Pub Date : 2024-11-12DOI: 10.35833/MPCE.2024.000469
Manijeh Alipour;Gevork B. Gharehpetian;Roya Ahmadiahangar;Argo Rosin
As the penetration of intermittent renewable energy resources in microgrids (MGs) continues to grow globally, optimal operation management becomes increasingly crucial due to the variability of these sources. One potential solution to this challenge is the use of demand response (DR) programs, which are practical and relatively low-cost options. However, ensuring the security of MG operation also requires evaluating its flexibility by determining the acceptable boundaries of uncertain variables. Additionally, in real-world operational decision-making problems, there is a simultaneous optimization of multiple objectives, including the maximization of system flexibility and the minimization of system cost. This paper presents a methodology for developing a cost-aware flexibility evaluation method for MGs connected to the upstream grid, which are subject to volatile market prices. The model is based on the feasibility analysis of the uncertain space of wind power generation and load, and it also investigates the level of inflexibility present in the system. The impact of the DR program on the flexibility of MGs is quantified through a case study. The case study confirms the success of the proposed method and underscores the significance of cost modeling in flexibility evaluation problems.
{"title":"Cost-Aware Flexibility Evaluation for Microgrids","authors":"Manijeh Alipour;Gevork B. Gharehpetian;Roya Ahmadiahangar;Argo Rosin","doi":"10.35833/MPCE.2024.000469","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000469","url":null,"abstract":"As the penetration of intermittent renewable energy resources in microgrids (MGs) continues to grow globally, optimal operation management becomes increasingly crucial due to the variability of these sources. One potential solution to this challenge is the use of demand response (DR) programs, which are practical and relatively low-cost options. However, ensuring the security of MG operation also requires evaluating its flexibility by determining the acceptable boundaries of uncertain variables. Additionally, in real-world operational decision-making problems, there is a simultaneous optimization of multiple objectives, including the maximization of system flexibility and the minimization of system cost. This paper presents a methodology for developing a cost-aware flexibility evaluation method for MGs connected to the upstream grid, which are subject to volatile market prices. The model is based on the feasibility analysis of the uncertain space of wind power generation and load, and it also investigates the level of inflexibility present in the system. The impact of the DR program on the flexibility of MGs is quantified through a case study. The case study confirms the success of the proposed method and underscores the significance of cost modeling in flexibility evaluation problems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"1003-1013"},"PeriodicalIF":5.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10751675","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve the safety of the solid oxide fuel cell (SOFC) systems and avoid the generation of large amounts of pollutants during power switching, this paper designs a power switching strategy based on trajectory planning and sliding mode control (TP-SMC). The design elements of the power switching strategy are proposed through simulation analysis at first. Then, based on the gas transmission delay time and the change of gas flow obtained from testing, trajectory planning (TP) is implemented. Compared with other power switching strategies, it has been proven that the power switching strategy based on TP has significantly better control performance. Furthermore, considering the shortcomings and problems of TP in practical application, this paper introduces sliding mode control (SMC) on the basis of TP to improve the power switching strategy. The final simulation results also prove that the TP-SMC can effectively suppress the impact of uncertainty in gas flow and gas transmission delay time. Compared with TP, TP-SMC can ensure that under uncertain conditions, the SOFC system does not experience fuel starvation and temperature exceeding limit during power switching. Meanwhile, the NOx emissions are also within the normal and acceptable range. This paper can guide the power switching process of the actual SOFC systems to avoid safety issues and excessive generation of NOx, which is very helpful for improving the performance and service life of the SOFC systems.
{"title":"Power Switching Based on Trajectory Planning and Sliding Mode Control for Solid Oxide Fuel Cell Systems","authors":"Zhen Wang;Guoqiang Liu;Xingbo Liu;Jie Wang;Zhiyang Jin;Xiaowei Fu;Zhuo Wang;Bing Jin;Zhonghua Deng;Xi Li","doi":"10.35833/MPCE.2024.000284","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000284","url":null,"abstract":"To improve the safety of the solid oxide fuel cell (SOFC) systems and avoid the generation of large amounts of pollutants during power switching, this paper designs a power switching strategy based on trajectory planning and sliding mode control (TP-SMC). The design elements of the power switching strategy are proposed through simulation analysis at first. Then, based on the gas transmission delay time and the change of gas flow obtained from testing, trajectory planning (TP) is implemented. Compared with other power switching strategies, it has been proven that the power switching strategy based on TP has significantly better control performance. Furthermore, considering the shortcomings and problems of TP in practical application, this paper introduces sliding mode control (SMC) on the basis of TP to improve the power switching strategy. The final simulation results also prove that the TP-SMC can effectively suppress the impact of uncertainty in gas flow and gas transmission delay time. Compared with TP, TP-SMC can ensure that under uncertain conditions, the SOFC system does not experience fuel starvation and temperature exceeding limit during power switching. Meanwhile, the NOx emissions are also within the normal and acceptable range. This paper can guide the power switching process of the actual SOFC systems to avoid safety issues and excessive generation of NOx, which is very helpful for improving the performance and service life of the SOFC systems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1968-1979"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747305","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The power loss minimization and DC voltage stability of the multi-terminal direct current (MTDC) system with large-scale wind farm (WF) cluster affect the stability and power quality of the interconnected power grid. This paper proposes a distributed optimal voltage control (DOVC) strategy, which aims to optimize voltage distribution in MTDC and WF systems, reduce system power losses, and track power dispatch commands. The proposed DOVC strategy employs a bi-level distributed control architecture. At the upper level, the MTDC controller coordinates power flow, DC-side voltage of grid-side voltage source converters (GSVSCs), and WF-side voltage source converters (WFVSCs) for power loss minimization and DC voltage stabilization of the MTDC system. At the lower level, the WF controller coordinates the controlled bus voltage of WFVSC and the active and reactive power of wind turbines (WTs) to maintain WT terminal voltages within feasible range. Then, the WF controller minimizes the power loss of the WF system, while tracking the optimal command from the upper-level control strategy. Considering the computational tasks of multi-objective optimization with large-scale WF cluster, the proposed DOVC strategy is executed in a distributed manner based on the alternating direction method of multipliers (AD-MM). An MTDC system with large-scale WF cluster is established in MATLAB to validate the effectiveness of the proposed DOVC strategy.
{"title":"Distributed Optimal Voltage Control for Multi-Terminal Direct Current System with Large-Scale Wind Farm Cluster Based on ADMM","authors":"Xueping Li;Yinpeng Qu;Jianxin Deng;Sheng Huang;Derong Luo;Qiuwei Wu","doi":"10.35833/MPCE.2024.000298","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000298","url":null,"abstract":"The power loss minimization and DC voltage stability of the multi-terminal direct current (MTDC) system with large-scale wind farm (WF) cluster affect the stability and power quality of the interconnected power grid. This paper proposes a distributed optimal voltage control (DOVC) strategy, which aims to optimize voltage distribution in MTDC and WF systems, reduce system power losses, and track power dispatch commands. The proposed DOVC strategy employs a bi-level distributed control architecture. At the upper level, the MTDC controller coordinates power flow, DC-side voltage of grid-side voltage source converters (GSVSCs), and WF-side voltage source converters (WFVSCs) for power loss minimization and DC voltage stabilization of the MTDC system. At the lower level, the WF controller coordinates the controlled bus voltage of WFVSC and the active and reactive power of wind turbines (WTs) to maintain WT terminal voltages within feasible range. Then, the WF controller minimizes the power loss of the WF system, while tracking the optimal command from the upper-level control strategy. Considering the computational tasks of multi-objective optimization with large-scale WF cluster, the proposed DOVC strategy is executed in a distributed manner based on the alternating direction method of multipliers (AD-MM). An MTDC system with large-scale WF cluster is established in MATLAB to validate the effectiveness of the proposed DOVC strategy.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"1052-1063"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746395","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144185811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional protection methods are not suitable for hybrid (cable and overhead) transmission lines in voltage source converter based high-voltage direct current (VSC-HVDC) systems. Accordingly, this paper presents the robust fault detection, classification, and location based on the empirical wavelet transform-Teager energy operator (EWT-TEO) and artificial neural network (ANN) for hybrid transmission lines in VSC-HVDC systems. The operational scheme of the proposed protection method consists of two loops: ①an EWT-TEO based feature extraction loop, ② and an ANN-based fault detection, classification, and location loop. Under the proposed protection method, the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform (EWT) method. The energy content extracted by the EWT is fed into the ANN for fault detection, classification, and location. Various fault cases, including the high-impedance fault (HIF) as well as noises, are performed to train the ANN with two hidden layers. The test system and signal decomposition are conducted by PSCAD/EMT-DC and MATLAB, respectively. The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave (TW) based protection method. The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems, where a mean percentage error of approximately 0.1% is achieved.
{"title":"Fault Detection, Classification, and Location Based on Empirical Wavelet Transform-Teager Energy Operator and ANN for Hybrid Transmission Lines in VSC-HVDC Systems","authors":"Jalal Sahebkar Farkhani;Özgür Çelik;Kaiqi Ma;Claus Leth Bak;Zhe Chen","doi":"10.35833/MPCE.2023.000925","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000925","url":null,"abstract":"Traditional protection methods are not suitable for hybrid (cable and overhead) transmission lines in voltage source converter based high-voltage direct current (VSC-HVDC) systems. Accordingly, this paper presents the robust fault detection, classification, and location based on the empirical wavelet transform-Teager energy operator (EWT-TEO) and artificial neural network (ANN) for hybrid transmission lines in VSC-HVDC systems. The operational scheme of the proposed protection method consists of two loops: ①an EWT-TEO based feature extraction loop, ② and an ANN-based fault detection, classification, and location loop. Under the proposed protection method, the voltage and current signals are decomposed into several sub-passbands with low and high frequencies using the empirical wavelet transform (EWT) method. The energy content extracted by the EWT is fed into the ANN for fault detection, classification, and location. Various faul<sup>t</sup> cases, including the high-impedance fault (HIF) as well as noises, are performed to train the ANN with two hidden layers. The test system and signal decomposition are conducted by PSCAD/EMT-DC and MATLAB, respectively. The performance of the proposed protection method is compared with that of the traditional non-pilot traveling wave (TW) based protection method. The results confirm the high accuracy of the proposed protection method for hybrid transmission lines in VSC-HVDC systems, where a mean percentage error of approximately 0.1% is achieved.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"840-851"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144139847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.35833/MPCE.2024.000451
Dazhi Yang;Guoming Yang;Marc J. Perez;Richard Perez
The variable nature of solar power has hitherto been regarded as a major barrier preventing large-scale high-penetration solar energy into the power grid. Based on decades of research, particularly those advances made over the recent few years, it is now believed that dispatchable solar power is no longer a conception but will soon become techno-economically feasible. The policy-driven information exchange among the weather centers, grid operators, and photovoltaic plant owners is the key to realizing dispatchable solar power. In this paper, a five-step forecasting framework for enabling dispatchable solar power is introduced. Among the five steps, the first three, namely numerical weather prediction (NWP), forecast post-processing, and irradiance-to-power conversion, have long been familiar to most. The last two steps, namely hierarchical reconciliation and firm forecasting, are quite recent conceptions, which have yet to raise widespread awareness. The proposed framework is demonstrated through a case study on achieving effectively dispatchable solar power generation at plant and substation levels.
{"title":"Effectively Dispatchable Solar Power with Hierarchical Reconciliation and Firm Forecasting","authors":"Dazhi Yang;Guoming Yang;Marc J. Perez;Richard Perez","doi":"10.35833/MPCE.2024.000451","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000451","url":null,"abstract":"The variable nature of solar power has hitherto been regarded as a major barrier preventing large-scale high-penetration solar energy into the power grid. Based on decades of research, particularly those advances made over the recent few years, it is now believed that dispatchable solar power is no longer a conception but will soon become techno-economically feasible. The policy-driven information exchange among the weather centers, grid operators, and photovoltaic plant owners is the key to realizing dispatchable solar power. In this paper, a five-step forecasting framework for enabling dispatchable solar power is introduced. Among the five steps, the first three, namely numerical weather prediction (NWP), forecast post-processing, and irradiance-to-power conversion, have long been familiar to most. The last two steps, namely hierarchical reconciliation and firm forecasting, are quite recent conceptions, which have yet to raise widespread awareness. The proposed framework is demonstrated through a case study on achieving effectively dispatchable solar power generation at plant and substation levels.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"585-596"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746396","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143716515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.35833/MPCE.2024.000328
Weikun Liang;Shunjiang Lin;Yuerong Yang;Ziqing Yang;Mingbo Liu
With the load growth and the power grid expansion, the problem of short-circuit current (SCC) exceeding the secure limit in large-scale power grids has become more serious, which poses great challenge to the optimal secure operation. Aiming at the SCC limitations, we use multiple back-to-back voltage source converter based (B2B VSC) systems to separate a large-scale AC power grid into two asynchronous power grids. A multi-objective robust optimal secure operation model of large-scale power grid with multiple B2B VSC systems considering the SCC limitation is established based on the AC power flow equations. The decision variables include the on/off states of synchronous generators, power output, terminal voltage, transmission switching, bus sectionalization, and modulation ratios of B2B VSC systems. The influence of inner current sources of renewable energy generators on the system SCC is also considered. To improve the computational efficiency, a mixed-integer convex programming (MICP) framework based on convex relaxation methods including the inscribed N-sided approximation for the nonlinear SCC limitation constraints is proposed. Moreover, combined with the column-and-constraint generation (C&CG) algorithm, a method to directly solve the compromise optimal solution (COS) of the multi-objective robust optimal secure operation model is proposed. Finally, the effectiveness and computational efficiency of the proposed solution method is demonstrated by an actual 4407-bus provincial power grid and the modified IEEE 39-bus power grid, which can reduce the consumed CPU time of solving the COS by more than 90% and obtain a better COS.
{"title":"Multi-Objective Robust Optimal Secure Operation Model of Large-Scale Power Grid with Multiple Back-to-Back Voltage Source Converter Based Systems Considering Short-Circuit Current Limitation","authors":"Weikun Liang;Shunjiang Lin;Yuerong Yang;Ziqing Yang;Mingbo Liu","doi":"10.35833/MPCE.2024.000328","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000328","url":null,"abstract":"With the load growth and the power grid expansion, the problem of short-circuit current (SCC) exceeding the secure limit in large-scale power grids has become more serious, which poses great challenge to the optimal secure operation. Aiming at the SCC limitations, we use multiple back-to-back voltage source converter based (B2B VSC) systems to separate a large-scale AC power grid into two asynchronous power grids. A multi-objective robust optimal secure operation model of large-scale power grid with multiple B2B VSC systems considering the SCC limitation is established based on the AC power flow equations. The decision variables include the on/off states of synchronous generators, power output, terminal voltage, transmission switching, bus sectionalization, and modulation ratios of B2B VSC systems. The influence of inner current sources of renewable energy generators on the system SCC is also considered. To improve the computational efficiency, a mixed-integer convex programming (MICP) framework based on convex relaxation methods including the inscribed N-sided approximation for the nonlinear SCC limitation constraints is proposed. Moreover, combined with the column-and-constraint generation (C&CG) algorithm, a method to directly solve the compromise optimal solution (COS) of the multi-objective robust optimal secure operation model is proposed. Finally, the effectiveness and computational efficiency of the proposed solution method is demonstrated by an actual 4407-bus provincial power grid and the modified IEEE 39-bus power grid, which can reduce the consumed CPU time of solving the COS by more than 90% and obtain a better COS.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1151-1166"},"PeriodicalIF":5.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734985","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.35833/MPCE.2024.000465
Yizhuo Ma;Jin Xu;Chenxiang Gao;Guojie Li;Keyou Wang
With good adaptability to weak power grids, the grid-forming inverter becomes the foundation of future power grids with high-proportion renewable energy. Moreover, the virtual synchronous generator (VSG) control is recognized as the mainstream control strategy for grid-forming inverters. For permanent magnet synchronous generator (PMSG) based wind generation systems connected to power grid via VSG-controlled grid-forming inverters, some novel impacts on the low-frequency oscillations (LFOs) emerge in power grids. The first impact involves the negative/positive damping effect on LFOs. In this paper, the small-signal torque model of VSG-controlled PMSG-based wind generation systems is established based on the damping torque analysis method, revealing the influence mechanism of machine-side dynamics on LFOs and proving the necessity of the double-mass model for accurate stability analysis. The second impact is the resonance effect between torsional oscillation and LFOs. Subsequently, this paper uses the open-loop resonance analysis method to study the resonance mechanism and to predict the root trajectory. Then, a damping enhancement strategy is proposed to weaken and eliminate the negative damping effect of machine-side dynamics on LFOs and the resonance effect between torsional oscillation and LFOs. Finally, the analysis result is validated through a case study involving the connection of the VSG-controlled PMSG-based wind generation system to the IEEE 39-bus AC grid, supporting the industrial application and stable operation of VSG-controlled PMSG-based wind generation systems.
{"title":"Low-Frequency Oscillations and Resonance Analysis of VSG-Controlled PMSG-based Wind Generation Systems","authors":"Yizhuo Ma;Jin Xu;Chenxiang Gao;Guojie Li;Keyou Wang","doi":"10.35833/MPCE.2024.000465","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000465","url":null,"abstract":"With good adaptability to weak power grids, the grid-forming inverter becomes the foundation of future power grids with high-proportion renewable energy. Moreover, the virtual synchronous generator (VSG) control is recognized as the mainstream control strategy for grid-forming inverters. For permanent magnet synchronous generator (PMSG) based wind generation systems connected to power grid via VSG-controlled grid-forming inverters, some novel impacts on the low-frequency oscillations (LFOs) emerge in power grids. The first impact involves the negative/positive damping effect on LFOs. In this paper, the small-signal torque model of VSG-controlled PMSG-based wind generation systems is established based on the damping torque analysis method, revealing the influence mechanism of machine-side dynamics on LFOs and proving the necessity of the double-mass model for accurate stability analysis. The second impact is the resonance effect between torsional oscillation and LFOs. Subsequently, this paper uses the open-loop resonance analysis method to study the resonance mechanism and to predict the root trajectory. Then, a damping enhancement strategy is proposed to weaken and eliminate the negative damping effect of machine-side dynamics on LFOs and the resonance effect between torsional oscillation and LFOs. Finally, the analysis result is validated through a case study involving the connection of the VSG-controlled PMSG-based wind generation system to the IEEE 39-bus AC grid, supporting the industrial application and stable operation of VSG-controlled PMSG-based wind generation systems.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 1","pages":"115-127"},"PeriodicalIF":5.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143184062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.35833/MPCE.2024.000336
Lei Xiao;Kashem M. Muttaqi;Ashish P. Agalgaonkar
With the progressive exhaustion of fossil energy and growing concerns about climate change, it has been observed that distributed energy resources such as photovoltaic (PV) systems and electric vehicles (EVs) are being increasingly integrated into distribution systems. This underscores the increasing imperative for a thorough analysis to evaluate reliability from the perspectives of distribution systems and EV charging services, taking into account the stochastic nature of PV and EV load demands. This paper presents an approach for the reliability assessment of distribution systems that incorporate PV and EVs considering reliability models for both PV systems and EV battery systems. It also defines new indices to investigate the adequacy and customer-side reliability for EV charging services. The developed methodology utilizes a Monte Carlo simulation-based approach and is showcased using the modified Roy Billinton Test System (RBTS) Bus 4 distribution system. The results illustrate that reliability indices for EV charging services, such as percentage of charging energy not supplied (PCENS), average EV interruption frequency index (AEVIFI) and average EV interruption duration index (AEVIDI), are improved under the proposed approach.
{"title":"Reliability Assessment of Distribution Systems Under Influence of Stochastic Nature of PV and Spatial-Temporal Distribution of EV Load Demand","authors":"Lei Xiao;Kashem M. Muttaqi;Ashish P. Agalgaonkar","doi":"10.35833/MPCE.2024.000336","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000336","url":null,"abstract":"With the progressive exhaustion of fossil energy and growing concerns about climate change, it has been observed that distributed energy resources such as photovoltaic (PV) systems and electric vehicles (EVs) are being increasingly integrated into distribution systems. This underscores the increasing imperative for a thorough analysis to evaluate reliability from the perspectives of distribution systems and EV charging services, taking into account the stochastic nature of PV and EV load demands. This paper presents an approach for the reliability assessment of distribution systems that incorporate PV and EVs considering reliability models for both PV systems and EV battery systems. It also defines new indices to investigate the adequacy and customer-side reliability for EV charging services. The developed methodology utilizes a Monte Carlo simulation-based approach and is showcased using the modified Roy Billinton Test System (RBTS) Bus 4 distribution system. The results illustrate that reliability indices for EV charging services, such as percentage of charging energy not supplied (PCENS), average EV interruption frequency index (AEVIFI) and average EV interruption duration index (AEVIDI), are improved under the proposed approach.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1287-1299"},"PeriodicalIF":5.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734986","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.35833/MPCE.2024.000118
Wenping Qin;Xiaozhou Li;Xing Jing;Zhilong Zhu;Ruipeng Lu;Xiaoqing Han
The virtual power plant (VPP) facilitates the coordinated optimization of diverse forms of electrical energy through the aggregation and control of distributed energy resources (DERs), offering as a potential resource for frequency regulation to enhance the power system flexibility. To fully exploit the flexibility of DER and enhance the revenue of VPP, this paper proposes a multi-temporal optimization strategy of VPP in the energy-frequency regulation (EFR) market under the uncertainties of wind power (WP), photovoltaic (PV), and market price. Firstly, all schedulable electric vehicles (EVs) are aggregated into an electric vehicle cluster (EVC), and the schedulable domain evaluation model of EVC is established. A day-ahead energy bidding model based on Stackelberg game is also established for VPP and EVC. Secondly, on this basis, the multi-temporal optimization model of VPP in the EFR market is proposed. To manage risks stemming from the uncertainties of WP, PV, and market price, the concept of conditional value at risk (CVaR) is integrated into the strategy, effectively balancing the bidding benefits and associated risks. Finally, the results based on operational data from a provincial electricity market demonstrate that the proposed strategy enhances comprehensive revenue by providing frequency regulation services and encouraging EV response scheduling.
{"title":"Multi-Temporal Optimization of Virtual Power Plant in Energy-Frequency Regulation Market Under Uncertainties","authors":"Wenping Qin;Xiaozhou Li;Xing Jing;Zhilong Zhu;Ruipeng Lu;Xiaoqing Han","doi":"10.35833/MPCE.2024.000118","DOIUrl":"https://doi.org/10.35833/MPCE.2024.000118","url":null,"abstract":"The virtual power plant (VPP) facilitates the coordinated optimization of diverse forms of electrical energy through the aggregation and control of distributed energy resources (DERs), offering as a potential resource for frequency regulation to enhance the power system flexibility. To fully exploit the flexibility of DER and enhance the revenue of VPP, this paper proposes a multi-temporal optimization strategy of VPP in the energy-frequency regulation (EFR) market under the uncertainties of wind power (WP), photovoltaic (PV), and market price. Firstly, all schedulable electric vehicles (EVs) are aggregated into an electric vehicle cluster (EVC), and the schedulable domain evaluation model of EVC is established. A day-ahead energy bidding model based on Stackelberg game is also established for VPP and EVC. Secondly, on this basis, the multi-temporal optimization model of VPP in the EFR market is proposed. To manage risks stemming from the uncertainties of WP, PV, and market price, the concept of conditional value at risk (CVaR) is integrated into the strategy, effectively balancing the bidding benefits and associated risks. Finally, the results based on operational data from a provincial electricity market demonstrate that the proposed strategy enhances comprehensive revenue by providing frequency regulation services and encouraging EV response scheduling.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 2","pages":"675-687"},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726909","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.35833/MPCE.2023.000986
Ramin Parvari;Shaahin Filizadeh;Ioni Fernando
This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage. The proposed model gains computational efficiency in two ways. Firstly, it markedly reduces the large number of nodes in the conventional switching model of the converter, thereby shrinking the size of its admittance matrix. Secondly, it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking. Mathematical derivation of the model is carried out using differential equations of the converter. The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EM TDC simulator against conventional detailed switching models and measurements from a single-phase scaled-down laboratory setup. This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.
{"title":"Detailed Equivalent Modeling and Simulation of Modular Multilevel Converters with Partially-Integrated Battery Energy Storage","authors":"Ramin Parvari;Shaahin Filizadeh;Ioni Fernando","doi":"10.35833/MPCE.2023.000986","DOIUrl":"https://doi.org/10.35833/MPCE.2023.000986","url":null,"abstract":"This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage. The proposed model gains computational efficiency in two ways. Firstly, it markedly reduces the large number of nodes in the conventional switching model of the converter, thereby shrinking the size of its admittance matrix. Secondly, it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking. Mathematical derivation of the model is carried out using differential equations of the converter. The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EM TDC simulator against conventional detailed switching models and measurements from a single-phase scaled-down laboratory setup. This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1444-1457"},"PeriodicalIF":5.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726914","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144716277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}