patient controls, and 55 healthy controls who all underwent MRI examination. These studies suggested that reduction of thalamic and hippocampal volumes and reduction of cerebral blood flow may be associated with POCD, while presurgery/preexisting and postoperative white matter pathology may be associated with POD. However, the evidence from these studies is rather weak. Future MRI studies are warranted to verify the current findings.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2018 ","pages":"1281657"},"PeriodicalIF":3.1,"publicationDate":"2018-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10270297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack J Q Zhang, Kenneth N K Fong, Nandana Welage, Karen P Y Liu
Objective: To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals.
Methods: A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed.
Results: A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex.
Conclusions: MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex.
目的:探讨动作观察(AO)和镜像视觉反馈动作执行(MVF)对脑卒中患者镜像神经元系统(MNS)激活的同步和训练效应及其与运动皮层激活的关系。方法:通过CINAHL、PubMed、PsycINFO、Medline、Web of Science、SCOPUS等数据库进行文献检索,查找相关研究。结果:共纳入19篇文献。两项功能磁共振成像(fMRI)研究报道,MVF可以激活脑卒中患者同侧初级运动皮层和MNS,而另外两项功能磁共振成像研究发现,MVF不能激活脑卒中患者的MNS。两项临床试验报告了MVF的长期动作执行诱导了向同侧半球激活的转移。5项fMRI研究表明,AO激活了MNS,其中3项发现了运动相关区域的激活。五项脑电图(EEG)研究表明,AO或MVF增强了对感觉运动皮层的mu抑制。结论:MVF可能通过改善MNS激活引起的脑卒中半球间失衡而促进脑卒中恢复。AO也可能通过激活MNS和运动皮层来促进中风患者的运动再学习。
{"title":"The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review.","authors":"Jack J Q Zhang, Kenneth N K Fong, Nandana Welage, Karen P Y Liu","doi":"10.1155/2018/2321045","DOIUrl":"https://doi.org/10.1155/2018/2321045","url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals.</p><p><strong>Methods: </strong>A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed.</p><p><strong>Results: </strong>A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex.</p><p><strong>Conclusions: </strong>MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2018 ","pages":"2321045"},"PeriodicalIF":3.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/2321045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10619748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: The aim of this study was to investigate the benefits of residual hair cell function for speech and music perception in bimodal pediatric Mandarin-speaking cochlear implant (CI) listeners.
Design: Speech and music performance was measured in 35 Mandarin-speaking pediatric CI users for unilateral (CI-only) and bimodal listening. Mandarin speech perception was measured for vowels, consonants, lexical tones, and sentences in quiet. Music perception was measured for melodic contour identification (MCI).
Results: Combined electric and acoustic hearing significantly improved MCI and Mandarin tone recognition performance, relative to CI-only performance. For MCI, performance was significantly better with bimodal listening for all semitone spacing conditions (p < 0.05 in all cases). For tone recognition, bimodal performance was significantly better only for tone 2 (rising; p < 0.05). There were no significant differences between CI-only and CI + HA for vowel, consonant, or sentence recognition.
Conclusions: The results suggest that combined electric and acoustic hearing can significantly improve perception of music and Mandarin tones in pediatric Mandarin-speaking CI patients. Music and lexical tone perception depends strongly on pitch perception, and the contralateral acoustic hearing coming from residual hair cell function provided pitch cues that are generally not well preserved in electric hearing.
{"title":"The Benefits of Residual Hair Cell Function for Speech and Music Perception in Pediatric Bimodal Cochlear Implant Listeners.","authors":"Xiaoting Cheng, Yangwenyi Liu, Bing Wang, Yasheng Yuan, John J Galvin, Qian-Jie Fu, Yilai Shu, Bing Chen","doi":"10.1155/2018/4610592","DOIUrl":"https://doi.org/10.1155/2018/4610592","url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to investigate the benefits of residual hair cell function for speech and music perception in bimodal pediatric Mandarin-speaking cochlear implant (CI) listeners.</p><p><strong>Design: </strong>Speech and music performance was measured in 35 Mandarin-speaking pediatric CI users for unilateral (CI-only) and bimodal listening. Mandarin speech perception was measured for vowels, consonants, lexical tones, and sentences in quiet. Music perception was measured for melodic contour identification (MCI).</p><p><strong>Results: </strong>Combined electric and acoustic hearing significantly improved MCI and Mandarin tone recognition performance, relative to CI-only performance. For MCI, performance was significantly better with bimodal listening for all semitone spacing conditions (<i>p</i> < 0.05 in all cases). For tone recognition, bimodal performance was significantly better only for tone 2 (rising; <i>p</i> < 0.05). There were no significant differences between CI-only and CI + HA for vowel, consonant, or sentence recognition.</p><p><strong>Conclusions: </strong>The results suggest that combined electric and acoustic hearing can significantly improve perception of music and Mandarin tones in pediatric Mandarin-speaking CI patients. Music and lexical tone perception depends strongly on pitch perception, and the contralateral acoustic hearing coming from residual hair cell function provided pitch cues that are generally not well preserved in electric hearing.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2018 ","pages":"4610592"},"PeriodicalIF":3.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4610592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10009739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}