Pub Date : 2023-11-04DOI: 10.1177/0309524x231206559
Gbubemi Kevin Akporhonor, Smith Orode Otuagoma, Temisan Arnold Akporhonor
This review paper evaluates the current status of the Nigeria wind energy sector to identify the available Wind Energy Potential, Installed Wind Energy Capacity and Renewable Energy Policies in a bid to provide accurate information to aid the exploration and exploitation of wind energy across Nigeria. Consequently, the huge expanse between the wind energy Potential across Cities in Nigeria, the poor numbers of installed wind capacity and Nigeria’s Renewable Energy policies show low interest in Wind Energy in comparison to other RE sources. All this calls for further investment in the Nigerian wind energy sector
{"title":"Nigerian wind energy status","authors":"Gbubemi Kevin Akporhonor, Smith Orode Otuagoma, Temisan Arnold Akporhonor","doi":"10.1177/0309524x231206559","DOIUrl":"https://doi.org/10.1177/0309524x231206559","url":null,"abstract":"This review paper evaluates the current status of the Nigeria wind energy sector to identify the available Wind Energy Potential, Installed Wind Energy Capacity and Renewable Energy Policies in a bid to provide accurate information to aid the exploration and exploitation of wind energy across Nigeria. Consequently, the huge expanse between the wind energy Potential across Cities in Nigeria, the poor numbers of installed wind capacity and Nigeria’s Renewable Energy policies show low interest in Wind Energy in comparison to other RE sources. All this calls for further investment in the Nigerian wind energy sector","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"9 S1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135773687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.1177/0309524x231205282
Mohammad Mahdi Hassanshahi, Masoud Kharati-Koopaee
This research focuses on the effect of overlap ratio on the performance of Savonius rotor in the presence of inner blades in such a way that inner blade tip is parallel to the main blade tip and root. Findings reveal that at low overlap ratios, using inner blade that the inner blade tip is parallel to the main blade root leads to a higher power and torque coefficients than the other inner blade configuration and also conventional rotor. This research indicates that for the overlapped rotor and for the two inner blade configurations, the higher power and torque coefficients could be obtained at high and low tip speed ratios, respectively. Results show that for both inner blade configurations, the overlapped rotors overcome the negative torque generated by the non-overlapped one. It is also shown that at high overlap ratio, using inner blade has no advantage over the conventional rotor.
{"title":"Numerical investigation into performance of Savonius wind turbine equipped with inner blades: Overlap ratio effect","authors":"Mohammad Mahdi Hassanshahi, Masoud Kharati-Koopaee","doi":"10.1177/0309524x231205282","DOIUrl":"https://doi.org/10.1177/0309524x231205282","url":null,"abstract":"This research focuses on the effect of overlap ratio on the performance of Savonius rotor in the presence of inner blades in such a way that inner blade tip is parallel to the main blade tip and root. Findings reveal that at low overlap ratios, using inner blade that the inner blade tip is parallel to the main blade root leads to a higher power and torque coefficients than the other inner blade configuration and also conventional rotor. This research indicates that for the overlapped rotor and for the two inner blade configurations, the higher power and torque coefficients could be obtained at high and low tip speed ratios, respectively. Results show that for both inner blade configurations, the overlapped rotors overcome the negative torque generated by the non-overlapped one. It is also shown that at high overlap ratio, using inner blade has no advantage over the conventional rotor.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135774060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing integration of renewable energy sources (RESs), particularly wind power plants (WPP), into deregulated power markets introduces complexities in optimizing social welfare (SW). This article proposes a recent metaheuristic algorithm to address this challenge and maximize SW while accounting for the presence of WPP and the inherent uncertainty associated with wind power forecasting. The proposed algorithm optimizes generation scheduling and demand-side bidding strategies in the deregulated power market to maximize SW while ensuring economic efficiency. To validate the effectiveness and robustness of the proposed algorithm, MATLAB simulations are conducted on IEEE 30 and IEEE 118-bus systems. The results demonstrate that the proposed algorithm provides promising solutions for maximizing SW, especially in the context of incorporating WPP. This research contributes to the advancement of power market optimization methods and promotes the seamless integration of RESs, fostering a more sustainable energy future.
{"title":"Social welfare maximization in deregulated power market incorporating wind power plants using metaheuristic algorithm","authors":"Ajay Swaroop Raturi, Raj Kumar Jarial, Yog Raj Sood, Ankur Maheshwari, Supriya Jaiswal","doi":"10.1177/0309524x231204992","DOIUrl":"https://doi.org/10.1177/0309524x231204992","url":null,"abstract":"The increasing integration of renewable energy sources (RESs), particularly wind power plants (WPP), into deregulated power markets introduces complexities in optimizing social welfare (SW). This article proposes a recent metaheuristic algorithm to address this challenge and maximize SW while accounting for the presence of WPP and the inherent uncertainty associated with wind power forecasting. The proposed algorithm optimizes generation scheduling and demand-side bidding strategies in the deregulated power market to maximize SW while ensuring economic efficiency. To validate the effectiveness and robustness of the proposed algorithm, MATLAB simulations are conducted on IEEE 30 and IEEE 118-bus systems. The results demonstrate that the proposed algorithm provides promising solutions for maximizing SW, especially in the context of incorporating WPP. This research contributes to the advancement of power market optimization methods and promotes the seamless integration of RESs, fostering a more sustainable energy future.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"69 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135869003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1177/0309524x231203689
Anupam Kumar, Arun Rathore
The use of renewable energy sources such as solar and wind causes fluctuations in power generation. Hence energy storage is necessary in standalone power systems. It is challenging to use batteries as power backups because they cannot handle rapid power fluctuations without compromising battery life. This paper proposes a hybrid energy storage system (HESS) for wind energy-based power systems that includes a battery for long-term energy management with a super capacitor for quick dynamic power regulation. Pulse charging of the proposed HESS is carried out with the help of a dual active bridge (DAB) converter. Pulse charging of the HESS will result into reduced stress on battery and eventually to a longer self-life. The operation of the wind energy fed hybrid battery-supercapacitor energy storage was investigated through simulation using MATLAB-Simulink. For validating the simulation results, an experimental test bench is created using a real DAB prototype and TI Piccolo-F280049 microcontroller.
{"title":"Modelling and testing of wind energy fed hybrid battery-supercapacitor energy storage operating in pulsed charging mode","authors":"Anupam Kumar, Arun Rathore","doi":"10.1177/0309524x231203689","DOIUrl":"https://doi.org/10.1177/0309524x231203689","url":null,"abstract":"The use of renewable energy sources such as solar and wind causes fluctuations in power generation. Hence energy storage is necessary in standalone power systems. It is challenging to use batteries as power backups because they cannot handle rapid power fluctuations without compromising battery life. This paper proposes a hybrid energy storage system (HESS) for wind energy-based power systems that includes a battery for long-term energy management with a super capacitor for quick dynamic power regulation. Pulse charging of the proposed HESS is carried out with the help of a dual active bridge (DAB) converter. Pulse charging of the HESS will result into reduced stress on battery and eventually to a longer self-life. The operation of the wind energy fed hybrid battery-supercapacitor energy storage was investigated through simulation using MATLAB-Simulink. For validating the simulation results, an experimental test bench is created using a real DAB prototype and TI Piccolo-F280049 microcontroller.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"66 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1177/0309524x231199432
Vahid Fazlollahi, Farzad A Shirazi, Mostafa Taghizadeh
In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-varying nonlinear wake dynamics. Hence, we develop a method that authorizes coordination in a wind farm for a squarely payoff-based scenario where the turbines have access only to measurements from their neighbors via repeated interactions. Therefore, in order to maximize output power in a wind farm, an Adaptive Learning Game Theory (ALGT) method is introduced. This control scheme provides an interaction framework that constructs a series of common control functions. Here, in every iteration, each turbine chooses an independent decision according to a localized control law. The control objective of wind turbine [Formula: see text] determines how each turbine adjusts a decision at each iteration by processing available information.
{"title":"Wind farm supervisory controller design for power optimization in localized areas using adaptive learning game theory (ALGT)","authors":"Vahid Fazlollahi, Farzad A Shirazi, Mostafa Taghizadeh","doi":"10.1177/0309524x231199432","DOIUrl":"https://doi.org/10.1177/0309524x231199432","url":null,"abstract":"In this paper, a supervisory control concept for wind farms is proposed based on the neighboring wind turbines control functions in localized areas for power optimization considering wake effects. The flow control in wind farms to maximize power production is a challenging problem due to its time-varying nonlinear wake dynamics. Hence, we develop a method that authorizes coordination in a wind farm for a squarely payoff-based scenario where the turbines have access only to measurements from their neighbors via repeated interactions. Therefore, in order to maximize output power in a wind farm, an Adaptive Learning Game Theory (ALGT) method is introduced. This control scheme provides an interaction framework that constructs a series of common control functions. Here, in every iteration, each turbine chooses an independent decision according to a localized control law. The control objective of wind turbine [Formula: see text] determines how each turbine adjusts a decision at each iteration by processing available information.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"65 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1177/0309524x231203952
Gazala Rashid, Shameem Ahmad Lone, Mairaj Ud din Mufti
This paper aims to develop a supervisory control scheme to enhance the effectiveness and profitability of a small-rating super capacitor energy storage system (SCESS) used in load-frequency-control applications. The proposed approach, which uses one-step-ahead adaptive predictive control (APC), adeptly handles the operational limitations of the SCESS. For the purpose of online estimation of system parameters, the recursive least square (RLS) algorithm has been employed. The system can be characterized as a two input two output system, wherein the real and reactive powers required by the SCESS serve as control signals issued by the controller. The SCESS voltage is subject to constraints to limit energy trade within specific bounds. The proposed control scheme successfully maintains the voltage constraints of the SCESS while significantly reducing frequency and voltage deviations in the presence of two disturbances, viz; load disturbance and wind disturbance. The effectiveness of the proposed scheme is demonstrated through simulation experiments on an isolated hybrid wind diesel power system, which addresses several modeling and design aspects.
{"title":"Dynamic performance improvement of an isolated wind-diesel system with intelligently controlled supercapacitor energy storage system","authors":"Gazala Rashid, Shameem Ahmad Lone, Mairaj Ud din Mufti","doi":"10.1177/0309524x231203952","DOIUrl":"https://doi.org/10.1177/0309524x231203952","url":null,"abstract":"This paper aims to develop a supervisory control scheme to enhance the effectiveness and profitability of a small-rating super capacitor energy storage system (SCESS) used in load-frequency-control applications. The proposed approach, which uses one-step-ahead adaptive predictive control (APC), adeptly handles the operational limitations of the SCESS. For the purpose of online estimation of system parameters, the recursive least square (RLS) algorithm has been employed. The system can be characterized as a two input two output system, wherein the real and reactive powers required by the SCESS serve as control signals issued by the controller. The SCESS voltage is subject to constraints to limit energy trade within specific bounds. The proposed control scheme successfully maintains the voltage constraints of the SCESS while significantly reducing frequency and voltage deviations in the presence of two disturbances, viz; load disturbance and wind disturbance. The effectiveness of the proposed scheme is demonstrated through simulation experiments on an isolated hybrid wind diesel power system, which addresses several modeling and design aspects.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"64 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1177/0309524x231203685
Jiyan Liu, Dong Li, Zhelong Wang, Weishuai Wang, Meng Li
In the medium and low voltage distribution network, the load form of users is complex and changeable. There are a large number of single-phase and two-phase loads connected to the distribution network, resulting in a three-phase unbalanced operation of the distribution network. With the development of the new energy, the high proportion of distributed new energy will further aggravate the three-phase imbalance of the distribution network. Therefore, this paper proposes a coordinated optimization framework of droop parameters based on the multi-converter droop control, which takes the minimum loss of the distribution network as the optimization objective, and optimizes the reference point and the slope of the VSC droop hierarchically. A small-signal stability optimization dispatching method for the VSC droop slope in the DC distribution network is proposed. By adding small-signal stability constraints to the slope optimization model, the optimal slope command and slope stability region which can ensure the small-signal stable operation of the system are obtained. Experiments show that the optimization model of the VSC small-signal stability slope can make the droop control instruction significantly improve the small-signal stability of the system to adapt to the intra-day source load power fluctuations with a small economic cost. The slope stability region pre-optimization model can provide a reliable stability slope upper limit for the slope optimization problem based on ensuring the system operation economy. The research in this paper can make full use of the flexible control ability of power electronic equipment, and then suppress the three-phase imbalance, which is of great significance to improve the security and economy of the distribution system operation.
{"title":"Flexible load control of new energy based on improved genetic algorithm","authors":"Jiyan Liu, Dong Li, Zhelong Wang, Weishuai Wang, Meng Li","doi":"10.1177/0309524x231203685","DOIUrl":"https://doi.org/10.1177/0309524x231203685","url":null,"abstract":"In the medium and low voltage distribution network, the load form of users is complex and changeable. There are a large number of single-phase and two-phase loads connected to the distribution network, resulting in a three-phase unbalanced operation of the distribution network. With the development of the new energy, the high proportion of distributed new energy will further aggravate the three-phase imbalance of the distribution network. Therefore, this paper proposes a coordinated optimization framework of droop parameters based on the multi-converter droop control, which takes the minimum loss of the distribution network as the optimization objective, and optimizes the reference point and the slope of the VSC droop hierarchically. A small-signal stability optimization dispatching method for the VSC droop slope in the DC distribution network is proposed. By adding small-signal stability constraints to the slope optimization model, the optimal slope command and slope stability region which can ensure the small-signal stable operation of the system are obtained. Experiments show that the optimization model of the VSC small-signal stability slope can make the droop control instruction significantly improve the small-signal stability of the system to adapt to the intra-day source load power fluctuations with a small economic cost. The slope stability region pre-optimization model can provide a reliable stability slope upper limit for the slope optimization problem based on ensuring the system operation economy. The research in this paper can make full use of the flexible control ability of power electronic equipment, and then suppress the three-phase imbalance, which is of great significance to improve the security and economy of the distribution system operation.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"403 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1177/0309524x231202765
Mahideremariam Alemu, Endalew Ayenew
The wind energy generation system is complex because of varying wind speeds and its control systems to improve its ability of energy harvesting. This paper considers a hydraulic actuator-based variable-pitch angle control of a 1.5 MW wind turbine. The existing control systems of the pitch mechanism of the wind turbines are complex and bulky size. This study applied Genetic Algorithm based Proportional Integral Derivative Controller (GA-PID), Fractional Order Proportional Integral Derivative (FOPID), and Genetic Algorithm based Fractional Order Proportional Integral Derivative (GA-FOPID) controllers to adjust the pitch angle of the wind turbine blade. The performance of GA-FOPID, FOPID, and GA-PID controlled pitch angle is compared by considering different wind speeds. The GA-FOPID controller reduced the variation in mechanical power to 0.08% concerning the rated value and the variation in mechanical torque to 1.51% in comparison to the rated value. Therefore, the GA-FOPID controller shows better performance than the conventional PID.
{"title":"Optimal control of the electro-hydraulic actuator for variable pitch variable speed wind turbine: Performance enrichment","authors":"Mahideremariam Alemu, Endalew Ayenew","doi":"10.1177/0309524x231202765","DOIUrl":"https://doi.org/10.1177/0309524x231202765","url":null,"abstract":"The wind energy generation system is complex because of varying wind speeds and its control systems to improve its ability of energy harvesting. This paper considers a hydraulic actuator-based variable-pitch angle control of a 1.5 MW wind turbine. The existing control systems of the pitch mechanism of the wind turbines are complex and bulky size. This study applied Genetic Algorithm based Proportional Integral Derivative Controller (GA-PID), Fractional Order Proportional Integral Derivative (FOPID), and Genetic Algorithm based Fractional Order Proportional Integral Derivative (GA-FOPID) controllers to adjust the pitch angle of the wind turbine blade. The performance of GA-FOPID, FOPID, and GA-PID controlled pitch angle is compared by considering different wind speeds. The GA-FOPID controller reduced the variation in mechanical power to 0.08% concerning the rated value and the variation in mechanical torque to 1.51% in comparison to the rated value. Therefore, the GA-FOPID controller shows better performance than the conventional PID.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":" 39","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1177/0309524x231201526
Endalew Ayenew Haile, Milkias Berhanu Tuka
The wind, stochastic in nature, is one of the fastest-growing and most promising renewable energy resources in the entire world. Thus, this paper investigates the influence of parameter uncertainties upon a dynamic performance of a grid-tied Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion System (WECS). The main uncertain parameters found in the study are mutual and rotor winding reactances which occurred due to the variation of the angular positions of the rotor caused by varying wind speeds. The variation in the wind speed caused the generator rotor speed to deviate between 25% and 150%. Consequently, the rotor winding reactance of DFIG changes from its nominal value of 1.31 mΩ to between 0.983 and −0.655 mΩ; and the mutual reactance from its nominal value of 0.941 Ω to between 0.758 and −0.4708 Ω. As a result, the stator and rotor winding voltages and currents of the DFIG are uncertain.
{"title":"Analysis of the effect of parametric uncertainty on dynamic performances of doubly fed induction generator-based wind energy conversion system","authors":"Endalew Ayenew Haile, Milkias Berhanu Tuka","doi":"10.1177/0309524x231201526","DOIUrl":"https://doi.org/10.1177/0309524x231201526","url":null,"abstract":"The wind, stochastic in nature, is one of the fastest-growing and most promising renewable energy resources in the entire world. Thus, this paper investigates the influence of parameter uncertainties upon a dynamic performance of a grid-tied Doubly-Fed Induction Generator (DFIG)-based Wind Energy Conversion System (WECS). The main uncertain parameters found in the study are mutual and rotor winding reactances which occurred due to the variation of the angular positions of the rotor caused by varying wind speeds. The variation in the wind speed caused the generator rotor speed to deviate between 25% and 150%. Consequently, the rotor winding reactance of DFIG changes from its nominal value of 1.31 mΩ to between 0.983 and −0.655 mΩ; and the mutual reactance from its nominal value of 0.941 Ω to between 0.758 and −0.4708 Ω. As a result, the stator and rotor winding voltages and currents of the DFIG are uncertain.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"433 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135814081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1177/0309524x231200010
Marwa M. Ibrahim
Burning fossil fuels results in more emissions than generating electricity from renewable sources. The transition to renewable energy from fossil fuels, which currently produce the majority of emissions, is essential to preventing the climatic disaster. Hybrid energy generation systems are still in their infancy. It is envisaged that future technology developments would lead to greater application and more economical goods. There will be more standardised designs, which will make it easier to select a system that is suitable for a certain application. The components will communicate more with one another. As a result, control, monitoring, and diagnosis will be made simpler. The hybrid energy system (HES), also known as hybrid power, is expected to be the long-term power solution for microgrid (MG) systems. This study compares and contrasts several theories and conventional approaches to controlling HRES’s control and energy consumption. A successful energy management strategy has been created using a variety of methods and procedures. The effectiveness of an EMS is determined by its control architecture and the solution approach used; common topologies include hierarchical, decentralised and centralised EMS. Supply side management and demand side management, two EMS components, will be discussed later. The three EMS control architectures are examined in this section. In order to determine the most practical and dependable solution with the lowest Net present cost (NPC), COE and realistic environmental consequences, various hybridisation cases of a PV panel, wind turbine, battery storage and diesel generator are designed, analysed and compared using DSM. The results of taking into account DSM indicated a reduction in CO 2 emissions of 25%, NPC emissions of 14.8%, COE emissions of 14% and an increase in RF emissions of 8.5%. Two fundamental metrics – the DSM Quality Index for technical benefits and the DSM Appreciation Index for economic advantages – are used to assess the technical and economic benefits of DSM.
{"title":"Energy management strategies of hybrid renewable energy systems: A review","authors":"Marwa M. Ibrahim","doi":"10.1177/0309524x231200010","DOIUrl":"https://doi.org/10.1177/0309524x231200010","url":null,"abstract":"Burning fossil fuels results in more emissions than generating electricity from renewable sources. The transition to renewable energy from fossil fuels, which currently produce the majority of emissions, is essential to preventing the climatic disaster. Hybrid energy generation systems are still in their infancy. It is envisaged that future technology developments would lead to greater application and more economical goods. There will be more standardised designs, which will make it easier to select a system that is suitable for a certain application. The components will communicate more with one another. As a result, control, monitoring, and diagnosis will be made simpler. The hybrid energy system (HES), also known as hybrid power, is expected to be the long-term power solution for microgrid (MG) systems. This study compares and contrasts several theories and conventional approaches to controlling HRES’s control and energy consumption. A successful energy management strategy has been created using a variety of methods and procedures. The effectiveness of an EMS is determined by its control architecture and the solution approach used; common topologies include hierarchical, decentralised and centralised EMS. Supply side management and demand side management, two EMS components, will be discussed later. The three EMS control architectures are examined in this section. In order to determine the most practical and dependable solution with the lowest Net present cost (NPC), COE and realistic environmental consequences, various hybridisation cases of a PV panel, wind turbine, battery storage and diesel generator are designed, analysed and compared using DSM. The results of taking into account DSM indicated a reduction in CO 2 emissions of 25%, NPC emissions of 14.8%, COE emissions of 14% and an increase in RF emissions of 8.5%. Two fundamental metrics – the DSM Quality Index for technical benefits and the DSM Appreciation Index for economic advantages – are used to assess the technical and economic benefits of DSM.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}