首页 > 最新文献

Journal of Modern Power Systems and Clean Energy最新文献

英文 中文
Optimal Planning and Operation of Multi-Type Flexible Resources Based on Differentiated Feature Matching in Regional Power Grid with High Proportion of Clean Energy 高清洁能源比例区域电网中基于差异化特征匹配的多类型灵活资源优化规划与运行
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-05 DOI: 10.35833/MPCE.2023.000741
Jie Li;Xiaoming Liu;Zixuan Zheng;Xianyong Xiao;Shu Zhang;Hongzhi Gao;Yongjun Zhou
The optimal planning and operation of multi-type flexible resources (FRs) are critical prerequisites for maintaining power and energy balance in regional power grids with a high proportion of clean energy. However, insufficient consideration of the multi-dimensional and heterogeneous features of FRs, such as the regulation characteristics of diversified battery energy storage systems (BESSs), poses a challenge in economically relieving imbalance power and adequately sharing feature information between power supply and demand. In view of this disadvantage, an optimal planning and operation method based on differentiated feature matching through response capability characterization and difference quantification of FRs is proposed in this paper. In the planning stage, a model for the optimal planning of diversified energy storages (ESs) including Lithium-ion battery (Li-B), supercapacitor energy storage (SC-ES), compressed air energy storage (CAES), and pumped hydroelectric storage (PHS) is established. Subsequently, in the operating stage, the potential, direction, and cost of FR response behaviors are refined to match with the power and energy balance demand (PEBD) of power grid operation. An optimal operating algorithm is then employed to quantify the feature differences and output response sequences of multi-type FRs. The performance and effectiveness of the proposed method are demonstrated through comparative studies conducted on an actual regional power grid in northwest China. Analysis and simulation results illustrate that the proposed method can effectively highlight the advantages of BESSs compared with other ESs, and economically reduce imbalance power of the regional power grid under practical operating conditions.
多类型柔性资源(FRs)的优化规划和运行是在清洁能源比例较高的区域电网中维持电力和能源平衡的关键前提。然而,由于没有充分考虑柔性资源的多维度和异质性特征,如多样化电池储能系统(BESS)的调节特性,给经济地缓解不平衡电力和充分共享电力供需双方的特征信息带来了挑战。有鉴于此,本文提出了一种基于差异化特征匹配的优化规划和运行方法,即通过响应能力表征和差异量化蓄电池储能系统。在规划阶段,建立了包括锂离子电池 (Li-B)、超级电容器储能 (SC-ES)、压缩空气储能 (CAES) 和抽水蓄能 (PHS) 在内的多元化储能 (ES) 的优化规划模型。随后,在运行阶段,对 FR 响应行为的潜力、方向和成本进行细化,使其与电网运行的功率和能量平衡需求(PEBD)相匹配。然后采用优化运行算法来量化多类型 FR 的特征差异和输出响应序列。通过对中国西北地区实际电网的对比研究,证明了所提方法的性能和有效性。分析和仿真结果表明,所提出的方法能有效突出 BESS 与其他 ES 相比的优势,并在实际运行条件下经济地降低区域电网的不平衡功率。
{"title":"Optimal Planning and Operation of Multi-Type Flexible Resources Based on Differentiated Feature Matching in Regional Power Grid with High Proportion of Clean Energy","authors":"Jie Li;Xiaoming Liu;Zixuan Zheng;Xianyong Xiao;Shu Zhang;Hongzhi Gao;Yongjun Zhou","doi":"10.35833/MPCE.2023.000741","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000741","url":null,"abstract":"The optimal planning and operation of multi-type flexible resources (FRs) are critical prerequisites for maintaining power and energy balance in regional power grids with a high proportion of clean energy. However, insufficient consideration of the multi-dimensional and heterogeneous features of FRs, such as the regulation characteristics of diversified battery energy storage systems (BESSs), poses a challenge in economically relieving imbalance power and adequately sharing feature information between power supply and demand. In view of this disadvantage, an optimal planning and operation method based on differentiated feature matching through response capability characterization and difference quantification of FRs is proposed in this paper. In the planning stage, a model for the optimal planning of diversified energy storages (ESs) including Lithium-ion battery (Li-B), supercapacitor energy storage (SC-ES), compressed air energy storage (CAES), and pumped hydroelectric storage (PHS) is established. Subsequently, in the operating stage, the potential, direction, and cost of FR response behaviors are refined to match with the power and energy balance demand (PEBD) of power grid operation. An optimal operating algorithm is then employed to quantify the feature differences and output response sequences of multi-type FRs. The performance and effectiveness of the proposed method are demonstrated through comparative studies conducted on an actual regional power grid in northwest China. Analysis and simulation results illustrate that the proposed method can effectively highlight the advantages of BESSs compared with other ESs, and economically reduce imbalance power of the regional power grid under practical operating conditions.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1724-1736"},"PeriodicalIF":5.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10460467","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142841992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization for Power Distribution and Maintenance Schedules of Paralleled Transmission Channels in AC/DC Power System 交直流电力系统并联输电通道配电及维护计划优化
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-03 DOI: 10.35833/MPCE.2023.001028
Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu
As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.
随着互联区域电网间输电功率的快速增长,制定多个并联输电通道的配电和维护计划对于保证交直流电力系统的安全、经济运行至关重要。提出了一种多并联输电通道配电维护计划的协调优化方法,并考虑了单极接地回路下一极维护而另一极维护时高压直流输电线路接地电阻的有功功率损耗。为了有效地求解所提出的COPD-MS模型,采用广义Benders分解(GBD)算法将所提出的COPD-MS模型分解为维修调度主问题和配电调度子问题,并通过它们之间的交替迭代得到原模型的最优解。此外,提出了一种求解主问题的递归加速算法,利用上一次迭代的解和新增加的弯管切割直接在新的迭代中得到主问题的解。将凸松弛技术应用于子问题的非线性约束,保证了子问题的可靠收敛。此外,由于子问题各时间区间的功率分布之间不存在耦合,因此采用并行计算技术来提高计算效率。最后,对改进后的IEEE 39总线系统和实际的1524总线大型交/直流混合电源系统进行了实例研究,验证了所提出的COPD-MS模型的有效性。
{"title":"Optimization for Power Distribution and Maintenance Schedules of Paralleled Transmission Channels in AC/DC Power System","authors":"Jie Liu;Shunjiang Lin;Weikun Liang;Yanghua Liu;Mingbo Liu","doi":"10.35833/MPCE.2023.001028","DOIUrl":"https://doi.org/10.35833/MPCE.2023.001028","url":null,"abstract":"As transmission power among interconnected regional grids is increasing rapidly, formulating the power distribution and maintenance schedules of multiple paralleled transmission channels are critical to ensure the secure and economic operation in an AC/DC power system. A coordinated optimization for power distribution and maintenance schedules (COPD-MS) of multiple paralleled transmission channels is proposed, and the active power losses of the resistances of earth line in the high-voltage direct current (HVDC) transmission lines are taken into account when one pole is under maintenance while the other pole is operating under monopolar ground circuit. To solve the proposed COPD-MS model efficiently, the generalized Benders decomposition (GBD) algorithm is used to decompose the proposed COPD-MS model into master problem of maintenance scheduling and sub-problems of power distribution scheduling, and the optimal solution of the original model is obtained by the alternative iteration between them. Moreover, a recursive acceleration (RA) algorithm is proposed to solve the master problem, which can directly obtain its solution in the new iteration by using the solution in the last iteration and the newly added Benders cut. Convex relaxation techniques are applied to the nonlinear constraints in the sub-problem to ensure the reliable convergence. Additionally, since there is no coupling among the power distributions during each time interval in the sub-problem, parallel computing technology is used to improve the computational efficiency. Finally, case studies on the modified IEEE 39-bus system and an actual 1524-bus large-scale AC/DC hybrid power system demonstrate the effectiveness of the proposed COPD-MS model.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2030-2044"},"PeriodicalIF":5.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Viewpoint of Reserve Provider: A Day-Ahead Multi-Stage Robust Optimization Reserve Provision Method for Microgrid with Energy Storage 从储备提供者的角度:带储能微电网的日前多阶段稳健优化储备供应方法
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-03 DOI: 10.35833/MPCE.2023.000718
Ye Tang;Qiaozhu Zhai;Yuzhou Zhou
Energy storage (ES), as a fast response technology, creates an opportunity for microgrid (MG) to participate in the reserve market such that MG with ES can act as an independent reserve provider. However, the potential value of MG with ES in the reserve market has not been well realized. From the viewpoint of reserve provider, a novel day-ahead model is proposed comprehensively considering the effect of the real-time scheduling process, which differs from the model that MG with ES acts as a reserve consumer in most existing studies. Based on the proposed model, MG with ES can schedule its internal resources to give reserve service to other external systems as well as to realize optimal self-scheduling. Considering that the proposed model is just in concept and cannot be directly solved, a multi-stage robust optimization reserve provision method is proposed, which leverages the structure of model constraints. Next, the original model can be converted into a mixed-integer linear programming problem and the model is tractable with guaranteed solution feasibility. Numerical tests in a real-world context are provided to demonstrate efficient operation and economic performance.
储能(ES)作为一种快速响应技术,为微电网(MG)参与储备市场创造了机会,使带有 ES 的微电网可以充当独立的储备供应商。然而,带 ES 的微电网在储备市场中的潜在价值尚未得到很好的体现。本文从储备提供者的角度出发,提出了一种综合考虑了实时调度过程影响的新型日前模型,该模型有别于现有大多数研究中将带 ES 的 MG 视为储备消费者的模型。基于提出的模型,带 ES 的 MG 可调度其内部资源为其他外部系统提供储备服务,并实现最优的自我调度。考虑到所提出的模型只是概念,无法直接求解,因此提出了一种多阶段鲁棒优化储备供应方法,该方法利用了模型约束的结构。接下来,原始模型可转换为混合整数线性规划问题,模型具有可操作性,并保证了求解的可行性。在现实世界中进行的数值测试证明了该方法的高效运行和经济效益。
{"title":"From Viewpoint of Reserve Provider: A Day-Ahead Multi-Stage Robust Optimization Reserve Provision Method for Microgrid with Energy Storage","authors":"Ye Tang;Qiaozhu Zhai;Yuzhou Zhou","doi":"10.35833/MPCE.2023.000718","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000718","url":null,"abstract":"Energy storage (ES), as a fast response technology, creates an opportunity for microgrid (MG) to participate in the reserve market such that MG with ES can act as an independent reserve provider. However, the potential value of MG with ES in the reserve market has not been well realized. From the viewpoint of reserve provider, a novel day-ahead model is proposed comprehensively considering the effect of the real-time scheduling process, which differs from the model that MG with ES acts as a reserve consumer in most existing studies. Based on the proposed model, MG with ES can schedule its internal resources to give reserve service to other external systems as well as to realize optimal self-scheduling. Considering that the proposed model is just in concept and cannot be directly solved, a multi-stage robust optimization reserve provision method is proposed, which leverages the structure of model constraints. Next, the original model can be converted into a mixed-integer linear programming problem and the model is tractable with guaranteed solution feasibility. Numerical tests in a real-world context are provided to demonstrate efficient operation and economic performance.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1535-1547"},"PeriodicalIF":5.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Stage Provincial Power Expansion Planning and Multi-Market Trading Equilibrium 多阶段省级电力扩张规划与多市场交易平衡
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-03 DOI: 10.35833/MPCE.2024.000171
Guangsheng Pan;Zhongfan Gu;Yuanyuan Sun;Kaiqi Sun;Wei Gu
Decarbonization in the power sector is one of the critical factors in achieving carbon neutrality, and the top-level design needs to be carried out from the perspective of power planning. A multi-stage provincial power expansion planning (PPEP) model is proposed to simulate the power expansion planning at different stages of the power systems rich in renewable energy generation. This model covers 16 types of power supply, considering macro-policy demands and micro-operation constraints. The stand-alone capacity aggregation model for coal-based units within the PPEP model allows for accurate construction and retirement with different stand-alone capacities. Moreover, the soft dynamic time warping (soft-DTW) based $K-text{medoids}$ technique is adopted to generate typical scenarios for balancing the model accuracy and solution efficiency. Additionally, a multi-market trading equilibrium (MMTE) mechanism is proposed to address the differences in the levelized cost of energy between the coal-based and renewable-based units by participating in energy and ancillary service markets. Since the coal-based units take on the task of providing ancillary services from renewable-based units in the ancillary service market, the MMTE mechanism can effectively equalize the profits of both by having renewable-based units purchase ancillary services from coal-based units and pay for them, thus improving the motivation of coal-based units. A case study in Xinjiang province, China, verifies the effectiveness of the planning results of the PPEP model and the profit equilibrium realization of the MMTE mechanism.
电力行业的去碳化是实现碳中和的关键因素之一,需要从电力规划的角度进行顶层设计。本文提出了一种多阶段省级电力扩容规划(PPEP)模型,用于模拟富含可再生能源发电的电力系统在不同阶段的电力扩容规划。该模型考虑了宏观政策需求和微观运行约束,涵盖了 16 种供电类型。PPEP 模型中的煤电机组单机容量聚合模型可以精确地实现不同单机容量机组的建设和退役。此外,还采用了基于 $K-text{medoids}$ 技术的软动态时间扭曲(soft-DTW)来生成典型情景,以平衡模型精度和求解效率。此外,还提出了一种多市场交易平衡(MMTE)机制,通过参与能源和辅助服务市场来解决煤电机组和可再生能源机组之间的平准化能源成本差异。由于在辅助服务市场中,煤电机组承担了可再生能源机组提供辅助服务的任务,因此 MMTE 机制可以通过可再生能源机组向煤电机组购买辅助服务并支付费用的方式,有效均衡两者的利润,从而提高煤电机组的积极性。中国新疆的案例研究验证了 PPEP 模型规划结果和 MMTE 机制利润均衡实现的有效性。
{"title":"Multi-Stage Provincial Power Expansion Planning and Multi-Market Trading Equilibrium","authors":"Guangsheng Pan;Zhongfan Gu;Yuanyuan Sun;Kaiqi Sun;Wei Gu","doi":"10.35833/MPCE.2024.000171","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000171","url":null,"abstract":"Decarbonization in the power sector is one of the critical factors in achieving carbon neutrality, and the top-level design needs to be carried out from the perspective of power planning. A multi-stage provincial power expansion planning (PPEP) model is proposed to simulate the power expansion planning at different stages of the power systems rich in renewable energy generation. This model covers 16 types of power supply, considering macro-policy demands and micro-operation constraints. The stand-alone capacity aggregation model for coal-based units within the PPEP model allows for accurate construction and retirement with different stand-alone capacities. Moreover, the soft dynamic time warping (soft-DTW) based \u0000<tex>$K-text{medoids}$</tex>\u0000 technique is adopted to generate typical scenarios for balancing the model accuracy and solution efficiency. Additionally, a multi-market trading equilibrium (MMTE) mechanism is proposed to address the differences in the levelized cost of energy between the coal-based and renewable-based units by participating in energy and ancillary service markets. Since the coal-based units take on the task of providing ancillary services from renewable-based units in the ancillary service market, the MMTE mechanism can effectively equalize the profits of both by having renewable-based units purchase ancillary services from coal-based units and pay for them, thus improving the motivation of coal-based units. A case study in Xinjiang province, China, verifies the effectiveness of the planning results of the PPEP model and the profit equilibrium realization of the MMTE mechanism.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1652-1665"},"PeriodicalIF":5.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated Feedback Power Control Method for Hybrid Multi-Infeed HVDC System 混合多馈直流系统的协调反馈功率控制方法
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-03-03 DOI: 10.35833/MPCE.2023.000586
Jiachen Zhang;Qi Xie;Zixuan Zheng;Chunyi Guo;Yi Zou;Jie Ren
During the power modulation process of line commutated converter-based high-voltage direct current (LCC-HVDC), the transient power mismatch between the fast-change converter station and the slow-response reactive power compensators (RPCs) can cause transient voltage disturbances at the weak sending end of the AC grid. To mitigate such voltage disturbances, this paper proposes a coordinated feedback power control method for the hybrid multi-infeed HVDC (HMI-HVDC) system comprising an LCC-HVDC and voltage source converter-based HVDC (VSC-HVDC) systems. The mechanism of the disturbance caused by transient power mismatch is quantitatively analyzed, and the numerical relationship between the instantaneous unbalanced power and the AC voltage is derived. Based on the numerical relationship and considering the time-varying relationship of reactive power between converter stations, the unbalanced power is set as the feedback and coordinately distributed among the inverter stations of VSC-HVDC, and the rectifier and the inverter stations of LCC-HVDC. Simulation results verify that the proposed method can effectively suppress voltage disturbance without relying on remote communication, thus enhancing the operation performance of the HMI-HVDC system.
在基于线路换向变流器的高压直流(lc - hvdc)功率调制过程中,快速变化换流站与慢响应无功补偿器之间的暂态功率失配会导致交流电网弱发送端的暂态电压扰动。为了减轻这种电压干扰,本文提出了一种由lc -HVDC和基于电压源变换器的HVDC (vcs -HVDC)组成的混合多馈入HVDC (HMI-HVDC)系统的协调反馈功率控制方法。定量分析了暂态功率失配引起扰动的机理,推导了暂态不平衡功率与交流电压之间的数值关系。基于数值关系,考虑换流站间无功功率的时变关系,将不平衡功率设置为反馈,并在VSC-HVDC的逆变站、LCC-HVDC的整流站和逆变站之间进行协调分布。仿真结果表明,该方法可以有效抑制电压干扰,而无需依赖远程通信,从而提高人机直流系统的运行性能。
{"title":"Coordinated Feedback Power Control Method for Hybrid Multi-Infeed HVDC System","authors":"Jiachen Zhang;Qi Xie;Zixuan Zheng;Chunyi Guo;Yi Zou;Jie Ren","doi":"10.35833/MPCE.2023.000586","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000586","url":null,"abstract":"During the power modulation process of line commutated converter-based high-voltage direct current (LCC-HVDC), the transient power mismatch between the fast-change converter station and the slow-response reactive power compensators (RPCs) can cause transient voltage disturbances at the weak sending end of the AC grid. To mitigate such voltage disturbances, this paper proposes a coordinated feedback power control method for the hybrid multi-infeed HVDC (HMI-HVDC) system comprising an LCC-HVDC and voltage source converter-based HVDC (VSC-HVDC) systems. The mechanism of the disturbance caused by transient power mismatch is quantitatively analyzed, and the numerical relationship between the instantaneous unbalanced power and the AC voltage is derived. Based on the numerical relationship and considering the time-varying relationship of reactive power between converter stations, the unbalanced power is set as the feedback and coordinately distributed among the inverter stations of VSC-HVDC, and the rectifier and the inverter stations of LCC-HVDC. Simulation results verify that the proposed method can effectively suppress voltage disturbance without relying on remote communication, thus enhancing the operation performance of the HMI-HVDC system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2045-2057"},"PeriodicalIF":5.7,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed Source-Load-Storage Cooperative Low-Carbon Scheduling Strategy Considering Vehicle-to-Grid Aggregators 考虑车辆到电网聚合器的分布式源-负载-存储合作低碳调度策略
IF 6.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-28 DOI: 10.35833/MPCE.2023.000742
Xiao Xu;Ziwen Qiu;Teng Zhang;Hui Gao
The vehicle-to-grid (V2G) technology enables the bidirectional power flow between electric vehicle (EV) batteries and the power grid, making EV-based mobile energy storage an appealing supplement to stationary energy storage systems. However, the stochastic and volatile charging behaviors pose a challenge for EV fleets to engage directly in multi-agent cooperation. To unlock the scheduling potential of EVs, this paper proposes a source-load-storage cooperative low-carbon scheduling strategy considering V2G aggregators. The uncertainty of EV charging patterns is managed through a rolling-horizon control framework, where the scheduling and control horizons are adaptively adjusted according to the availability periods of EVs. Moreover, a Minkowski-sum based aggregation method is employed to evaluate the scheduling potential of aggregated EV fleets within a given scheduling horizon. This method effectively reduces the variable dimension while preserving the charging and discharging constraints of individual EVs. Subsequently, a Nash bargaining based cooperative scheduling model involving a distribution system operator (DSO), an EV aggregator (EVA), and a load aggregator (LA) is established to maximize the social welfare and improve the low-carbon performance of the system. This model is solved by the alternating direction method of multipliers (ADMM) algorithm in a distributed manner, with privacy of participants fully preserved. The proposed strategy is proven to achieve the objective of low-carbon economic operation.
车辆到电网(V2G)技术实现了电动汽车(EV)电池与电网之间的双向电力流动,使基于电动汽车的移动储能成为固定储能系统的一种有吸引力的补充。然而,随机和不稳定的充电行为给电动汽车车队直接参与多代理合作带来了挑战。为了释放电动汽车的调度潜力,本文提出了一种考虑到 V2G 聚合器的源-荷-储合作低碳调度策略。电动汽车充电模式的不确定性通过滚动地平线控制框架进行管理,其中调度和控制地平线根据电动汽车的可用期进行自适应调整。此外,还采用了一种基于明考斯基和的聚合方法,以评估特定调度范围内聚合电动汽车车队的调度潜力。这种方法有效地减少了变量维度,同时保留了单个电动汽车的充电和放电约束。随后,建立了一个基于纳什讨价还价的合作调度模型,涉及配电系统运营商(DSO)、电动汽车聚合器(EVA)和负载聚合器(LA),以实现社会福利最大化并提高系统的低碳性能。该模型采用交替乘法(ADMM)算法以分布式方式求解,并充分保护参与者的隐私。实践证明,所提出的策略能够实现低碳经济运行的目标。
{"title":"Distributed Source-Load-Storage Cooperative Low-Carbon Scheduling Strategy Considering Vehicle-to-Grid Aggregators","authors":"Xiao Xu;Ziwen Qiu;Teng Zhang;Hui Gao","doi":"10.35833/MPCE.2023.000742","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000742","url":null,"abstract":"The vehicle-to-grid (V2G) technology enables the bidirectional power flow between electric vehicle (EV) batteries and the power grid, making EV-based mobile energy storage an appealing supplement to stationary energy storage systems. However, the stochastic and volatile charging behaviors pose a challenge for EV fleets to engage directly in multi-agent cooperation. To unlock the scheduling potential of EVs, this paper proposes a source-load-storage cooperative low-carbon scheduling strategy considering V2G aggregators. The uncertainty of EV charging patterns is managed through a rolling-horizon control framework, where the scheduling and control horizons are adaptively adjusted according to the availability periods of EVs. Moreover, a Minkowski-sum based aggregation method is employed to evaluate the scheduling potential of aggregated EV fleets within a given scheduling horizon. This method effectively reduces the variable dimension while preserving the charging and discharging constraints of individual EVs. Subsequently, a Nash bargaining based cooperative scheduling model involving a distribution system operator (DSO), an EV aggregator (EVA), and a load aggregator (LA) is established to maximize the social welfare and improve the low-carbon performance of the system. This model is solved by the alternating direction method of multipliers (ADMM) algorithm in a distributed manner, with privacy of participants fully preserved. The proposed strategy is proven to achieve the objective of low-carbon economic operation.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 2","pages":"440-453"},"PeriodicalIF":6.3,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10453376","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-Optimization of Behind-the-Meter and Front-of-Meter Value Streams in Community Batteries 社区电池表后和表前价值流的共同优化
IF 6.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-28 DOI: 10.35833/MPCE.2023.000746
Carmen Bas Domenech;Antonella Maria De Corato;Pierluigi Mancarella
Community batteries (CBs) are emerging to support and even enable energy communities and generally help consumers, especially space-constrained ones, to access potential techno-economic benefits from storage and support local grid decarbonization. However, the economic viability of CB projects is often uncertain. In this regard, typical feasibility studies assess CB value for behind-the-meter (BTM) operation or whole-sale market participation, i.e., front-of-meter (FOM). This work proposes a novel techno-economic operational framework that allows systematic assessment of the different options and introduces a two-meter architecture that co-optimizes both BTM and FOM benefits. A real CB project application in Australia is used to demonstrate the significant two-meter co-optimization opportunities that could enhance the business case of CB and energy communities by multi-service provision and value stacking.
社区电池(CB)正在兴起,以支持甚至扶持能源社区,并普遍帮助消费者,尤其是空间受限的消费者,从存储中获得潜在的技术经济效益,并支持当地电网的去碳化。然而,CB 项目的经济可行性往往是不确定的。在这方面,典型的可行性研究评估的是表后(BTM)操作或整个销售市场参与(即表前(FOM))的 CB 价值。这项工作提出了一个新颖的技术经济运行框架,允许对不同的选项进行系统评估,并引入了一种双表架构,以共同优化表后运行和表前运行的效益。澳大利亚的一个实际 CB 项目应用展示了双表协同优化的重要机会,通过提供多种服务和价值叠加,可增强 CB 和能源社区的商业案例。
{"title":"Co-Optimization of Behind-the-Meter and Front-of-Meter Value Streams in Community Batteries","authors":"Carmen Bas Domenech;Antonella Maria De Corato;Pierluigi Mancarella","doi":"10.35833/MPCE.2023.000746","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000746","url":null,"abstract":"Community batteries (CBs) are emerging to support and even enable energy communities and generally help consumers, especially space-constrained ones, to access potential techno-economic benefits from storage and support local grid decarbonization. However, the economic viability of CB projects is often uncertain. In this regard, typical feasibility studies assess CB value for behind-the-meter (BTM) operation or whole-sale market participation, i.e., front-of-meter (FOM). This work proposes a novel techno-economic operational framework that allows systematic assessment of the different options and introduces a two-meter architecture that co-optimizes both BTM and FOM benefits. A real CB project application in Australia is used to demonstrate the significant two-meter co-optimization opportunities that could enhance the business case of CB and energy communities by multi-service provision and value stacking.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 2","pages":"334-345"},"PeriodicalIF":6.3,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10453377","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scenario-Based Optimal Real-Time Charging Strategy of Electric Vehicles with Bayesian Long Short-Term Memory Networks 基于场景的贝叶斯长短期记忆网络优化电动汽车实时充电策略
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-26 DOI: 10.35833/MPCE.2023.000512
Hongtao Ren;Chung-Li Tseng;Fushuan Wen;Chongyu Wang;Guoyan Chen;Xiao Li
Joint operation optimization for electric vehicles (EVs) and on-site or adjacent photovoltaic generation (PVG) are pivotal to maintaining the security and economics of the operation of the power system concerned. Conventional offline optimization algorithms lack real-time applicability due to uncertainties involved in the charging service of an EV charging station (EVCS). Firstly, an optimization model for real-time EV charging strategy is proposed to address these challenges, which accounts for environmental uncertainties of an EVCS, encompassing EV arrivals, charging demands, PVG outputs, and the electricity price. Then, a scenario-based two-stage optimization approach is formulated. The scenarios of the underlying uncertain environmental factors are generated by the Bayesian long short-term memory (B-LSTM) network. Finally, numerical results substantiate the efficacy of the proposed optimization approach, and demonstrate superior profitability compared with prevalent approaches.
电动汽车(EV)和现场或邻近光伏发电(PVG)的联合运行优化对于维护相关电力系统运行的安全性和经济性至关重要。由于电动汽车充电站(EVCS)的充电服务存在不确定性,传统的离线优化算法缺乏实时适用性。首先,针对这些挑战提出了一种实时电动汽车充电策略优化模型,该模型考虑到了电动汽车充电站的环境不确定性,包括电动汽车到达、充电需求、光伏发电机输出和电价。然后,提出了一种基于情景的两阶段优化方法。基础不确定环境因素的情景由贝叶斯长短期记忆(B-LSTM)网络生成。最后,数值结果证明了所提出的优化方法的有效性,并证明了与现有方法相比更优越的盈利能力。
{"title":"Scenario-Based Optimal Real-Time Charging Strategy of Electric Vehicles with Bayesian Long Short-Term Memory Networks","authors":"Hongtao Ren;Chung-Li Tseng;Fushuan Wen;Chongyu Wang;Guoyan Chen;Xiao Li","doi":"10.35833/MPCE.2023.000512","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000512","url":null,"abstract":"Joint operation optimization for electric vehicles (EVs) and on-site or adjacent photovoltaic generation (PVG) are pivotal to maintaining the security and economics of the operation of the power system concerned. Conventional offline optimization algorithms lack real-time applicability due to uncertainties involved in the charging service of an EV charging station (EVCS). Firstly, an optimization model for real-time EV charging strategy is proposed to address these challenges, which accounts for environmental uncertainties of an EVCS, encompassing EV arrivals, charging demands, PVG outputs, and the electricity price. Then, a scenario-based two-stage optimization approach is formulated. The scenarios of the underlying uncertain environmental factors are generated by the Bayesian long short-term memory (B-LSTM) network. Finally, numerical results substantiate the efficacy of the proposed optimization approach, and demonstrate superior profitability compared with prevalent approaches.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 5","pages":"1572-1583"},"PeriodicalIF":5.7,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10445407","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Analytical Method for Delineating Feasible Region for PV Integration Capacities in Net-zero Distribution Systems Considering Battery Energy Storage System Flexibility 考虑电池储能系统灵活性的净零配电系统中光伏集成能力可行区域划分分析方法
IF 6.3 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-26 DOI: 10.35833/MPCE.2023.000633
Shida Zhang;Shaoyun Ge;Hong Liu;Guocheng Hou;Chengshan Wang
To provide guidance for photovoltaic (PV) system integration in net-zero distribution systems (DSs), this paper proposes an analytical method for delineating the feasible region for PV integration capacities (PVICs), where the impact of battery energy storage system (BESS) flexibility is considered. First, we introduce distributionally robust chance constraints on network security and energy/carbon net-zero requirements, which form the upper and lower bounds of the feasible region. Then, the formulation and solution of the feasible region is proposed. The resulting analytical expression is a set of linear inequalities, illustrating that the feasible region is a polyhedron in a high-dimensional space. A procedure is designed to verify and adjust the feasible region, ensuring that it satisfies network loss constraints under alternating current (AC) power flow. Case studies on the 4-bus system, the IEEE 33-bus system, and the IEEE 123-bus system verify the effectiveness of the proposed method. It is demonstrated that the proposed method fully captures the spatio-temporal coupling relationship among PVs, loads, and BESSs, while also quantifying the impact of this relationship on the boundaries of the feasible region.
为了给零净配电系统(DSs)中的光伏(PV)系统集成提供指导,本文提出了一种分析方法,用于划分光伏集成容量(PVIC)的可行区域,其中考虑了电池储能系统(BESS)灵活性的影响。首先,我们引入了关于网络安全和能源/碳净零要求的分布稳健机会约束,这些约束构成了可行区域的上界和下界。然后,提出可行区域的表述和解决方案。由此得到的分析表达式是一组线性不等式,说明可行区域是高维空间中的一个多面体。设计了一个程序来验证和调整可行区域,确保其满足交流电流下的网络损耗约束。对 4 总线系统、IEEE 33 总线系统和 IEEE 123 总线系统的案例研究验证了所提方法的有效性。研究表明,所提出的方法完全捕捉到了光伏、负载和 BESS 之间的时空耦合关系,同时还量化了这种关系对可行区域边界的影响。
{"title":"An Analytical Method for Delineating Feasible Region for PV Integration Capacities in Net-zero Distribution Systems Considering Battery Energy Storage System Flexibility","authors":"Shida Zhang;Shaoyun Ge;Hong Liu;Guocheng Hou;Chengshan Wang","doi":"10.35833/MPCE.2023.000633","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000633","url":null,"abstract":"To provide guidance for photovoltaic (PV) system integration in net-zero distribution systems (DSs), this paper proposes an analytical method for delineating the feasible region for PV integration capacities (PVICs), where the impact of battery energy storage system (BESS) flexibility is considered. First, we introduce distributionally robust chance constraints on network security and energy/carbon net-zero requirements, which form the upper and lower bounds of the feasible region. Then, the formulation and solution of the feasible region is proposed. The resulting analytical expression is a set of linear inequalities, illustrating that the feasible region is a polyhedron in a high-dimensional space. A procedure is designed to verify and adjust the feasible region, ensuring that it satisfies network loss constraints under alternating current (AC) power flow. Case studies on the 4-bus system, the IEEE 33-bus system, and the IEEE 123-bus system verify the effectiveness of the proposed method. It is demonstrated that the proposed method fully captures the spatio-temporal coupling relationship among PVs, loads, and BESSs, while also quantifying the impact of this relationship on the boundaries of the feasible region.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 2","pages":"475-487"},"PeriodicalIF":6.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10445408","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fault Diagnosis Method for Smart Meters via Two-Layer Stacking Ensemble Optimization and Data Augmentation 通过双层堆叠集合优化和数据增强实现智能电表故障诊断的方法
IF 5.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-02-12 DOI: 10.35833/MPCE.2023.000909
Leijiao Ge;Tianshuo Du;Zhengyang Xu;Luyang Hou;Jun Yan;Yuanliang Li
The accurate identification of smart meter (SM) fault types is crucial for enhancing the efficiency of operation and maintenance (O&M) and the reliability of power collection systems. However, the intelligent classification of SM fault types faces significant challenges owing to the complexity of features and the imbalance between fault categories. To address these issues, this study presents a fault diagnosis method for SM incorporating three distinct modules. The first module employs a combination of standardization, data imputation, and feature extraction to enhance the data quality, thereby facilitating improved training and learning by the classifiers. To enhance the classification performance, the data imputation method considers feature correlation measurement and sequential imputation, and the feature extractor utilizes the discriminative enhanced sparse autoencoder. To tackle the interclass imbalance of data with discrete and continuous features, the second module introduces an assisted classifier generative adversarial network, which includes a discrete feature generation module. Finally, a novel Stacking ensemble classifier for SM fault diagnosis is developed. In contrast to previous studies, we construct a two-layer heuristic optimization framework to address the synchronous dynamic optimization problem of the combinations and hyper-parameters of the Stacking ensemble classifier, enabling better handling of complex classification tasks using SM data. The proposed fault diagnosis method for SM via two-layer stacking ensemble optimization and data augmentation is trained and validated using SM fault data collected from 2010 to 2018 in Zhejiang Province, China. Experimental results demonstrate the effectiveness of the proposed method in improving the accuracy of SM fault diagnosis, particularly for minority classes.
准确识别智能电表(SM)故障类型对于提高运行和维护(O&M)效率以及电力采集系统的可靠性至关重要。然而,由于特征的复杂性和故障类别之间的不平衡性,智能电表故障类型的智能分类面临着巨大挑战。为解决这些问题,本研究提出了一种包含三个不同模块的 SM 故障诊断方法。第一个模块采用标准化、数据估算和特征提取相结合的方法来提高数据质量,从而促进分类器的训练和学习。为了提高分类性能,数据估算方法考虑了特征相关性测量和顺序估算,而特征提取器则利用了判别增强型稀疏自动编码器。为了解决具有离散和连续特征的数据类间不平衡问题,第二个模块引入了辅助分类器生成对抗网络,其中包括离散特征生成模块。最后,我们开发了一种用于 SM 故障诊断的新型 Stacking 集合分类器。与以往研究不同的是,我们构建了一个双层启发式优化框架,以解决 Stacking 集合分类器的组合和超参数的同步动态优化问题,从而更好地处理使用 SM 数据的复杂分类任务。通过两层堆叠集合优化和数据增强提出的 SM 故障诊断方法,利用 2010 年至 2018 年在中国浙江省收集的 SM 故障数据进行了训练和验证。实验结果表明,所提出的方法能有效提高 SM 故障诊断的准确性,尤其是对少数类别的故障诊断。
{"title":"A Fault Diagnosis Method for Smart Meters via Two-Layer Stacking Ensemble Optimization and Data Augmentation","authors":"Leijiao Ge;Tianshuo Du;Zhengyang Xu;Luyang Hou;Jun Yan;Yuanliang Li","doi":"10.35833/MPCE.2023.000909","DOIUrl":"10.35833/MPCE.2023.000909","url":null,"abstract":"The accurate identification of smart meter (SM) fault types is crucial for enhancing the efficiency of operation and maintenance (O&M) and the reliability of power collection systems. However, the intelligent classification of SM fault types faces significant challenges owing to the complexity of features and the imbalance between fault categories. To address these issues, this study presents a fault diagnosis method for SM incorporating three distinct modules. The first module employs a combination of standardization, data imputation, and feature extraction to enhance the data quality, thereby facilitating improved training and learning by the classifiers. To enhance the classification performance, the data imputation method considers feature correlation measurement and sequential imputation, and the feature extractor utilizes the discriminative enhanced sparse autoencoder. To tackle the interclass imbalance of data with discrete and continuous features, the second module introduces an assisted classifier generative adversarial network, which includes a discrete feature generation module. Finally, a novel Stacking ensemble classifier for SM fault diagnosis is developed. In contrast to previous studies, we construct a two-layer heuristic optimization framework to address the synchronous dynamic optimization problem of the combinations and hyper-parameters of the Stacking ensemble classifier, enabling better handling of complex classification tasks using SM data. The proposed fault diagnosis method for SM via two-layer stacking ensemble optimization and data augmentation is trained and validated using SM fault data collected from 2010 to 2018 in Zhejiang Province, China. Experimental results demonstrate the effectiveness of the proposed method in improving the accuracy of SM fault diagnosis, particularly for minority classes.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 4","pages":"1272-1284"},"PeriodicalIF":5.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10433422","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Modern Power Systems and Clean Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1