Pub Date : 2025-01-27DOI: 10.35833/MPCE.2025.000013
Hassan Bevrani;Federico Milano
Inverter-based distributed generation (DG) and renewable energy sources (RESs) are recognized as key elements to address the challenge of economically harvesting energy while, at the same time, achieving net-zero targets. However, inverter-based generation decreases the physical inertia available in the system and increases uncertainty. Moreover, recent studies have highlighted that relatively high integration of DGs/RESs can negatively impact on power grid dynamics, power quality, frequency control, voltage regulation, as well as other control and operational issues. All these issues significantly limit the penetration of DG and RESs.
{"title":"Guest Editorial: Special Section on Dynamic Performance and Flexibility Enhancement of RES-dominated Power Systems with Grid-forming Converters","authors":"Hassan Bevrani;Federico Milano","doi":"10.35833/MPCE.2025.000013","DOIUrl":"https://doi.org/10.35833/MPCE.2025.000013","url":null,"abstract":"Inverter-based distributed generation (DG) and renewable energy sources (RESs) are recognized as key elements to address the challenge of economically harvesting energy while, at the same time, achieving net-zero targets. However, inverter-based generation decreases the physical inertia available in the system and increases uncertainty. Moreover, recent studies have highlighted that relatively high integration of DGs/RESs can negatively impact on power grid dynamics, power quality, frequency control, voltage regulation, as well as other control and operational issues. All these issues significantly limit the penetration of DG and RESs.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"1-2"},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855698","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grid-forming (GFM) converters are recognized for their stabilizing effects in renewable energy systems. Integrating GFM converters into high-voltage direct current (HVDC) systems requires DC voltage control. However, there can be a conflict between GFM converter and DC voltage control when they are used in combination. This paper presents a rigorous control design for a GFM converter that connects the DC-link voltage to the power angle of the converter, thereby integrating DC voltage control with GFM capability. The proposed control is validated through small-signal and transient-stability analyses on a modular multilevel converter (MMC)-based HVDC system with a point-to-point (P2P) GFM-GFM configuration. The results demonstrate that employing a GFM-GFM configuration with the proposed control enhances the stability of the AC system to which it is connected. The system exhibits low sensitivity to grid strength and can sustain islanding conditions. The high stability limit of the system with varying grid strength using the proposed control is validated using a system with four voltage source converters.
{"title":"DC Voltage Control with Grid-Forming Capability for Enhancing Stability of HVDC System","authors":"Ghazala Shafique;Johan Boukhenfouf;François Gruson;Frédéric Colas;Xavier Guillaud","doi":"10.35833/MPCE.2024.000822","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000822","url":null,"abstract":"Grid-forming (GFM) converters are recognized for their stabilizing effects in renewable energy systems. Integrating GFM converters into high-voltage direct current (HVDC) systems requires DC voltage control. However, there can be a conflict between GFM converter and DC voltage control when they are used in combination. This paper presents a rigorous control design for a GFM converter that connects the DC-link voltage to the power angle of the converter, thereby integrating DC voltage control with GFM capability. The proposed control is validated through small-signal and transient-stability analyses on a modular multilevel converter (MMC)-based HVDC system with a point-to-point (P2P) GFM-GFM configuration. The results demonstrate that employing a GFM-GFM configuration with the proposed control enhances the stability of the AC system to which it is connected. The system exhibits low sensitivity to grid strength and can sustain islanding conditions. The high stability limit of the system with varying grid strength using the proposed control is validated using a system with four voltage source converters.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"66-78"},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855700","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.35833/MPCE.2024.000676
Xiaokuan Jin;Jianhua Wang;Han Yan;Xijun Ni;Zhendong Ji;Baojian Ji;Ding Wan
The gradual penetration of grid-forming (GFM) converters into new power systems with renewable energy sources may result in the emergence of small-signal instability issues. These issues can be elucidated using sequence impedance models, which offer a more tangible and meaningful interpretation than dq-domain impedance models and state-space models. However, existing research has primarily focused on the impact of power loops and inner control loops in GFM converters, which has not yet elucidated the precise physical interpretation of inner voltage and current loops of GFM converters in circuits. This paper derives series-parallel sequence impedance models of multi-loop GFM converters, demonstrating that the voltage loop can be regarded as a parallel impedance and the current loop as a series impedance. Consequently, the corre-sponding small-signal stability characteristics can be identified through Bode diagrams of sequence impedances or by examining the physical meanings of impedances in series and in parallel. The results indicate that the GFM converter with a single power loop is a candidate suitable for application in new power systems, given its reduced number of control parameters and enhanced low-frequency performance, particularly in weak grids. The results of PLECS simulations and corresponding prototype experiments verify the accuracy of the analytical analysis under diverse grid conditions.
{"title":"Series-Parallel Sequence Impedance Models of Multi-Loop Grid-Forming Converters","authors":"Xiaokuan Jin;Jianhua Wang;Han Yan;Xijun Ni;Zhendong Ji;Baojian Ji;Ding Wan","doi":"10.35833/MPCE.2024.000676","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000676","url":null,"abstract":"The gradual penetration of grid-forming (GFM) converters into new power systems with renewable energy sources may result in the emergence of small-signal instability issues. These issues can be elucidated using sequence impedance models, which offer a more tangible and meaningful interpretation than dq-domain impedance models and state-space models. However, existing research has primarily focused on the impact of power loops and inner control loops in GFM converters, which has not yet elucidated the precise physical interpretation of inner voltage and current loops of GFM converters in circuits. This paper derives series-parallel sequence impedance models of multi-loop GFM converters, demonstrating that the voltage loop can be regarded as a parallel impedance and the current loop as a series impedance. Consequently, the corre-sponding small-signal stability characteristics can be identified through Bode diagrams of sequence impedances or by examining the physical meanings of impedances in series and in parallel. The results indicate that the GFM converter with a single power loop is a candidate suitable for application in new power systems, given its reduced number of control parameters and enhanced low-frequency performance, particularly in weak grids. The results of PLECS simulations and corresponding prototype experiments verify the accuracy of the analytical analysis under diverse grid conditions.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"29-41"},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855724","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grid-following voltage source converter (GFL-VSC) and grid-forming voltage source converter (GFM-VSC) have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid. This paper aims to clarify and recognize the difference between grid-following (GFL) and grid-forming (GFM) frequency-voltage support more intuitively and clearly. Firstly, the phasor model considering circuit constraints is established based on the port circuit equations of the converter. It is revealed that the voltage and active power linearly correspond to the horizontal and vertical axes in the phasor space referenced to the grid voltage pha-sore Secondly, based on topological homology, GFL and GFM controls are transformed and mapped into different trajectories. The topological similarity of the characteristic curves for GFL and GFM controls is the essential cause of their uniformity. Based on the above model, it is indicated that GFL-VSC and GFM-VSC possess uniformity with regard to active power response, type of coupling, and phasor trajectory. They differ in synchronization, power coupling mechanisms, dynamics, and active power-voltage operation domain in the quasi-steady state. Case studies are undertaken on GFL-VSC and GFM-VSC integrated into a four-machine two-area system. Simulation results verify that the dynamic uniformity and difference of GFL-VSC and GFM-VSC are intuitively and comprehensively revealed.
{"title":"Dynamic Analysis of Uniformity and Difference for Grid-following and Grid-forming Voltage Source Converters Using Phasor and Topological Homology Methods","authors":"Haiyu Zhao;Hongyu Zhou;Wei Yao;Qihang Zong;Jinyu Wen","doi":"10.35833/MPCE.2024.000722","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000722","url":null,"abstract":"Grid-following voltage source converter (GFL-VSC) and grid-forming voltage source converter (GFM-VSC) have different dynamic characteristics for active power-frequency and reactive power-voltage supports of the power grid. This paper aims to clarify and recognize the difference between grid-following (GFL) and grid-forming (GFM) frequency-voltage support more intuitively and clearly. Firstly, the phasor model considering circuit constraints is established based on the port circuit equations of the converter. It is revealed that the voltage and active power linearly correspond to the horizontal and vertical axes in the phasor space referenced to the grid voltage pha-sore Secondly, based on topological homology, GFL and GFM controls are transformed and mapped into different trajectories. The topological similarity of the characteristic curves for GFL and GFM controls is the essential cause of their uniformity. Based on the above model, it is indicated that GFL-VSC and GFM-VSC possess uniformity with regard to active power response, type of coupling, and phasor trajectory. They differ in synchronization, power coupling mechanisms, dynamics, and active power-voltage operation domain in the quasi-steady state. Case studies are undertaken on GFL-VSC and GFM-VSC integrated into a four-machine two-area system. Simulation results verify that the dynamic uniformity and difference of GFL-VSC and GFM-VSC are intuitively and comprehensively revealed.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"3-14"},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855723","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143183953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.35833/MPCE.2024.000316
Francisco Jesús Matas-Díaz;Manuel Barragán-Villarejo;José María Maza-Ortega
The integration of converter-interfaced generators (CIGs) into power systems is rapidly replacing traditional synchronous machines. To ensure the security of power supply, modern power systems require the application of grid-forming technologies. This study presents a systematic small-signal analysis procedure to assess the synchronization stability of gridforming virtual synchronous generators (VSGs) considering the power system characteristics. Specifically, this procedure offers guidance in tuning controller gains to enhance stability. It is applied to six different grid-forming VSGs and experimentally tested to validate the theoretical analysis. This study concludes with key findings and a discussion on the suitability of the analyzed grid-forming VSGs based on the power system characteristics.
{"title":"A Systematic Small-signal Analysis Procedure for Improving Synchronization Stability of Grid-forming Virtual Synchronous Generators","authors":"Francisco Jesús Matas-Díaz;Manuel Barragán-Villarejo;José María Maza-Ortega","doi":"10.35833/MPCE.2024.000316","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000316","url":null,"abstract":"The integration of converter-interfaced generators (CIGs) into power systems is rapidly replacing traditional synchronous machines. To ensure the security of power supply, modern power systems require the application of grid-forming technologies. This study presents a systematic small-signal analysis procedure to assess the synchronization stability of gridforming virtual synchronous generators (VSGs) considering the power system characteristics. Specifically, this procedure offers guidance in tuning controller gains to enhance stability. It is applied to six different grid-forming VSGs and experimentally tested to validate the theoretical analysis. This study concludes with key findings and a discussion on the suitability of the analyzed grid-forming VSGs based on the power system characteristics.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"102-114"},"PeriodicalIF":5.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855740","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.35833/MPCE.2024.000677
Qing Sun;Junjie Tang;Sui Peng;Weijie Zhong;Liu Zhu;Yuan Zhao;Wenyuan Li
This paper constructs a synthetic framework for the operational reliability evaluation and risk mitigation of asynchronous grids coupled through flexible high-voltage DC (HVDC) systems (AGs-FDCSs). First of all, an analytical model for the unavailability of DC units is reformulated to refine and facilitate the reliability modeling of such flexible HVDC systems considering their time-dependent features as well as the impacts of converter station configurations. Subsequently, the operational risk associated with the redispatch procedure is extended to the reliability evaluation of composite power system, and the risk is mitigated through an optimal power flow (OPF) based short-term state assessment model. In addition, some new reliability indices like expected DC transmission power (EDCTP) and DC terminal outage probability (DCTOP) are defined to quantify the impact of the reliability of flexible HVDC systems on the entire grid. The effectiveness of the proposed framework on a modified IEEE RTS-79 system is validated with the elabo-rate discussions on the time-dependent reliability of AGs-FDC-Ss as well as the impacts of the converter station configurations.
{"title":"Operational Reliability Evaluation and Risk Mitigation of Asynchronous Grids Coupled Through Flexible HVDC Systems","authors":"Qing Sun;Junjie Tang;Sui Peng;Weijie Zhong;Liu Zhu;Yuan Zhao;Wenyuan Li","doi":"10.35833/MPCE.2024.000677","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000677","url":null,"abstract":"This paper constructs a synthetic framework for the operational reliability evaluation and risk mitigation of asynchronous grids coupled through flexible high-voltage DC (HVDC) systems (AGs-FDCSs). First of all, an analytical model for the unavailability of DC units is reformulated to refine and facilitate the reliability modeling of such flexible HVDC systems considering their time-dependent features as well as the impacts of converter station configurations. Subsequently, the operational risk associated with the redispatch procedure is extended to the reliability evaluation of composite power system, and the risk is mitigated through an optimal power flow (OPF) based short-term state assessment model. In addition, some new reliability indices like expected DC transmission power (EDCTP) and DC terminal outage probability (DCTOP) are defined to quantify the impact of the reliability of flexible HVDC systems on the entire grid. The effectiveness of the proposed framework on a modified IEEE RTS-79 system is validated with the elabo-rate discussions on the time-dependent reliability of AGs-FDC-Ss as well as the impacts of the converter station configurations.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 5","pages":"1701-1713"},"PeriodicalIF":6.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851867","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145089997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.35833/MPCE.2024.000683
Jiaxiang Hu;Weihao Hu;Di Cao;Jianjun Chen;Sayed Abulanwar;Mohammed K. Hassan;Zhe Chen;Frede Blaabjerg
This paper develops a physics-guided graph network to enhance the robustness of distribution system state estimation (DSSE) against anomalous real-time measurements, as well as a deep auto-encoder (DAE)-based detector and a Gaussian process-aided residual learning (GARL) to deal with challenges arising from topology changes. A global-scanning jumping knowledge network (GSJKN) is first designed to establish the regression rule between the measurement data and state variables. The structural information of distribution system (DS) and a global-scanning module are incorporated to guide the propagation of scarce measurements in the graph topology, contributing to valid estimation precision in sparsely measured DSs. To monitor the topology changes of the network, a DAE network is employed to learn an efficient representation of the measurements of the system under a certain topology, which can achieve online monitoring of the network structure by observing the variation tendency of the reconstruction error. When the topology change occurs, a Gaussian process with a composite kernel is applied to the modeling of the pretrained GSJKN residual to adapt to the new topology. The embedding of the physical structural knowledge enables the proposed GSJKN method to restore the missing/noisy values utilizing the adjacent measurements, which enhances the robustness to typical data acquisition errors. The adopted DAE network and special GARL-based transfer method further allow the DSSE method to rapidly detect and adapt to the topology change, as well as achieve effective quantification of the estimation uncertainties. Comparative tests on balanced and unbalanced systems demonstrate the accuracy, robustness, and adaptability of the proposed DSSE method.
{"title":"Robust Distribution System State Estimation Considering Anomalous Real-Time Measurements and Topology Change","authors":"Jiaxiang Hu;Weihao Hu;Di Cao;Jianjun Chen;Sayed Abulanwar;Mohammed K. Hassan;Zhe Chen;Frede Blaabjerg","doi":"10.35833/MPCE.2024.000683","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000683","url":null,"abstract":"This paper develops a physics-guided graph network to enhance the robustness of distribution system state estimation (DSSE) against anomalous real-time measurements, as well as a deep auto-encoder (DAE)-based detector and a Gaussian process-aided residual learning (GARL) to deal with challenges arising from topology changes. A global-scanning jumping knowledge network (GSJKN) is first designed to establish the regression rule between the measurement data and state variables. The structural information of distribution system (DS) and a global-scanning module are incorporated to guide the propagation of scarce measurements in the graph topology, contributing to valid estimation precision in sparsely measured DSs. To monitor the topology changes of the network, a DAE network is employed to learn an efficient representation of the measurements of the system under a certain topology, which can achieve online monitoring of the network structure by observing the variation tendency of the reconstruction error. When the topology change occurs, a Gaussian process with a composite kernel is applied to the modeling of the pretrained GSJKN residual to adapt to the new topology. The embedding of the physical structural knowledge enables the proposed GSJKN method to restore the missing/noisy values utilizing the adjacent measurements, which enhances the robustness to typical data acquisition errors. The adopted DAE network and special GARL-based transfer method further allow the DSSE method to rapidly detect and adapt to the topology change, as well as achieve effective quantification of the estimation uncertainties. Comparative tests on balanced and unbalanced systems demonstrate the accuracy, robustness, and adaptability of the proposed DSSE method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"928-939"},"PeriodicalIF":5.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851869","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.35833/MPCE.2024.000202
Zhongjie Guo;Jiayu Bai;Wei Wei;Haifeng Qiu;Weihao Hu
This paper studies the problem of multi-stage robust unit commitment with discrete load shedding. In the day-ahead phase, the on-off status of thermal units is scheduled. During each period of real-time dispatch, the output of thermal units and the action of load shedding are determined, and the discrete choice of load shedding corresponds to the practice of tripping substation outlets. The entire decision-making process is formulated as a multi-stage adaptive robust optimization problem with mixed-integer recourse, whose solution takes three steps. First, we propose and apply partially affine policy, which is optimized ahead of the day and restricts intertemporal dispatch variables as affine functions of previous uncertainty realizations, leaving remaining continuous and binary dispatch variables to be optimized in real time. Second, we demonstrate that the resulting model with partially affine policy can be reformulated as a two-stage robust optimization problem with mixed-integer recourse. Third, we modify the standard nested column-and-constraint generation algorithm to accelerate the inner loops by warm start. The modified algorithm solves the two-stage problem more efficiently. Case studies on the IEEE 118-bus system verify that the proposed partially affine policy outperforms conventional affine policy in terms of optimality and robustness; the modified nested column-and-constraint generation algorithm significantly reduces the total computation time; and the proposed method balances well optimality and efficiency compared with state-of-the-art methods.
{"title":"Multi-Stage Robust Unit Commitment with Discrete Load Shedding Based on Partially Affine Policy and Two-Stage Reformulation","authors":"Zhongjie Guo;Jiayu Bai;Wei Wei;Haifeng Qiu;Weihao Hu","doi":"10.35833/MPCE.2024.000202","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000202","url":null,"abstract":"This paper studies the problem of multi-stage robust unit commitment with discrete load shedding. In the day-ahead phase, the on-off status of thermal units is scheduled. During each period of real-time dispatch, the output of thermal units and the action of load shedding are determined, and the discrete choice of load shedding corresponds to the practice of tripping substation outlets. The entire decision-making process is formulated as a multi-stage adaptive robust optimization problem with mixed-integer recourse, whose solution takes three steps. First, we propose and apply partially affine policy, which is optimized ahead of the day and restricts intertemporal dispatch variables as affine functions of previous uncertainty realizations, leaving remaining continuous and binary dispatch variables to be optimized in real time. Second, we demonstrate that the resulting model with partially affine policy can be reformulated as a two-stage robust optimization problem with mixed-integer recourse. Third, we modify the standard nested column-and-constraint generation algorithm to accelerate the inner loops by warm start. The modified algorithm solves the two-stage problem more efficiently. Case studies on the IEEE 118-bus system verify that the proposed partially affine policy outperforms conventional affine policy in terms of optimality and robustness; the modified nested column-and-constraint generation algorithm significantly reduces the total computation time; and the proposed method balances well optimality and efficiency compared with state-of-the-art methods.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"415-425"},"PeriodicalIF":5.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851868","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.35833/MPCE.2024.000810
Pengfei Han;Xiaoyuan Xu;Zheng Yan;Mohammad Shahidehpour;Zhenfei Tan;Han Wang;Gang Li
The integrated electricity-heat-hydrogen system (IEHHS) facilitates the efficient utilization of multiple energy sources, while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electrolyzers (AELs) and the variations of renewable energy. In this paper, we propose a robust scheduling of IEHHS considering the bidirectional heat exchange (BHE) between AELs and district heating networks (DHNs). First, we propose an IEHHS model to coordinate the operations of AELs, active distribution networks (ADNs), and DHNs. In particular, we propose a BHE that not only enables the waste heat recovery for district heating but also accelerates the thermal dynamics in AELs. Then, we formulate a two-stage robust optimization (RO) problem for the IEHHS operation to consider the variability of renewable energy in ADNs. We propose a new solution method, i. e., multi-affine decision rule (MADR), to solve the two-stage RO problem with less conservatism. The simulation results show that the operational flexibility of IEHHS with BHE is remarkably improved compared with that only with unidirectional heat exchange (UHE). Compared with the traditional affine decision rule (ADR), the MADR effectively reduces the IEHHS operating costs while guaranteeing the reliability of scheduling strategies.
电-热-氢一体化系统(IEHHS)有利于多种能源的高效利用,但碱性电解槽(ael)的高热惯性和可再生能源的变化阻碍了IEHHS的运行灵活性。在本文中,我们提出了一种考虑AELs和区域供热网络之间双向热交换(BHE)的IEHHS鲁棒调度方法。首先,我们提出了一个IEHHS模型来协调AELs、active distribution networks (adn)和dhn的运作。我们特别提出了一种BHE,它不仅可以实现区域供热的废热回收,而且可以加速AELs的热动力学。然后,考虑ADNs中可再生能源的可变性,提出了IEHHS运行的两阶段鲁棒优化(RO)问题。针对保守性较差的两阶段RO问题,提出了一种新的求解方法——多仿射决策规则(MADR)。仿真结果表明,与单向换热(UHE)相比,采用BHE的IEHHS的运行灵活性得到了显著提高。与传统的仿射决策规则(ADR)相比,MADR在保证调度策略可靠性的同时,有效降低了IEHHS的运行成本。
{"title":"Robust Scheduling of Integrated Electricity-Heat-Hydrogen System Considering Bidirectional Heat Exchange Between Alkaline Electrolyzers and District Heating Networks","authors":"Pengfei Han;Xiaoyuan Xu;Zheng Yan;Mohammad Shahidehpour;Zhenfei Tan;Han Wang;Gang Li","doi":"10.35833/MPCE.2024.000810","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000810","url":null,"abstract":"The integrated electricity-heat-hydrogen system (IEHHS) facilitates the efficient utilization of multiple energy sources, while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electrolyzers (AELs) and the variations of renewable energy. In this paper, we propose a robust scheduling of IEHHS considering the bidirectional heat exchange (BHE) between AELs and district heating networks (DHNs). First, we propose an IEHHS model to coordinate the operations of AELs, active distribution networks (ADNs), and DHNs. In particular, we propose a BHE that not only enables the waste heat recovery for district heating but also accelerates the thermal dynamics in AELs. Then, we formulate a two-stage robust optimization (RO) problem for the IEHHS operation to consider the variability of renewable energy in ADNs. We propose a new solution method, i. e., multi-affine decision rule (MADR), to solve the two-stage RO problem with less conservatism. The simulation results show that the operational flexibility of IEHHS with BHE is remarkably improved compared with that only with unidirectional heat exchange (UHE). Compared with the traditional affine decision rule (ADR), the MADR effectively reduces the IEHHS operating costs while guaranteeing the reliability of scheduling strategies.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1248-1260"},"PeriodicalIF":5.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851866","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the rapid integration of communication and information technology into substations, the risk of cyber attacks has significantly increased. Attackers may infiltrate sub-station networks, manipulate switches, and disrupt power lines, potentially causing severe damage to the power system. To minimize such risks, this paper proposes a three-layer defender-attacker-defender (DAD) model for optimally allocating limited defensive resources to substations. To model the uncertainty surrounding the knowledge of defender of potential attacks in real-world scenarios, we employ a fuzzy analytic hierarchy process combined with the decision-making trial and evaluation laboratory (FAHP-DEMATEL). This method accounts for the attack resource uncertainty by utilizing intelligence data on factors potentially influenced by attackers, which serves as an evaluation metric to simulate the likelihood of various attack scenarios. These uncertainty probabilities are then incorporated into the substation DAD model consisting three layers of agents: the decision-maker., the attacker, and the operator. The decision-maker devises a defense strategy before the attack, while the attacker aims to identify the strategy that causes the maximum load loss. Meanwhile, the operator seeks to minimize the load loss through optimal power flow scheduling. To solve the model, the original problem is transformed into a two-layer subproblem and a single-layer master problem, which are solved iteratively using a column-and-constraint generation algorithm. Case studies conducted on the IEEE RTS-96 system and the IEEE 118-node system demonstrate the effectiveness and practicality of the proposed model. Comparative experiments further highlight the advantages of the proposed model.
{"title":"Defense Strategy Against Cyber Attacks on Substations Considering Attack Resource Uncertainty","authors":"Tianlei Zang;Yujian Xiao;Yunfei Liu;Shijun Wang;Zi'an Wang;Yi Zhou","doi":"10.35833/MPCE.2024.000375","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000375","url":null,"abstract":"With the rapid integration of communication and information technology into substations, the risk of cyber attacks has significantly increased. Attackers may infiltrate sub-station networks, manipulate switches, and disrupt power lines, potentially causing severe damage to the power system. To minimize such risks, this paper proposes a three-layer defender-attacker-defender (DAD) model for optimally allocating limited defensive resources to substations. To model the uncertainty surrounding the knowledge of defender of potential attacks in real-world scenarios, we employ a fuzzy analytic hierarchy process combined with the decision-making trial and evaluation laboratory (FAHP-DEMATEL). This method accounts for the attack resource uncertainty by utilizing intelligence data on factors potentially influenced by attackers, which serves as an evaluation metric to simulate the likelihood of various attack scenarios. These uncertainty probabilities are then incorporated into the substation DAD model consisting three layers of agents: the decision-maker., the attacker, and the operator. The decision-maker devises a defense strategy before the attack, while the attacker aims to identify the strategy that causes the maximum load loss. Meanwhile, the operator seeks to minimize the load loss through optimal power flow scheduling. To solve the model, the original problem is transformed into a two-layer subproblem and a single-layer master problem, which are solved iteratively using a column-and-constraint generation algorithm. Case studies conducted on the IEEE RTS-96 system and the IEEE 118-node system demonstrate the effectiveness and practicality of the proposed model. Comparative experiments further highlight the advantages of the proposed model.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1335-1346"},"PeriodicalIF":5.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10847935","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}