首页 > 最新文献

Neural Plasticity最新文献

英文 中文
Long-Term Moderate-Level Noise Exposure Caused Hyperexcitability in the Central Auditory System. 长期中等水平噪音暴露引起中枢听觉系统的过度兴奋性。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI: 10.1155/np/8842073
Fei Xu, Guangdi Chen, Li Li, Wei Sun

Noise exposure is one of the most common causes of hearing loss and hyperacusis. Studies have shown that noise exposure can induce a cortical gain to compensate for reduced input of the cochlea, which may contribute to the increased sound sensitivity. However, many people with hyperacusis have no measurable cochlear lesion after being exposed to loud sound. In this experiment, we studied the neurological alterations in the cortical and subcortical areas following a prolonged moderate level of noise exposure (84 dB SPL, 8 h/day for 4 weeks) in the laboratory mice. The cochlear function was monitored by auditory brainstem responses (ABRs). The behavioral auditory sensitivity and temporal processing were evaluated using the acoustic startle response (ASR) and gap-induced prepulse inhibition (gap-PPI). The central auditory functions were determined by electrophysiological recordings of the inferior colliculus (IC) and the auditory cortex (AC). Our results showed that although there was no significant difference in the ABR thresholds, the noise group showed enhanced ASR and gap-PPI compared to the control group. Increased neural activity in both the IC and the AC was recorded in the noise-exposed mice compared to the control group, suggesting a central gain in both the subcortical and cortical regions. The current source density (CSD) analysis of the AC response revealed an increased columnar excitation and reduced corticocortical projection in the noise group, different from the central gain model of noise-induced hearing loss. Our results suggest that chronic "nondestructive" noise can increase the gain of the central auditory system by altering the balance of auditory thalamocortical and intracortical inputs, which may contribute to the increased sound sensitivity in people with normal hearing.

噪音暴露是听力损失和听觉亢进最常见的原因之一。研究表明,噪音暴露可以引起皮质增益,以补偿耳蜗输入减少,这可能有助于增加声音敏感性。然而,许多患有听觉亢进的人在暴露于大声声音后没有可测量的耳蜗损伤。在本实验中,我们研究了长期中等水平的噪音暴露(84 dB SPL,每天8小时,持续4周)后,实验鼠皮层和皮层下区域的神经变化。采用听觉脑干反应(ABRs)监测耳蜗功能。采用声惊反应(ASR)和间隙诱发的脉冲前抑制(gap-PPI)评价行为听觉敏感性和时间加工。通过下丘(IC)和听觉皮层(AC)的电生理记录来确定中枢听觉功能。我们的研究结果显示,虽然ABR阈值没有显著差异,但与对照组相比,噪声组的ASR和gap-PPI有所增强。与对照组相比,噪声暴露小鼠中脑和中脑的神经活动都有所增加,这表明皮层下和皮层区域的中枢功能都有所增强。交流响应的电流源密度(CSD)分析显示,噪声组的柱状兴奋增加,皮质-皮质投影减少,这与噪声引起的听力损失的中心增益模型不同。我们的研究结果表明,慢性“非破坏性”噪音可以通过改变听觉丘脑皮层和皮层内输入的平衡来增加中枢听觉系统的增益,这可能有助于听力正常的人增加声音敏感性。
{"title":"Long-Term Moderate-Level Noise Exposure Caused Hyperexcitability in the Central Auditory System.","authors":"Fei Xu, Guangdi Chen, Li Li, Wei Sun","doi":"10.1155/np/8842073","DOIUrl":"10.1155/np/8842073","url":null,"abstract":"<p><p>Noise exposure is one of the most common causes of hearing loss and hyperacusis. Studies have shown that noise exposure can induce a cortical gain to compensate for reduced input of the cochlea, which may contribute to the increased sound sensitivity. However, many people with hyperacusis have no measurable cochlear lesion after being exposed to loud sound. In this experiment, we studied the neurological alterations in the cortical and subcortical areas following a prolonged moderate level of noise exposure (84 dB SPL, 8 h/day for 4 weeks) in the laboratory mice. The cochlear function was monitored by auditory brainstem responses (ABRs). The behavioral auditory sensitivity and temporal processing were evaluated using the acoustic startle response (ASR) and gap-induced prepulse inhibition (gap-PPI). The central auditory functions were determined by electrophysiological recordings of the inferior colliculus (IC) and the auditory cortex (AC). Our results showed that although there was no significant difference in the ABR thresholds, the noise group showed enhanced ASR and gap-PPI compared to the control group. Increased neural activity in both the IC and the AC was recorded in the noise-exposed mice compared to the control group, suggesting a central gain in both the subcortical and cortical regions. The current source density (CSD) analysis of the AC response revealed an increased columnar excitation and reduced corticocortical projection in the noise group, different from the central gain model of noise-induced hearing loss. Our results suggest that chronic \"nondestructive\" noise can increase the gain of the central auditory system by altering the balance of auditory thalamocortical and intracortical inputs, which may contribute to the increased sound sensitivity in people with normal hearing.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2025 ","pages":"8842073"},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11824834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery. 脑卒中患者动态网络的重组及其预测运动恢复的潜力。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI: 10.1155/np/9932927
Xiaomin Pang, Longquan Huang, Huahang He, Shaojun Xie, Jinfeng Huang, Xiaorong Ge, Tianqing Zheng, Liren Zhao, Ning Xu, Zhao Zhang

Objective: The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. Methods: Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. Results: Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. Conclusions: The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.

目的:脑功能网络动力学的研究为理解脑卒中后的网络重组提供了一种有希望的途径。本研究旨在探讨与脑卒中患者运动恢复相关的动态网络结构,并利用多层网络分析评估其预测潜力。方法:收集亚急性脑卒中患者发病2周内的静息状态功能磁共振成像数据和匹配的健康对照(hc)。利用群无关分量分析和滑动窗口方法构建动态功能网络。应用多层网络模型量化动态网络中单个节点、子网和全局网络的交换率。相关分析评估了开关率与运动功能恢复之间的关系,而线性回归模型评估了全球网络开关率对运动恢复结果的预测潜力。结果:与hcc相比,卒中患者在特定脑区域的转换率显著增加,包括内侧额回、中央前回、顶叶下小叶、前扣带、额上回和中央后回。此外,在额顶叶网络、默认模式网络、小脑网络和全球网络中观察到更高的转换率。这些增加的转换率与基线Fugl-Meyer评估(FMA)评分和卒中后90天FMA评分的变化呈正相关。重要的是,全球网络的转换率成为中风患者运动恢复的重要预测指标。结论:脑卒中患者动态网络结构的重组揭示了运动恢复机制的重要见解。这些发现表明,动态网络重组的指标,特别是全球网络切换率,可能提供一个强有力的预测运动恢复。
{"title":"Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.","authors":"Xiaomin Pang, Longquan Huang, Huahang He, Shaojun Xie, Jinfeng Huang, Xiaorong Ge, Tianqing Zheng, Liren Zhao, Ning Xu, Zhao Zhang","doi":"10.1155/np/9932927","DOIUrl":"10.1155/np/9932927","url":null,"abstract":"<p><p><b>Objective:</b> The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. <b>Methods:</b> Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. <b>Results:</b> Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. <b>Conclusions:</b> The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2024 ","pages":"9932927"},"PeriodicalIF":3.7,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142958533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. 内侧颞叶癫痫的新型大鼠婴儿模型揭示了发育中大脑分子生物学和癫痫发生的新见解。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2024-07-25 eCollection Date: 2024-01-01 DOI: 10.1155/2024/9946769
Carola Wormuth, Anna Papazoglou, Christina Henseler, Dan Ehninger, Karl Broich, Britta Haenisch, Jürgen Hescheler, Rüdiger Köhling, Marco Weiergräber

Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 post partum (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca2+ channel Cav3.2 and the auxiliary subunits β 1 and β 2, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Cav2.1, Cav2.3, M1, and M3) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.

虽然已经详细描述了几种成年大鼠内侧颞叶癫痫(mTLE)模型,但我们对婴儿大鼠内侧颞叶癫痫发病机制的了解还很有限。在此,我们介绍了一种新型的mTLE婴儿大鼠模型(InfRPil-mTLE),该模型是在产后第9、11和15天(pp)重复注射低剂量皮洛卡品(180毫克/千克。)该模型的存活率大于 80%,海马和皮层均表现出特征性的自发性复发性电图癫痫发作(SRES),并一直持续到成年。我们利用植入式视频脑电图放射遥测技术量化了一组复杂的癫痫发作参数,这些参数表明我们的InfRPil-mTLE模型诱导了慢性脑电图癫痫发作活动,这种活动在暗周期中占主导地位。我们使用 RT-qPCR 方法进一步分析了可能与癫痫发生相关的候选基因。一些候选基因,如低电压激活的Ca2+通道Cav3.2以及辅助亚基β1和β2,以前曾被报道在成人皮洛卡品mTLE模型的海马中上调,而在我们的InfRPil-mTLE模型的海马和皮层中,这些基因(连同Cav2.1、Cav2.3、M1和M3)被下调。从转化的角度来看,我们的模型可以作为儿童癫痫疾病的蓝图,并进一步促进未来抗癫痫药物的研究和开发。
{"title":"A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain.","authors":"Carola Wormuth, Anna Papazoglou, Christina Henseler, Dan Ehninger, Karl Broich, Britta Haenisch, Jürgen Hescheler, Rüdiger Köhling, Marco Weiergräber","doi":"10.1155/2024/9946769","DOIUrl":"10.1155/2024/9946769","url":null,"abstract":"<p><p>Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 <i>post partum</i> (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca<sup>2+</sup> channel Ca<sub>v</sub>3.2 and the auxiliary subunits <i>β</i> <sub>1</sub> and <i>β</i> <sub>2</sub>, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Ca<sub>v</sub>2.1, Ca<sub>v</sub>2.3, M<sub>1</sub>, and M<sub>3</sub>) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2024 ","pages":"9946769"},"PeriodicalIF":3.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task 撤回:运动增强认知能力:执行功能与 Go/NoGo 任务的 fMRI 研究
IF 3.1 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-12-20 DOI: 10.1155/2023/9867463
N. Plasticity
{"title":"Retracted: Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task","authors":"N. Plasticity","doi":"10.1155/2023/9867463","DOIUrl":"https://doi.org/10.1155/2023/9867463","url":null,"abstract":"<jats:p />","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"111 50","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138958391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca2+-Activated K+ Channels. 金丝桃苷对大鼠脑缺血/再灌注损伤的血管保护作用:大电导Ca2+激活的K+通道的激活。
IF 3.1 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-08-14 eCollection Date: 2023-01-01 DOI: 10.1155/2023/5545205
Wen-Ming Hong, Yue-Wu Xie, Meng-Yu Zhao, Tian-Hang Yu, Li-Na Wang, Wan-Yan Xu, Shen Gao, Hua-Bao Cai, Yan Guo, Fang Zhang

Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca2+-activated K+) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels α- and β1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels α- and β1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels β1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels α-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.

金丝桃苷(Hyp)是一种中草药,对多种疾病有多种治疗作用。然而,Hyp在缺血性脑卒中血管病理生理学中的作用和机制还有待进一步研究。本研究旨在探讨(大电导Ca2+激活的K+)BK通道在Hyp对大鼠脑缺血再灌注(I/R)损伤的血管保护中的作用。在大鼠大脑中动脉闭塞再灌注模型和原代血管平滑肌细胞氧-葡萄糖剥夺/复氧(OGD/R)模型中,对Hyp的浓度梯度进行预处理。检测了一系列指标,包括神经功能缺损评分、梗死体积、丙二醛(MDA)、超氧化物歧化酶(SOD)、脑血流量(CBF)、细胞活力、膜电位以及BK通道α-和β1-亚基的表达。结果表明,Hyp显著减少I/R损伤大鼠的梗死体积,改善神经功能障碍。此外,Hyp可显著逆转I/R诱导的内皮剥脱的脑基底动脉BK通道α-和β1-亚基表达减少的作用。此外,对I/R诱导的MDA增加、SOD降低以及Hyp诱导的CBF的保护作用被iberiotoxin(IbTX)显著逆转。在OGD/R损伤的VSMCs中,Hyp显著逆转下调的细胞活力和BK通道β1-亚基表达。然而,OGD/R和Hyp都不影响BK通道α-亚基的表达,并且Hyp不能诱导VSMCs的超极化。此外,IbTX显著逆转了OGD/R诱导的VSMCs细胞活力和SOD水平降低以及Hyp诱导的MDA产生增加的保护作用。该研究表明,Hyp具有改善血管结果的治疗潜力,其机制与通过上调BK通道抑制氧化应激和改善CBF有关。
{"title":"Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca<sup>2+</sup>-Activated K<sup>+</sup> Channels.","authors":"Wen-Ming Hong,&nbsp;Yue-Wu Xie,&nbsp;Meng-Yu Zhao,&nbsp;Tian-Hang Yu,&nbsp;Li-Na Wang,&nbsp;Wan-Yan Xu,&nbsp;Shen Gao,&nbsp;Hua-Bao Cai,&nbsp;Yan Guo,&nbsp;Fang Zhang","doi":"10.1155/2023/5545205","DOIUrl":"10.1155/2023/5545205","url":null,"abstract":"<p><p>Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca<sup>2+</sup>-activated K<sup>+</sup>) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels <i>α</i>- and <i>β</i>1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels <i>α</i>- and <i>β</i>1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels <i>β</i>1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels <i>α</i>-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"5545205"},"PeriodicalIF":3.1,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10114876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acupuncture Alters Brain's Dynamic Functional Network Connectivity in Stroke Patients with Motor Dysfunction: A Randomised Controlled Neuroimaging Trial. 针刺改变脑卒中运动功能障碍患者脑动态功能网络连通性:一项随机对照神经影像学试验。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-06-20 eCollection Date: 2023-01-01 DOI: 10.1155/2023/8510213
Yahui Wang, Mengxin Lu, Ruoyi Liu, Liping Wang, Yue Wang, Lingling Xu, Kang Wu, Chen Chen, Tianzhu Chen, Xinyue Shi, Kuangshi Li, Yihuai Zou

Objectives: Neuroimaging studies have confirmed that acupuncture can promote static functional reorganization in poststroke patients with motor dysfunction. But its effect on dynamic brain networks remains unclear. This study is aimed at investigating how acupuncture affected the brain's dynamic functional network connectivity (dFNC) after ischemic stroke.

Methods: We conducted a single-center, randomised controlled neuroimaging study in ischemic stroke patients. A total of 53 patients were randomly divided into the true acupoint treatment group (TATG) and the sham acupoint treatment group (SATG) at a ratio of 2 : 1. Clinical assessments and magnetic resonance imaging (MRI) scans were performed on subjects before and after treatment. We used dFNC analysis to estimate distinct dynamic connectivity states. Then, the temporal properties and strength of functional connectivity (FC) matrix were compared within and between the two groups. The correlation analysis between dynamic characteristics and clinical scales was also calculated.

Results: All functional network connectivity (FNC) matrices were clustered into 3 connectivity states. After treatment, the TATG group showed a reduced mean dwell time and found attenuated FC between the sensorimotor network (SMN) and the frontoparietal network (FPN) in state 3, which was a sparsely connected state. The FC between the dorsal attention network (DAN) and the default mode network (DMN) was higher after treatment in the TATG group in state 1, which was a relative segregated state. The SATG group preferred to increase the mean dwell time and FC within FPN in state 2, which displayed a local tightly connected state. In addition, we found that the FC value increased between DAN and right frontoparietal network (RFPN) in state 1 in the TATG group after treatment compared to the SATG group. Correlation analyses before treatment showed that the Fugl-Meyer Assessment (FMA) lower score was negatively correlated with the mean dwell time in state 3. FMA score showed positive correlation with FC in RFPN-SMN in state 3. FMA-lower score was positively correlated with FC in DAN-DMN and DAN-RFPN in state 1.

Conclusions: Acupuncture has the potential to modulate abnormal temporal properties and promote the balance of separation and integration of brain function. True acupoint stimulation may have a more positive effect on regulating the brain's dynamic function. Clinical Trial Registration. This trial is registered with Chinese Clinical Trials Registry (ChiCTR1800016263).

目的:神经影像学研究证实,针刺可促进脑卒中后运动功能障碍患者的静态功能重组。但它对动态大脑网络的影响尚不清楚。本研究旨在探讨针刺对缺血性脑卒中后脑动态功能网络连接(dFNC)的影响。方法:我们对缺血性脑卒中患者进行了一项单中心、随机对照的神经影像学研究。将53例患者按2:1的比例随机分为真穴治疗组(TATG)和假穴治疗组(SATG)。在治疗前后对受试者进行临床评估和磁共振成像(MRI)扫描。我们使用dFNC分析来估计不同的动态连接状态。然后,比较两组内和两组间功能连接矩阵(FC)的时间特性和强度。计算动态特征与临床量表的相关性分析。结果:所有功能网络连通性(FNC)矩阵聚类为3种连接状态。治疗后,TATG组平均停留时间缩短,感觉运动网络(SMN)和额顶叶网络(FPN)之间的FC在状态3(稀疏连接状态)减弱。状态1为相对隔离状态,TATG组经处理后背侧注意网络(DAN)与默认模式网络(DMN)之间的FC较高。在状态2下,SATG组倾向于增加FPN内的平均停留时间和FC,显示出局部紧密连接状态。此外,我们发现TATG组治疗后DAN与状态1的右额顶叶网络(RFPN)之间的FC值比SATG组增加。治疗前相关分析显示,Fugl-Meyer评估(FMA)低评分与平均状态3停留时间呈负相关。状态3 RFPN-SMN的FMA评分与FC呈正相关。FMA-lower评分与状态1的DAN-DMN和DAN-RFPN的FC呈正相关。结论:针刺有可能调节异常的时间特性,促进脑功能分离与整合的平衡。真正的穴位刺激可能对调节大脑的动态功能有更积极的作用。临床试验注册。本试验已在中国临床试验注册中心注册(ChiCTR1800016263)。
{"title":"Acupuncture Alters Brain's Dynamic Functional Network Connectivity in Stroke Patients with Motor Dysfunction: A Randomised Controlled Neuroimaging Trial.","authors":"Yahui Wang, Mengxin Lu, Ruoyi Liu, Liping Wang, Yue Wang, Lingling Xu, Kang Wu, Chen Chen, Tianzhu Chen, Xinyue Shi, Kuangshi Li, Yihuai Zou","doi":"10.1155/2023/8510213","DOIUrl":"10.1155/2023/8510213","url":null,"abstract":"<p><strong>Objectives: </strong>Neuroimaging studies have confirmed that acupuncture can promote static functional reorganization in poststroke patients with motor dysfunction. But its effect on dynamic brain networks remains unclear. This study is aimed at investigating how acupuncture affected the brain's dynamic functional network connectivity (dFNC) after ischemic stroke.</p><p><strong>Methods: </strong>We conducted a single-center, randomised controlled neuroimaging study in ischemic stroke patients. A total of 53 patients were randomly divided into the true acupoint treatment group (TATG) and the sham acupoint treatment group (SATG) at a ratio of 2 : 1. Clinical assessments and magnetic resonance imaging (MRI) scans were performed on subjects before and after treatment. We used dFNC analysis to estimate distinct dynamic connectivity states. Then, the temporal properties and strength of functional connectivity (FC) matrix were compared within and between the two groups. The correlation analysis between dynamic characteristics and clinical scales was also calculated.</p><p><strong>Results: </strong>All functional network connectivity (FNC) matrices were clustered into 3 connectivity states. After treatment, the TATG group showed a reduced mean dwell time and found attenuated FC between the sensorimotor network (SMN) and the frontoparietal network (FPN) in state 3, which was a sparsely connected state. The FC between the dorsal attention network (DAN) and the default mode network (DMN) was higher after treatment in the TATG group in state 1, which was a relative segregated state. The SATG group preferred to increase the mean dwell time and FC within FPN in state 2, which displayed a local tightly connected state. In addition, we found that the FC value increased between DAN and right frontoparietal network (RFPN) in state 1 in the TATG group after treatment compared to the SATG group. Correlation analyses before treatment showed that the Fugl-Meyer Assessment (FMA) lower score was negatively correlated with the mean dwell time in state 3. FMA score showed positive correlation with FC in RFPN-SMN in state 3. FMA-lower score was positively correlated with FC in DAN-DMN and DAN-RFPN in state 1.</p><p><strong>Conclusions: </strong>Acupuncture has the potential to modulate abnormal temporal properties and promote the balance of separation and integration of brain function. True acupoint stimulation may have a more positive effect on regulating the brain's dynamic function. <i>Clinical Trial Registration</i>. This trial is registered with Chinese Clinical Trials Registry (ChiCTR1800016263).</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"8510213"},"PeriodicalIF":3.7,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity. 针灸通过恢复额前皮质神经可塑性来缓解CUMS诱导的抑郁样行为。
IF 3.1 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-05-02 eCollection Date: 2023-01-01 DOI: 10.1155/2023/1474841
Peng Li, Wenya Huang, Yiping Chen, Muhammad Shahzad Aslam, Wenjing Cheng, Yang Huang, Wenjie Chen, Yanxun Huang, Xinnan Wu, Yining Yan, Junliang Shen, Tao Tong, Shuqiong Huang, Xianjun Meng

Purpose: To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression.

Methods: Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR.

Results: Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (P < 0.05).

Conclusion: Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.

目的:探讨针灸治疗抑郁症的疗效及神经可塑性的相关分子机制。方法:建立慢性不可预测轻度应激(CUMS)诱导的大鼠抑郁症动物模型。共有四个大鼠组,包括对照组、CUMS组、CUMS+针刺组和CUMS+氟西汀组。针刺组和氟西汀组在模型干预后给予3周的治疗。研究人员进行了开阔场地、高架加迷宫和蔗糖偏好测试来评估抑郁行为。用高尔基染色法检测神经细胞的数量、树突的长度和前额叶皮层的脊椎密度。结果:针刺可减轻抑郁样行为,促进前额叶皮层神经可塑性功能的恢复,表现为细胞数量增加,树突长度延长,脊柱密度增加。前额叶皮层的神经可塑性相关蛋白,包括BDNF、PSD95、SYN和PKMZ,在CUMS诱导组中均下调;结论:针刺可通过促进CUMS诱导的抑郁大鼠前额叶皮层神经可塑性功能的恢复和神经可塑性相关蛋白的上调来改善抑郁样行为。我们的研究为抗抑郁方法提供了新的见解,需要进一步的研究来阐明针灸在抑郁症治疗中的作用机制。
{"title":"Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity.","authors":"Peng Li,&nbsp;Wenya Huang,&nbsp;Yiping Chen,&nbsp;Muhammad Shahzad Aslam,&nbsp;Wenjing Cheng,&nbsp;Yang Huang,&nbsp;Wenjie Chen,&nbsp;Yanxun Huang,&nbsp;Xinnan Wu,&nbsp;Yining Yan,&nbsp;Junliang Shen,&nbsp;Tao Tong,&nbsp;Shuqiong Huang,&nbsp;Xianjun Meng","doi":"10.1155/2023/1474841","DOIUrl":"10.1155/2023/1474841","url":null,"abstract":"<p><strong>Purpose: </strong>To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression.</p><p><strong>Methods: </strong>Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR.</p><p><strong>Results: </strong>Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (<i>P</i> < 0.05).</p><p><strong>Conclusion: </strong>Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"1474841"},"PeriodicalIF":3.1,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9573005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment. 连续气道正压治疗 6 个月后阻塞性睡眠呼吸暂停患者内岛亚区的功能连接变化
IF 3 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-02-21 eCollection Date: 2023-01-01 DOI: 10.1155/2023/5598047
Ting Long, Haijun Li, Yongqiang Shu, Kunyao Li, Wei Xie, Yaping Zeng, Ling Huang, Li Zeng, Xiang Liu, Dechang Peng

This study was aimed at investigating the functional connectivity (FC) changes between the insular subregions and whole brain in patients with obstructive sleep apnea (OSA) after 6 months of continuous positive airway pressure (CPAP) treatment and at exploring the relationship between resting-state FC changes and cognitive impairment in OSA patients. Data from 15 patients with OSA before and after 6 months of CPAP treatment were included in this study. The FC between the insular subregions and whole brain was compared between baseline and after 6 months of CPAP treatment in OSA. After 6 months of treatment, OSA patients had increased FC from the right ventral anterior insula to the bilateral superior frontal gyrus and bilateral middle frontal gyrus and increased FC from the left posterior insula to the left middle temporal gyrus and left inferior temporal gyrus. Hyperconnectivity was found from the right posterior insula to the right middle temporal gyrus, bilateral precuneus, and bilateral posterior cingulate cortex, which mainly involved the default mode network. There are changes in functional connectivity patterns between the insular subregions and whole brain in OSA patients after 6 months of CPAP treatment. These changes provide a better understanding of the neuroimaging mechanisms underlying the improvement in cognitive function and emotional impairment in OSA patients and can be used as potential biomarkers for clinical CPAP treatment.

本研究旨在调查阻塞性睡眠呼吸暂停(OSA)患者在接受持续气道正压(CPAP)治疗 6 个月后,其脑岛亚区与全脑之间的功能连接(FC)变化,并探讨静息态 FC 变化与 OSA 患者认知障碍之间的关系。本研究纳入了 15 名 OSA 患者在 CPAP 治疗 6 个月前后的数据。研究比较了基线和 CPAP 治疗 6 个月后 OSA 患者脑岛亚区和全脑之间的 FC 变化。治疗 6 个月后,OSA 患者从右侧腹侧前脑岛到双侧额上回和双侧额中回的 FC 增加,从左侧后脑岛到左侧颞中回和左侧颞下回的 FC 增加。从右侧后脑岛到右侧颞中回、双侧楔前区和双侧扣带回后皮层的超连接性被发现,主要涉及默认模式网络。CPAP 治疗 6 个月后,OSA 患者脑岛亚区和整个大脑之间的功能连接模式发生了变化。这些变化有助于更好地理解 OSA 患者认知功能和情绪障碍改善的神经影像学机制,并可作为临床 CPAP 治疗的潜在生物标记物。
{"title":"Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment.","authors":"Ting Long, Haijun Li, Yongqiang Shu, Kunyao Li, Wei Xie, Yaping Zeng, Ling Huang, Li Zeng, Xiang Liu, Dechang Peng","doi":"10.1155/2023/5598047","DOIUrl":"10.1155/2023/5598047","url":null,"abstract":"<p><p>This study was aimed at investigating the functional connectivity (FC) changes between the insular subregions and whole brain in patients with obstructive sleep apnea (OSA) after 6 months of continuous positive airway pressure (CPAP) treatment and at exploring the relationship between resting-state FC changes and cognitive impairment in OSA patients. Data from 15 patients with OSA before and after 6 months of CPAP treatment were included in this study. The FC between the insular subregions and whole brain was compared between baseline and after 6 months of CPAP treatment in OSA. After 6 months of treatment, OSA patients had increased FC from the right ventral anterior insula to the bilateral superior frontal gyrus and bilateral middle frontal gyrus and increased FC from the left posterior insula to the left middle temporal gyrus and left inferior temporal gyrus. Hyperconnectivity was found from the right posterior insula to the right middle temporal gyrus, bilateral precuneus, and bilateral posterior cingulate cortex, which mainly involved the default mode network. There are changes in functional connectivity patterns between the insular subregions and whole brain in OSA patients after 6 months of CPAP treatment. These changes provide a better understanding of the neuroimaging mechanisms underlying the improvement in cognitive function and emotional impairment in OSA patients and can be used as potential biomarkers for clinical CPAP treatment.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"5598047"},"PeriodicalIF":3.0,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9974286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9273912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hearing Vocalizations during First Social Experience with Pups Increase Bdnf Transcription in Mouse Auditory Cortex. 幼崽第一次社交经历中听到的声音增加了小鼠听觉皮层的Bdnf转录。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-02-15 eCollection Date: 2023-01-01 DOI: 10.1155/2023/5225952
Amielle Moreno, Swetha Rajagopalan, Matthew J Tucker, Parker Lunsford, Robert C Liu

While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (Bdnf) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV Bdnf mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect Bdnf mRNA transcription in the AC. To our knowledge, this is the first time Bdnf has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.

虽然婴儿线索通常被认为是天生激发母亲的反应,但最近的研究强调了婴儿线索的神经编码是如何通过母亲的照顾而改变的。婴儿发声是照顾者重要的社会信号,来自小鼠的证据表明,照顾幼鼠的经历会诱发听觉皮层(AC)的抑制性可塑性,尽管在幼鼠最初经历中这种AC可塑性的分子介质尚未得到很好的描述。在这里,我们使用母鼠通信模型来探索在控制激素雌激素的全身影响的同时,在第一次幼鼠护理经历中,一种特定的,抑制相关的,记忆相关的基因,脑源性神经营养因子(Bdnf)的AC转录是否会因听到叫声而发生变化。卵巢切除、雌二醇或空白植入的雌性雌性小鼠在听到幼崽叫声时,其AC外显子IV Bdnf mRNA显著高于没有幼崽的雌性小鼠,这表明发声的社会背景在听觉皮层加工部位引起了即时的分子变化。E2影响了母性行为的比率,但没有显著影响AC中Bdnf mRNA的转录。据我们所知,这是Bdnf第一次与AC中社会发声的加工有关,我们的结果表明,它是一个潜在的分子成分,负责通过促进AC可塑性来增强未来对婴儿线索的识别。
{"title":"Hearing Vocalizations during First Social Experience with Pups Increase Bdnf Transcription in Mouse Auditory Cortex.","authors":"Amielle Moreno, Swetha Rajagopalan, Matthew J Tucker, Parker Lunsford, Robert C Liu","doi":"10.1155/2023/5225952","DOIUrl":"10.1155/2023/5225952","url":null,"abstract":"<p><p>While infant cues are often assumed to innately motivate maternal response, recent research highlights how the neural coding of infant cues is altered through maternal care. Infant vocalizations are important social signals for caregivers, and evidence from mice suggests that experience caring for mouse pups induces inhibitory plasticity in the auditory cortex (AC), though the molecular mediators for such AC plasticity during the initial pup experience are not well delineated. Here, we used the maternal mouse communication model to explore whether transcription in AC of a specific, inhibition-linked, memory-associated gene, brain-derived neurotrophic factor (<i>Bdnf</i>) changes due to the very first pup caring experience hearing vocalizations, while controlling for the systemic influence of the hormone estrogen. Ovariectomized and estradiol or blank-implanted virgin female mice hearing pup calls with pups present had significantly higher AC exon IV <i>Bdnf</i> mRNA compared to females without pups present, suggesting that the social context of vocalizations induces immediate molecular changes at the site of auditory cortical processing. E2 influenced the rate of maternal behavior but did not significantly affect <i>Bdnf</i> mRNA transcription in the AC. To our knowledge, this is the first time <i>Bdnf</i> has been associated with processing social vocalizations in the AC, and our results suggest that it is a potential molecular component responsible for enhancing future recognition of infant cues by contributing to AC plasticity.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"5225952"},"PeriodicalIF":3.7,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9946766/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9356987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic Brain Functional Activity Abnormalities in Episodic Tension-Type Headache. 发作性紧张性头痛的内在脑功能活动异常。
IF 3.1 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.1155/2023/6560298
Xiu Yang, DianXuan Guo, Wei Huang, Bing Chen

Objective: The neurobiological basis of episodic tension-type headache (ETTH) remains largely unclear. The aim of the present study was to explore intrinsic brain functional activity alterations in ETTH.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 32 patients with ETTH and 32 age- and gender-matched healthy controls (HCs). Differences in intrinsic brain functional activity between patients with ETTH and HCs were analyzed utilizing the fractional amplitude of low-frequency fluctuation (fALFF) approach. Correlation analyses were performed to examine the relationship between fALFF alterations and clinical characteristics.

Results: Compared to HCs, patients with ETTH exhibited increased fALFF in the right posterior insula and anterior insula and decreased fALFF in the posterior cingulate cortex. Moreover, the fALFF in the right anterior insula was negatively correlated with attack frequency in ETTH.

Conclusions: This study highlights alterations in the intrinsic brain functional activity in the insula and posterior cingulate cortex in ETTH that can help us understand its neurobiological underpinnings.

目的:发作性紧张性头痛(ETTH)的神经生物学基础仍不清楚。本研究的目的是探讨ETTH的内在脑功能活动改变。方法:收集32例ETTH患者和32例年龄和性别匹配的健康对照(hc)的静息状态功能磁共振成像(rs-fMRI)数据。利用低频波动分数振幅(fALFF)方法分析ETTH和hc患者内在脑功能活动的差异。进行相关分析以检验fALFF改变与临床特征之间的关系。结果:与hc相比,ETTH患者右侧后岛和前岛的fALFF增加,后扣带皮层的fALFF减少。此外,右脑岛前部的fALFF与ETTH发作频率呈负相关。结论:本研究强调了ETTH患者脑岛和后扣带皮层内在脑功能活动的变化,可以帮助我们了解其神经生物学基础。
{"title":"Intrinsic Brain Functional Activity Abnormalities in Episodic Tension-Type Headache.","authors":"Xiu Yang,&nbsp;DianXuan Guo,&nbsp;Wei Huang,&nbsp;Bing Chen","doi":"10.1155/2023/6560298","DOIUrl":"https://doi.org/10.1155/2023/6560298","url":null,"abstract":"<p><strong>Objective: </strong>The neurobiological basis of episodic tension-type headache (ETTH) remains largely unclear. The aim of the present study was to explore intrinsic brain functional activity alterations in ETTH.</p><p><strong>Methods: </strong>Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 32 patients with ETTH and 32 age- and gender-matched healthy controls (HCs). Differences in intrinsic brain functional activity between patients with ETTH and HCs were analyzed utilizing the fractional amplitude of low-frequency fluctuation (fALFF) approach. Correlation analyses were performed to examine the relationship between fALFF alterations and clinical characteristics.</p><p><strong>Results: </strong>Compared to HCs, patients with ETTH exhibited increased fALFF in the right posterior insula and anterior insula and decreased fALFF in the posterior cingulate cortex. Moreover, the fALFF in the right anterior insula was negatively correlated with attack frequency in ETTH.</p><p><strong>Conclusions: </strong>This study highlights alterations in the intrinsic brain functional activity in the insula and posterior cingulate cortex in ETTH that can help us understand its neurobiological underpinnings.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"6560298"},"PeriodicalIF":3.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9928985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Neural Plasticity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1