Pub Date : 2024-03-05DOI: 10.35833/MPCE.2023.000741
Jie Li;Xiaoming Liu;Zixuan Zheng;Xianyong Xiao;Shu Zhang;Hongzhi Gao;Yongjun Zhou
The optimal planning and operation of multi-type flexible resources (FRs) are critical prerequisites for maintaining power and energy balance in regional power grids with a high proportion of clean energy. However, insufficient consideration of the multi-dimensional and heterogeneous features of FRs, such as the regulation characteristics of diversified battery energy storage systems (BESSs), poses a challenge in economically relieving imbalance power and adequately sharing feature information between power supply and demand. In view of this disadvantage, an optimal planning and operation method based on differentiated feature matching through response capability characterization and difference quantification of FRs is proposed in this paper. In the planning stage, a model for the optimal planning of diversified energy storages (ESs) including Lithium-ion battery (Li-B), supercapacitor energy storage (SC-ES), compressed air energy storage (CAES), and pumped hydroelectric storage (PHS) is established. Subsequently, in the operating stage, the potential, direction, and cost of FR response behaviors are refined to match with the power and energy balance demand (PEBD) of power grid operation. An optimal operating algorithm is then employed to quantify the feature differences and output response sequences of multi-type FRs. The performance and effectiveness of the proposed method are demonstrated through comparative studies conducted on an actual regional power grid in northwest China. Analysis and simulation results illustrate that the proposed method can effectively highlight the advantages of BESSs compared with other ESs, and economically reduce imbalance power of the regional power grid under practical operating conditions.
{"title":"Optimal Planning and Operation of Multi-Type Flexible Resources Based on Differentiated Feature Matching in Regional Power Grid with High Proportion of Clean Energy","authors":"Jie Li;Xiaoming Liu;Zixuan Zheng;Xianyong Xiao;Shu Zhang;Hongzhi Gao;Yongjun Zhou","doi":"10.35833/MPCE.2023.000741","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000741","url":null,"abstract":"The optimal planning and operation of multi-type flexible resources (FRs) are critical prerequisites for maintaining power and energy balance in regional power grids with a high proportion of clean energy. However, insufficient consideration of the multi-dimensional and heterogeneous features of FRs, such as the regulation characteristics of diversified battery energy storage systems (BESSs), poses a challenge in economically relieving imbalance power and adequately sharing feature information between power supply and demand. In view of this disadvantage, an optimal planning and operation method based on differentiated feature matching through response capability characterization and difference quantification of FRs is proposed in this paper. In the planning stage, a model for the optimal planning of diversified energy storages (ESs) including Lithium-ion battery (Li-B), supercapacitor energy storage (SC-ES), compressed air energy storage (CAES), and pumped hydroelectric storage (PHS) is established. Subsequently, in the operating stage, the potential, direction, and cost of FR response behaviors are refined to match with the power and energy balance demand (PEBD) of power grid operation. An optimal operating algorithm is then employed to quantify the feature differences and output response sequences of multi-type FRs. The performance and effectiveness of the proposed method are demonstrated through comparative studies conducted on an actual regional power grid in northwest China. Analysis and simulation results illustrate that the proposed method can effectively highlight the advantages of BESSs compared with other ESs, and economically reduce imbalance power of the regional power grid under practical operating conditions.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1724-1736"},"PeriodicalIF":5.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10460467","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.35833/MPCE.2023.001028
Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu
As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.
{"title":"Optimization for Power Distribution and Maintenance Schedules of Paralleled Transmission Channels in AC/DC Power System","authors":"Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu","doi":"10.35833/MPCE.2023.001028","DOIUrl":"https://doi.org/10.35833/MPCE.2023.001028","url":null,"abstract":"As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2030-2044"},"PeriodicalIF":5.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.35833/MPCE.2023.000718
Ye Tang;Qiaozhu Zhai;Yuzhou Zhou
Energy storage (ES), as a fast response technology, creates an opportunity for microgrid (MG) to participate in the reserve market such that MG with ES can act as an independent reserve provider. However, the potential value of MG with ES in the reserve market has not been well realized. From the viewpoint of reserve provider, a novel day-ahead model is proposed comprehensively considering the effect of the real-time scheduling process, which differs from the model that MG with ES acts as a reserve consumer in most existing studies. Based on the proposed model, MG with ES can schedule its internal resources to give reserve service to other external systems as well as to realize optimal self-scheduling. Considering that the proposed model is just in concept and cannot be directly solved, a multi-stage robust optimization reserve provision method is proposed, which leverages the structure of model constraints. Next, the original model can be converted into a mixed-integer linear programming problem and the model is tractable with guaranteed solution feasibility. Numerical tests in a real-world context are provided to demonstrate efficient operation and economic performance.
储能(ES)作为一种快速响应技术,为微电网(MG)参与储备市场创造了机会,使带有 ES 的微电网可以充当独立的储备供应商。然而,带 ES 的微电网在储备市场中的潜在价值尚未得到很好的体现。本文从储备提供者的角度出发,提出了一种综合考虑了实时调度过程影响的新型日前模型,该模型有别于现有大多数研究中将带 ES 的 MG 视为储备消费者的模型。基于提出的模型,带 ES 的 MG 可调度其内部资源为其他外部系统提供储备服务,并实现最优的自我调度。考虑到所提出的模型只是概念,无法直接求解,因此提出了一种多阶段鲁棒优化储备供应方法,该方法利用了模型约束的结构。接下来,原始模型可转换为混合整数线性规划问题,模型具有可操作性,并保证了求解的可行性。在现实世界中进行的数值测试证明了该方法的高效运行和经济效益。
{"title":"From Viewpoint of Reserve Provider: A Day-Ahead Multi-Stage Robust Optimization Reserve Provision Method for Microgrid with Energy Storage","authors":"Ye Tang;Qiaozhu Zhai;Yuzhou Zhou","doi":"10.35833/MPCE.2023.000718","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000718","url":null,"abstract":"Energy storage (ES), as a fast response technology, creates an opportunity for microgrid (MG) to participate in the reserve market such that MG with ES can act as an independent reserve provider. However, the potential value of MG with ES in the reserve market has not been well realized. From the viewpoint of reserve provider, a novel day-ahead model is proposed comprehensively considering the effect of the real-time scheduling process, which differs from the model that MG with ES acts as a reserve consumer in most existing studies. Based on the proposed model, MG with ES can schedule its internal resources to give reserve service to other external systems as well as to realize optimal self-scheduling. Considering that the proposed model is just in concept and cannot be directly solved, a multi-stage robust optimization reserve provision method is proposed, which leverages the structure of model constraints. Next, the original model can be converted into a mixed-integer linear programming problem and the model is tractable with guaranteed solution feasibility. Numerical tests in a real-world context are provided to demonstrate efficient operation and economic performance.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1535-1547"},"PeriodicalIF":5.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decarbonization in the power sector is one of the critical factors in achieving carbon neutrality, and the top-level design needs to be carried out from the perspective of power planning. A multi-stage provincial power expansion planning (PPEP) model is proposed to simulate the power expansion planning at different stages of the power systems rich in renewable energy generation. This model covers 16 types of power supply, considering macro-policy demands and micro-operation constraints. The stand-alone capacity aggregation model for coal-based units within the PPEP model allows for accurate construction and retirement with different stand-alone capacities. Moreover, the soft dynamic time warping (soft-DTW) based $K-text{medoids}$